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THE STRUCTURE OF MATERIAL FORCES IN
ELECTROMAGNETIC MATERIALS

Abstract. Material forces govern the behaviour and the evolution oéfect or
of an inhomogeneity in a solid material. In elastic materihlese forces are as-
sociated with the Eshelby tensor, as is known. In structoreehicro-structured
materials, an Eshelby-like stress can be assembled byfotica simple rule. By
appealing to this rule, one is able to propose an expreseiamé Eshelby tensor
in electromagnetism.

A variational procedure is hereby expounded, from which xgression for
the classical electromagnetic stress tensor, whose foathéswise controversial,
stems straightforwardly. The electromagnetic Eshellag—tensor is derived on
this base.

1. Introduction

Material forces and configurational forces are customarilgerstood as two synonymous which
label the same notion. In the continuum framework, the canditional forces are usually associ-
ated with the energy—stress tensor and they acquire a pepi@tance in structured materials.
Most people, who are concerned with materials with an imtlestructure or with microstruc-
tures, are familiar with the notion of energy—stress. Sutkrgergy—stress naturally appears in
the theory whenever the material response depends on tthegraf the fields or of the micro-
fields of interest. We shall stress out that there are twosk{atlleast) of configurational forces
and only one of the two is related to the notion of materiatéorThe latter governs the behaviour
of material defects or inhomogeneities [1, 2].

The Maxwell electromagnetism can be viewed as one of thetfiesiries of a material
endowed with a structure (i.e.the electromagnetic fiemf)pugh the Maxwell-Faraday’s elec-
tromagnetic fields are defined also out of a body of finite ext&s the electromagnetic fields
pervade the whole physical space, the mathematical profdethe electromagnetic materials
has to be formulated not only in the domain occupied by theybldt also in the exterior do-
main, accordingly. The electromagnetic fields obey a setifedrdntial equations that are in
general coupled with the mechanical equations [3, 4]. Shtheé Maxwell equations possibly
decouple from the mechanical ones, one could think to sbkmnffirst and afterward to look for
the associated stress tensor, in order to enquire aboutebleamical behaviour of the material.

Some people who are interested in liquid crystals shareattiiside with those who deal
with electromagnetic materials or with other sort of stanetl materials. However, in most of
the cases, the form of the mechanical stress to associdteavgtructured material may be a
controversial matter [5, 6, 7]. This is the case for electagnetic materials [4]. It is worth to
recalling that the quarrel, about the proper form the stfasd the momentum) should have in
electromagnetic materials, is still unsettled [8]. As thirnot a general agreement on the form
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of the electromagnetic stress, a challenge for new propdsalpen.

Here, we discuss this point basing on a variational apprdadis approach, the Maxwell
electromagnetic stress tensor will naturally stem from enhtan-like principle for a Lagrangian
that we are going also to introduce. Along with the electrgnedic stress, other electromagnetic
guantities of interest are derived. These quantities aetilior recovering the final form of the
energy—stress tensor which is related tortfsterial forceq9, 10]. This energy-stress definitely
differs from the Maxwell energy—stress. Maxwell introddci his treatise, the electromagnetic
stress tensor in order to evaluate the electromagnetie facting over a body [11]. Thus, the
Maxwell tensor is an energy-stress tensor that it is relaiete classical notion of forceotto
thematerial forcesas we will try to show in evidence.

Nonetheless, the procedure suggested by Maxwell in estédj the stress and the force
acting on a material body is appealing, as it can be re—pegpos other fields of Continuum
Mechanics or Continuum Physics. Eshelby [1] was the first prioposed to apply the Maxwell’s
procedure to elasticity, in order to evaluate the forcengctipon a point-wise defect. In this
respect, Eshelby introduced the notion of material force.

