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NOTES ON STRESSES FOR MANIFOLDS

Abstract. The geometric structure of stress theory on differentiabémifolds
is considered. Mechanics is assumed to take place an-dimensional and no
additional metric or parallelism structure is assumed. ifferent approaches are
described. The first is a generalisation of the traditiorali€hy approach where
the resulting stresses are represented mathematicallgcasrwalued(m — 1)-
forms. The second approach is variational and stressesgmesented by densities
valued in the dual of the first jet bundle. Itis shown how aatiohal stress induces
a Cauchy stress.

1. Introduction

This work describes some issues related to the formulafistress theory on manifolds. In pre-
vious works (see [1, 2, 3, 4]), stress theory for the case &vheth body and space are modeled
by differentiable manifolds rather the traditional Euelith spaces was developed. In [1] a gen-
eral weak formulation of stress theory was presented. Obakées of some general guidelines
(see the motivation for the introduction of variationaksses below), stresses were presented as
measures on the body manifold valued in the dual of a jet leurlilich a stress measure repre-
sents a force using a representation theorem for the forei€unal. In that work, assuming that
the stress measures may be represented by smooth derbdiesiditional geometric structure
of a connection was used in order to allow the representafiarforce by a body force field and
a surface force field. In the sequel, we will refer to this aggh as the variational approach. In
the more recent works, [2, 3] stress theory was presentedamifoids without any additional
geometric structure (e.g., a connection) from a point ofwileat is analogous to the classical
Cauchy theory of stresses. In [2] the theory was presentdtidaase of scalar valued quantities
and in [3] the theory was extended to forces. We will referhis method as the generalized
Cauchy approach. In [4], some aspects of the relation betwe= Cauchy approach and the
variational approach were considered.

After a presentation of the generalized Cauchy approactetti@ 2, Section 3 is con-
cerned with the Cauchy postulates given in [3]. It is showat the boundedness postulate in
[3], that is a generalization of the balance of momentum @tthditional formulation, is not
general enough. A revised version of the boundedness ptstigl suggested and it is shown
that the weaker assumption does not alter the proof of thergéned Cauchy theorem in the
aforementioned paper.

Sections 4 and 5 review the variational approach and ittiealéo the generalized Cauchy
approach presented in [4]. Section 6 extends this relatidnshows how the representation of
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forces by body forces and surface forces in the Cauchy appisacompletely equivalent to the
representation of forces by variational stress densiti¢ise variational approach.

2. Cauchy'’s stress theory for manifolds

Letw: W — U be a vector bundle over the-dimensional orientable manifold. It is assumed
that a particular orientation is chosen &n The vector bundle is interpreted as the bundle of
generalized velocities ovéf. The manifold/ is interpreted as the universal body and the vector
bundle is interpreted as the bundle of generalized vetscitiverl/. Cauchy’s stress theory
for manifolds, presented in [3], considers for each compactimensional submanifold with
boundaryR of U linear functionals of the generalized velocity fields camiteg a volume term
and a boundary term of the form

Fr(w) = / br(w) + / tr(w).
R R

Here, using the notatiof\ P(T*X) for the bundle ofp-forms on a manifoldX, w is a section of
W, by, thebody forceis a section of. (W, A™(T*R)) andty theboundary forcés a section

of L(W, /\m_l(T*aR)). The functionalFy, is interpreted as the force, or power, functional and
the valueFz (w) is classically interpreted as the power of the force for thieegalized velocity
field w.

Cauchy'’s postulates for the force syst¢Ry = (b, tr)} presented in [3] may be sum-
marized as follows.

(i) Foreveryx € U and every bodyR, by (X) = b(x), that is, the value of the body force at
a point is independent of the body containing it. Accordingle will omit the subscript
R.

(i) Let us consider the Grassmann bundle of hyperplabgs1(TU) — U whose fiber
Gm—1(Txl{) at any pointx € U is the Grassmann manifold of hyperplanes, (& 1)-
dimensional subspaces of the tangent spaéé Let

m—1

LW, /\ Gm-1(TU)*) > Gm_1(TU)

be the vector bundle oves,_1(TU) whose fiber over a hyperplarté C Txl/ is the

vector space of linear mappingiwx, /\m*1 H *) Then, the dependencetgf onR is
via a smooth section

m—1
T G (TU) —> LW, /\ Gm_1(TU)*),
the Cauchy sectiopsuch thatp = X' (H) whereH = TxaR.
(iii) The Cauchy sectiolX' is continuous.
(iv) Thereis a sectiog of L(W, A™(T*1)) such that

