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DESIGNING TEXTURED POLYCRYSTALS WITH SPECIFIC
ISOTROPIC MATERIAL TENSORS: THE ODF METHOD

Abstract. Herein we study the following problem: Suppose we are giveapply

of grains, which are of the same material and have equal @lu@iven a finite
set of material tensoﬂﬁ('), can we find an arrangement of grains in an aggregate
so that all the tensof(") pertaining to this aggregate are isotropic? In this paper
we examine the preceding problem within the special coraeghysical theories
where material anisotropy of polycrystalline aggregasedetermined by crystal-
lographic texture, and we restrict our attention to tensgdrsse anisotropic part is
linear in the texture coefficients. A method is developed tciv the preceding
problem is answered positively for tensors of various aderd grains of vari-
ous crystal symmetries. Our method uses the machineryafmelin quantitative
texture analysis. It is based on the symmetry propertiesenbtientation distribu-
tion function (ODF) and appeals to some recent findings on ¢tryatallographic
texture affects material tensors of weakly textured polstais. As illustration,
explicit solutions are worked out for the fourth-order ¢z tensor and for the
sixth-order acoustoelastic tensor.

1. Introduction

Consider an aggregatd of N linearly elastic cubic crystallite8,, which are of the same
material and have equal volume. Let a reference crystdBitde chosen, and leE® be its
elasticity tensor. For a rotatioR and fourth-order tensd, let R®4 be the linear transformation
on the space of fourth-order tensors such Hiat R®4H has its Cartesian components given by

HijkI = Rip qu Rir Ris Hpqrs,

whereR;jj andHpqrs denote the components Bfand ofH, respectively, and repeated suffixes
mean summation from 1 to 3. Under the Voigt model, the effecélasticity tensor of the
aggregated is given by

N
1
(1) C=1 > R$ACO,
a=1

where the rotatiorR,, defines the orientation &, with respect td3,. Recently Bertram et al.
[1, 2], in the course of their work on texture-induced elastnisotropy that results from finite
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of work supported in part by a grant from the National ScieRoandation (No. DMS-9803441) and by a
DoD EPSCoR grant from AFOSR (No. F49620-98-1-0469).
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plastic deformations of polycrystals, raised and answénedollowing question: What is the
smallest numbeN of cubic grains required and how should they be arrangeddietermineR,
fora = 1,2, ..., N) so thatC is isotropic? They proved that the smallétis 4 and determined
R1, ..., R4 for C in Eq. (1) to be isotropic. In their papers Bertram et al. stbalso that each
arrangemenRy, (¢ = 1, ..., N) which delivers an isotropi€ under the Voigt model also renders
the effective elasticity tensor isotropic under the Reusslehand under the “geometric mean”
estimate [3, 4].

For broader applications, naturally one would ask analsgpestions that pertain to ag-
gregates of grains of other crystalline symmetries and tteromaterial tensors. For example,
the sixth-order acoustoelastic tensor [5, 6] figures premty in problems that concern wave
propagation in prestressed solids; in some formulatiohsyjéld functions and flow rules in
plasticity involve not only fourth-order tensors but als$etls-order and even higher order ten-
sors. For definiteness, let us paraphrase the problem thahalkinvestigate in this paper as
follows: Suppose we are given an unlimited supply of grdigs which are of the same mate-
rial, have equal volume, and have crystal symmetry chaiiaetbby the grougicr. We consider
aggregatesA made up of a finite numbeX of grainsB,. Given a finite set of material tensors
HD, ... H®, find a numbeiN and an arrangement of graifig for which theN-grain aggre-
gateA has all its tensorBl() (i = 1, ..., s) isotropic. To reduce the foregoing to a manageable
mathematical problem, we shall restrict our discussion special class of physical theories
where material anisotropy of polycrystalline aggregaseddtermined by crystallographic tex-
ture (i.e., the preferred orientations of the constitutingins), and we shall only consider what
we call tensor functions of class (*) (see Definition 2 in $&t8 for a precise definition). Prime
examples are tensors of polycrystals defined by orientaltiaveraging (e.gC in Eq. (1)) and
material tensors of “weakly textured” polycrystals [8, 9].