2. Maxwell equations in material form

Hereafter, we consider a solid body of infinite extent, wHitth the whole physical space. This
space is here represented by the Euclidean spacé he classical Maxwellian fieldg, D, B,
H, P andM (the electric field, the electric displacement, the magnetiuction, the magnetic
field, the polarisation and the magnetisation, respegiiaietransformedn a suitable chosen
reference configuration of the deformable body, in the fity fashion:

¢ = FI(E4+VAB) =F'¢g;
D = JFlp;
1 B = JFlB;
$H = FIH=F'H4+VAD;
B = IFp;
M = F'M

The introduction of the following auxiliary fields will be s useful:

¢* = FTE=€+4+VAB;
B* JF1B = JF 1B - (1/c?)v A E]
B + (1/cAC LV A ggdC1e");
M = FTM=IM—VAP).
The transformation has to be understood as through the m@appi: (X,t) — X, which is
assumed here to be regular enough for our purposes.

X belongs to the reference configuration ant the actual configuration of a body<e R
represents the timé& = VR, whereVg stands for the spatial gradient in the referential frame.
J = detF. FT denotes the transposeBf v = x andV = —F~1v. We also assume, as usual,
thatJ > 0.

The fields introduced in (1) satisfy the Maxwell equationshia following form:

@)

divg® = Jpe
3) divgB = 0
rotr€+ (0%B/at)|lx = O

rotr$) — (89 /dt)|x

g.
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divg represents the divergence operator emigk the curl operator in the reference configura-
tion; g is defined as follows:

4) g=JF 1 + JpeV.

pe andj are the free charge and the free current densities, regplgctper unit volume of the
current configuration.

The transformations of the electromagnetic fields, suchiandy the relationships (1)
and (2), provide the Maxwell equations (3) in the referdrfiteame. These equations are clearly
form—invariant.

The reader is referred to [10] for further details on thisypoi
For future use, we will introduce the following relationgbi

(5) P =2 —eodClE*
and
(6) M = gl ~1CB — H.

whereC = FTF. ¢y and g are the electric permittivity and the magnetic permeabibit a
vacuum, respectively.

2.1. The material electromagnetic potentials

The classical electrodynamical potentials, namely thiasgatential® and the vector potential
A are also transformed in two analogous fighdand.4, respectively, in such a way that they are
consistent with the equations (3) [10, 11, 12, 13]. More Hjmadly, one introduces the vector
field A, (the vector potential in the material form) as follows:

(M rotrd =B

so that the equation (3)is identically satisfied. It is worth to mentioning thatis uniquely
defined, provided that the quantityvr.4 is specified.
Basing on the equations and (7), one also introduces the material scalar potepitisd that

(8) €=-Vgo—A

The superposed dot o4 denotes the total time derivative gf.

The equations (3) can be now written in termspofA, P andT*, by taking into account
the equations (1), (4), (5), (6), (7) and (8). Hereafter, vilkbe concerned with this form of the
Maxwell equations, which is known as the Lorentz form [4,.12]

It is worth to recalling that, had we dealt with bounded damsathe field$3 and))t* would
have been identically vanishing out of these domains.

3. A Lagrangian approach

Motivations for introducing the Lagrangian density in thaterial form, such as written be-
low, will not be reported here as they are illustrated in [18¢re, we only remark that such a
Lagrangian provides the equations (3), in the Lorentz foFiis Lagrangian reads:

2
@ L = %{SOJG*-C’lé*—(MOJ)’l%-C%}+‘}3-Q§+§m*-%+%

— WG, FB, IFTom* x).
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L is a Lagrangian density per unit volume of the reference gardition and possibly is of the
following form:

(10) L =L(¢,d, VR, A, A, VRA, B, B, VP, I*, M", VRI*, x, X, F, X) .

The corresponding Lagrange equations read:

daL oL oL
di

53_43_%4_ v dVRe
ia—l_.—£+diVR—aL =
dtaA oA aVRA
daoL aL . oL

(11) aa—k—&-l-leRa—F:O,
d aL aL . L
a%—@‘f' Rov R ,

With reference to the expression (9), one notes that:

L
ity
0
oL
12 — =0
12) — =0
L_o
0

The equations (131)and (11)» simplify accordingly and provide, as a final result, two oé th
Maxwell equations of interest, in the Lorentz form.