/tR(w)’ S/C(w)
R

|Frw)| = Vb(w)+
R IR

for every bodyR.
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Using the results of [2], it is shown in [3] that there is a urécsectior of L (W, /\m_l(T*L{))
called theCauchy stressuch that

tr(w)(vy, ..., vym—1) =0 (w)(vy, ..., vm-1),

for any collection ofm — 1 vectors(vy, ..., vm—1) € TxdR, X € R, where the dependence on
x was omitted in order to simplify the notation. Using the niota.: 9R — U/ for the natural
inclusion mapping, so that : /\m_l(T*L{) - AM —1(T*oR) is the restriction of forms, we
may writetg (w) = * (o (w)) which we will also write asz = *(o)—the generalized Cauchy
formula. We will refer to this result as thgeneralized Cauchy theorem

Assume tha(xi , w*) are local vector bundle coordinates in a neighborheod(U) c W,
U c U with local basis elementdV*e,} so a section ofV is represented locally by“ W%e,.
Then, denoting the dual base vectors{ly* e, } a stressr is represented locally by

W, @ dxtA ... AdXKA ... AdX™,

%1..k..m

where a “hat” indicates the omission of an item (an index oacdr). The value of (w) is
represented locally by

. oyl Tk m
01 k. mW dx A ADXEA L AdX T

3. The revised boundedness postulate

If we substitute the generalized Cauchy formula into theesgion forFz (w) we obtain

Fr(n = [br+ [ traw)
R R

=/b7z(w)+ / (o (w))
R

R

=/bR(w)+/d(a(w)),
R

R

where Stokes’ theorem was used in the last line. It is clean fihe local expression far (w)
that the exterior derivativdo (w) depends on the derivative of an not only on the local value
of w. In other wordsF5 (w) is a local linear functional on the first order igtw).

Using the observation th&tp should be a local linear functional on the first jetwof we
replace the boundedness postulatglfy the following

Revised boundedness postulate

There is a sectio of L (J Tow), A™(T*U)) such that

|Fr(w)| = ’/b(w)-i-/t?z(w)‘ < [|stiw)
R R R

)

where the absolute value of amform 6, S(j 1(w)) in this case, is given as

6(x) if 6(x) is positively oriented,
—6(x) if 6(x) is negatively oriented

60Ol = {
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relatively to the orientation chosen th
It is noted that the revised boundedness postulate may alsgitien as

’/ tR(w)‘ < [|soli*w).
R R

for some sectior of L (J1(W), A™(T*2)). This follows from

—‘/b(w)‘+‘/tn(w)‘ < ‘/b(w)+/tn<w) < [|stiw)
R R R R R
SO
’/ tR(w)‘ < [[stita)|+ ’/b(w)’
R R R
s/IS(jl(w>)]+/]b<w)\
R R
= [ ([strwn)] +[oe])
R
s/’So(jl(w>)’,
R
for someS,.

For an arbitraryi € U we want to show that
tr(w) = Z(TxdR)(w) = * (o (w)),

for a unique element oL(WX, /\m —1(TXL{)), where in the equation above we omitted the
dependence or.

Just as in [3], the proof the generalized Cauchy theoremsisan the following points:

(8 The assertion is local and written in an invariant form aadde it may be proved in any
vector bundle chart.

(b) Using a local basigWe,} for the neighbohood where the vector bundle chart is used,
any vectorw € Wx may be expressed in the form= w*W%g, , sotp (w) = w¥rR,,
where,rp, = tr (W%ey).

(c) For the local vector fieldV“e, in the chart neighborhood of, the scalar valued exten-
sive property given by the volume terfi, = b(W%g,), the flux density termr, =
tr (W*ey), and the source ters, = \S(j 1(Wa3@))] satisfies the generalized Cauchy
postulates for scalar valued quantities (see [2]). In paldr, it is noted that iS(j 1(w))
is represented locally by

S(j1w) 1 mdX¥A - ADXT = (Sy1 mw® + Sy pwd)dxtAL L Adx™

(the components dual 0* and those dual te* differ in notation only by the number

of indices), thensy = |S,1._ml- Hence, by the Cauchy theorem for scalars [2], there is a
unique collection ofdimWy) (m — 1)-formso, such thatrg, = t*(oy). These forms
represent (x) € L(WX, /\m_1 TxaR) in the given chart.
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4., Variational stress densities

Let7: W — U be a vector bundle as in the previous sectiornvafiational stress densitis a
section ofL(Jl(W)l /\m(T*L{)), whereJ1(W) is the first jet bundle associated wht.

For the vector bundle coordinate systexh w¥),i=1,. , m, « =1,...,dim(Wy), the
jet of a section is represented locally by the functi¢n$ (xi ) w (xk)} where a subscript fol-
lowing a comma indicates partlal differentiation. A vaigaial stress density will be represented
locally by the functiongS,1. m, ﬁl,..m} so that the single component of threform S( 1(w))
in this coordinate system is

Sy = S mo® + Sy

Note that the notation distinguishes between the compenein® that are dual to the values
of the section and those dual to the derivatives by the nuroberdices only. The next few
paragraphs motivate the introduction of variational stidensities.