In their papers [1, 2], Bertram et al. restricted their aitento fourth-order tensors and to
aggregates of grains with cubic symmetry. As far as we caredis the methods that they devel-
oped are applicable only for those special circumstancedadkle our more general problem,
we shall appeal to the machinery developed in quantita¢ivite analysis [10, 11, 12], in par-
ticular the restrictions that crystal and texture symmaétrgose on the orientation distribution
function (ODF), and draw on some recent findings of Man [8,&Bh regard to how crystal-
lographic texture affects material tensors of weakly teedupolycrystals. Since the expansion
coef‘ficientsc'mn of the ODF (see Eq. (9) in Section 2.2) play a crucial role i phesent work,
we call the approach developed in this paper for designitgcpgstals with specific isotropic
material tensors th@DF method

As the reader will see in detail below, this method relies mwlifig suitable combina-
tions of crystal and texture symmetries which produce diévaystems of equations where
specific texture coefficientdm of an aggregate are set equal to zero. In this paper we take
Ger to be a finite rotation group which satisfies the crystallpgia restriction, i.e.Ger =
C1,Co, C3, Cy, Cg, Dy, D3, Dyg, Dg, T, or O in the Schoenflies notation. Létex be a group
of texture symmetry. Unlik&cr, Giex Need not observe the crystallographic restriction. The onl
requirement orGtex is that it be a subgroup of the rotation group. Since we stsdlvarious
Gtex's for building aggregates that consist of a finite numberrgétllites, in this paper we use
only thoseGtex Which are finite. In what follows, for a finite group, we write|G| for the order
of G.
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2. Preliminaries

In this section we recapitulate some facts about oriematieasures and tensor representations
of the rotation group, which we shall use below. Throughig paper, when we talk about
orientations of crystallites, it is understood that a refee crystallite has been chosen. The
orientation of a crystallite is then specified by a rotatiagthwespect to the reference.

2.1. Tensor representations of the rotation group

LetV be the translation space of the three-dimensional Euclidpace, an¥" ther -fold tensor
productV ® V --- ® V. A rotationQ onV induces a linear transformati€@®" on V" defined

by
&) (Q®'H)iy iy = Qiyjy Qizjz *+* Qir jr Hjyrje-

where repeated suffixes mean summation from 1 to 3. The@ap Q%" defines [14] a linear
representation of the rotation group SO(3)wh A subspaceZ c V' is said to be invariant
under the action of the rotation group if it remains invatianderQ®" for each rotatiorQ. Let
Q®'|Z be the restriction 0Q®" on Z. ThenQ — Q®'|Z defines a linear representation of the
rotation group orZ. We refer to these representations of SO(3) on tensor spadessor repre-
sentations. By formally introducing the complexificatidp of V and Z¢ of Z (see Miller [14],

p. 105), we shall henceforth regard the tensor represengatis complex representations. For
simplicity, we shall suppress the subscript &nd continue to write the complex representations
asQ — Q%" |z.

In what follows we shall be concerned only with tensor spageghich remain invariant
under the action of the rotation group and, to specify theuartypes of tensors, we shall adopt
a system of notation advocated by Jahn [15] and Sirotin [16]this notation,V2 stands for
the tensor product ® V, [V2] the space of symmetric second-order tensdiy/?] the tensor
product of V and V2], [[VZ]?] the symmetric square o] (i.e., the symmetrized tensor
product of 2] and [V2]), [[ V2]3] the symmetric cube oM 2], [V2][[ V2]?] the tensor product
of [V24] and [[V4]], ..., etc. For instance, the fourth-order elasticity teris of type [[V2]2],
and the sixth-order acoustoelastic tensor of typ&][[ V2]2].

Following usual practice [16], we shall use the notationdach type of tensor space (e.qg.,
[[V2]2]) to denote also the corresponding tensor representatian, Q — Q®4|[[V2]2]).
Whether we really mean the tensor space or the correspotetiisgr representation should be
clear from the context. The rotation group has a completefsabsolutely irreducible unitary
representation®| (I = 0,1, 2, ...) of dimension 2+ 1. Tensor representations of the rota-
tion group are, in general, not irreducible. Each tensoresgntationQ — Q®'|Z can be
decomposed as a direct sum of subrepresentations, eacliobf iwlequivalent to som®; :