For sake of simplicity, we also assume that

il

-

.,Ew
=

*|
|

(13) oM
NP
AVRINT®

I
o o o o

In accordance with this assumption, the equations,(ahy (11} reduce to the following alge-
braic equations:

oW

_E =,
AW
(14) P =B,

which happen to correspond to the classical constitutiveons. The equation (1 has a
natural mechanical interpretation, according to whichghantityo L /9X represents themomen-
tum
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4. The electromagnetic stress tensor and momentum

With reference to the expression (9) the momentum densiljcitly reads:

aL 1. oL
15 — = pgV — (F — = pgV + J(Dg A B),
(15) ax = Pov = ( )5y =rov+IDOoAB)
whereDg = ¢gE. The electromagnetic stress tensor, in the Piola form,l@fotlowing explicit
expression

L _ 1 _ _
—F = E®©0+M018®%—EJ[50E2+M0182]F 1T _J[DpAB®V] +
AW W 1 AW
16 4 —J F———
(16) + 8F+8(F‘13)®§‘B M® (aJF—lTim*>+
oW —1T —1T
+ | ————JF mﬁ]F ,
[aJF—lTﬂn*

having noted that the dependence_adn F is throughV = —F~1x and throughW. W, in turn,
depends or- explicitly and throughJ3 and J99t*. The tenso®L /dF can be transformed in
the Cauchy—formand, if we take into account the equation (g,1)L1) and (14), we eventually
write:

-1k

(@7 oF

1
FI' = [00E®E+uy'B®B] - E[soE2 + g tB2 +
[eo(EAB) ® V] +

rl(%—vFV)FTJrs@P—M@BJr(M-B)L

The expression (17) is consistent with the classical espaof the Maxwell stress tensor in a
vacuum, which reads:

_ 1 _
(18) tm =80E®E+MOlB®B—5(80E2+M0152)|,

having disregarded the velocityof the material points.

5. The electromagnetic material tensor

The variational procedure which is based on the Lagrangé@nsity L not only provides the
Maxwell equations and the balance of momentum [10, 13]. ¢t f@ong with themomentum
dL /ax, two additional canonical momental /3¢ anddL /3.4, are also introduced.

In the specific case of electromagnetism, one of these manvanishes:

oL

(19) =

as remarked previously in (1)
The following result holds true for the second canonical rantam:

oL

(20) s

-3,
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taking into account the relationships {2]8), (9) and (10).

Having this remarked, aadditional mechanical quantityvhich is a combination of the two
non-vanishing canonical momenta, can be introduced. Thihamical quantity is defined as
follows [10]:

_ _pTiL 7oL

The expression (21) is a density per unit volume of the refeeonfiguration and leads to the
definition of thematerial momenturor pseudomomentuf{B, 14, 15], which writes as follows:

(22) PR = poCV + P A DB = poCV + J(P A B)
or, per unit volume of the current configuration,
(23) p=pCV+PAB.

This procedure for defining the novel mechanical quantity mat be unfamiliar to people who
work on materials with microstructures, from the viewpahtontinuum mechanics. An analo-
gous procedure can be employed for a combination of the tjiesr#tL /0 VR¢, dL/dVR.A and
aL/oF.

This combination defines thmaterial energy—streg@n Eshelby-like stress) as follows

o 7oL oL T oL
(24) b= —LI+FT 2 + (VR#) 8 7o + (VRA) 55—

The expression (24) can be explicitly evaluated by taking &tcount the equations (41)11)
and (14). The computations will not reported here as theybediound in [10].

One of the result of interest is the expressiot difiat specialises in the following form, for
the electrostatics of a dielectric material:

(25) bdid:(W—‘B-(’S)I—FT¥—(’S®‘B.

The corresponding Cauchy—like stress is reported herevifelocomparison. With reference to
the formula (17), it reads:

: 1 W

(26) Tdiel = _ B2 +E®@D+ JT1EZFT.
2 aF

where

27 D = ¢oE + P.

6. Comments

By comparing (26) with (25) one can notice the following. sEiralthough the two mentioned
expressions are in the form of energy—stress tensors thegletely differ from one another. It
is not possible to transform one into the other by means ahalsirule, like in pure elasticity.

Second, the Cauchy form of the electromagnetic stressiteadoces to the Maxwell stress
tensor, not only in a vacuum but also in all simple cases thatdealt with in the classical
literature. Third, the electrostatic stress tensor sesviglso out of the domain occupied by
the material, whereas the correspondaigctrostatic material stress tensofie! identically
vanishes in a vacuum.
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