The rational behind the generalized variational formolatf stress theory is the frame-
work for mechanical theories where a configuration manikbnstructed for the system under
consideration, generalized velocities are defined as eienud the tangent bundle to the con-
figuration manifold, and generalized forces are defined emehts of the cotangent bundle of
the configuration space. For the mechanics of continuougebod configuration is an embed-
ding of the bodyR in spaceM. The natural topology for the collection of embeddings & th
Cl-topology for which the collection of embeddings is opentia tollection of aICl-mappings
of the body into space. Using this topology, the tangentespadhe configuration manifold at
the configurationr: R — M is Cl(K*(TM)), the Banachable space@f—sections of the pull-
back«*(TM). Thus forces in continuum mechanics are eIement@l()f*(TM))* — linear
functionals on the space of differentiable vector fieldsigged with theCl-topology.

The basic representation theorem (see [1]) states that@ fanctionalF € Cl(K*(TM))*

may be represented by measureséfithevariational stress measuresalued inJ 1(/c*(TM))*,
the dual of the first jet bundlél(*(TM)) — U. Thus, the evaluation of a forder on the
generalized velocity is

Fr(w) = / du(jtw)),
R

wherep is the J1(«* T M)*-valued measure — a section Schwartz distribution.

Assuming thatc is defined on all the material univergé we use the notatioW for
k*(TM). This vector bundle can be restricted to the individual bedand with some abuse
of notation, we use the same notation for both the bundle @snikstriction to the individual
bodies.

Thus, in the smooth case, a variational stress measureeis giterms of a sectio8 of the
vector bundle of linear mappings(Jl(W), /\mfl(T*u)) )

Fr(w) = / S Yw)).

This expression makes sense&;’;l(w)), is an(m — 1)-form whose value at a point € R is
S0 (jLw)(x)).
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Since in the sequel we consider only the smooth case, we séll'variational stresses” to
refer to the densities.

5. The Cauchy stress induced by a variational stress

In [4] we defined a canonical mapping

m m—1
po: L(IT W), A\(T*)) = L(W, A (T*w)),

that assigns to a variational stress denSity Cauchy stress satisfying the following relation.
At everyx € U (we suppress the evaluationxain the notation)

¢ Ao(w) = S(jpeuw)-

Here, jpgw is roughly the jet ai of a section whose value is 8 Wy and its derivative is
¢ ®w. More precisely, ifu: / — W is the section whose first jet atis jyg,, then,u
satisfies the following conditionsu(x) = 0; denoting the zero section &% by 0, Txu —
Tx0 e L(TXL{, TO(X)WX) induces the linear mapping w through the isomorphism dy ) Wx
with Wy. The local representative qi, is as follows. Ifoc = ps(S), then, using the local
representatives af andSas in the previous sections,

OpL..m= (—1)"1S+'ﬂl._.m, (no sum ovet).

The mappingp, is clearly linear and surjective.

6. The divergence of a variational stress

Given a variational stress densiBjts generalized divergence Dis the section of the bundle
L(W, A™(T*U)) defined by

DivS(w) = d(ps (S)(w)) — S(IL(w)).

The local expression for Di%(w) is

(s

wl.mi — Ser.m)w¥dxtA. . AdX™,

which shows that DivS depends only on the values of and not its derivative. With these
definitions one obtains for the case where

Fr(w) = / S(itw))
R

that
Fr(w) = / br(w) + / tR(w)
R R

wheretg (w) = t}"z(a(u))) and DivS+ bi = 0. We conclude that every variational stress
induces a unique force systeftbg, tg)} through the Cauchy stress it induces and its diver-
gence. Actually, we obtained a decompositiorﬁ()fl(w)) into an exact differential and a term



Notes on stresses for manifolds 205

that is linear in the values af. The converse is also true. If we have a force system that sat-
isfies Cauchy’s postulates, then, the induced Cauchy stresges us to define a secti&of
L(3*w), A™1(T*1)) by S(j1(w)) = b(w) + do (w). Clearly, writing the local expression
for S, itis linear in the jet ofw. Hence,

Fr(w) =/b(w)+/da(w) =/S(j1(w)).
R R R

If for a given variational stress Dig = 0, thenS(j 1(w)) =do(w),foro = py o S.

References

[1] SEGEV R., Forces and the existence of stresses in invariant continm@ohanicsJ. of
Math. Phys27(1986), 163-170.

[2] SEGEVR.,The geometry of Cauchy’s fluxeégchive for Rat. Mech. and Anal54(2000),
183-198.

[3] SEGEV R. AND RODNAY G., Cauchy’s theorem on manifolddournal of Elasticity56
(2000), 129-144.

[4] SEGEVR. AND RODNAY G., Divergences of stresses and the principle of virtual work on
manifolds Technische MechaniR0 (2000), 129-136.

AMS Subject Classification: 73A05, 58A05.

Reuven SEGEV

Department of Mechanical Engineering
Ben-Gurion University

P. O. Box 653

Beer-Sheva 84105, ISRAEL

e-mail: rsegev@bgumail .bgu.ac.il



206 R. Segev