3) Z=ngDg+n1D1+---+n Dy,

whereny is the multiplicity of Dy in the decomposition. Whefi = V', we always havey = 1
in the decomposition formula. Whehis a proper subspace ¥f", someny’s in Eg. (3) may be
equal to zero, but we must have din= ZL:O nk(2k + 1). For example, we have

(4) IVER 2Dg + 2D; + Da,

(5) [VAIVA3 = 4Dg+ 2Dq + 7Dy + 3D3 + 4Dy + Ds + D,

and dim[V2]?] = 21, dim[V4][[VZ]?] = 126. Here a term such &g in Eq. (5) denotes
a2x 6+ 1 = 13 dimensional subspace of ][ V2]2], over which the subrepresentation of
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Q> Q®6is equivalent to the irreducible representati®g. Decomposition formulae such as
Egs. (4) and (5) above can be derived by computing the claratthe tensor representation in
question [15, 17] or by other methods [16].

AtensorH € Z c V' is isotropic if and only if it takes value in the subspaggDg, which
is a direct sum ofg 1-dimensional subspaces invariant un@&" . Thus we can read from Egs.
(4) and (5) that isotropic elasticity and acoustoelastitstes in [V2]?] and [V2][[VZ]?] are
specified by two and four material constants, respectively.

In what follows we shall refer to formula (3) as the decomposiof the tensor spacg&
into its irreducible parts.

2.2. Orientation measures

For brevity, henceforth we writé for the rotation group SO(3), which is a compact topological
group. LetC(G) be the space of continuous complex functiongjotit is a Banach space under
the supremum norm. The elements@({G)*, the dual space dE(G), are the Radon measures
ong. For f € C(G) andu € C(G)*, we denote byu, f) the complex number that results when
w is applied tof. Anticipating the applications that we shall investigate,call positive Radon
measureg with o (G) = 1 orientation measures, and we denote\dyG) the set of orientation
measures og. Under the weaktopology, M (G) is compact inC(G)* (cf. [18], p. 19).

For Q € G, the orientation measu#e, defined by
(6, f) = f(Q) for eachf € C(G)

is called the Dirac measure concentratedat Discrete orientation measures are finite linear
combinations of Dirac measurgs; a; §g;, whereg; > 0 for eachi and); a = 1.

For orientation measurgs and a fixedd® € Z c V', we consider (cf. Eq. (1))
®) H(p) = / RETHdp (R).
g

When the orientation measugeis absolutely continuous with respect to the Haar meagyye
(with o (G) = 1), the Radon-Nikodym derivativi> /do is well defined. Following common
practice, we call

1 dp

7 -_—
0 v 82 dpy

the orientation distribution function (ODF), and we mayastEq. (6) in terms of the ODF as
(8) Hw) = 8712/ R® HOw(R)dpn (R).
g

If w is square integrable ai with respect tgo, we may choose a spatial Cartesian coordinate
system and expand in an infinite series as follows:

o0 | |
1
©) wREW.0.6) = =5 +3 > 3 CunDmn(RY.6.9)).
|=1m=—I| n=—I|
(20) n = (-D™Nd
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Here D'mn are the WigneD-functions [19, 20](v/, 6, ¢) are the Euler angles [11] corresponding
to the rotationR; Z denotes the complex conjugate of the complex nurapandm = —m. We
call the expansion coefficients

2 +1
I

11 Cnn =

( ) n 8 2

/ Dhnn(Rd (R)
g

the texture coefficients; they are related to Roe’s [11]fadehts Wimn by the formula

_ 2
Wimn = (=D)™ n\/ A11 Clmn-

Let M2(G) be the set of orientation measures which are absolutelyreants and have their
corresponding ODF square integrable. Under the Weagology, M»(G) is dense inM (G),
because discrete orientation measures lie (see, e.g.if2ffje weak closure of M»(G) and
they are dense iM (G) (see [18], p. 27).

For any sequenc@‘)w of square-integrable ODF’s whose corresponding oriestiatiea-
sures(k)p converge weakly to the Dirac measuréq, by Eq. (11) their texture coefficients
(¢l converge to

A4+1——"""
(12) = == Dln(Q(Y. 6. 9)).

8r2
We call thec'mn’s given by Eq. (12) the texture coefficients pertaining t® Birac measuréq.
Likewise, we associate a unique set of texture coefficie'mﬁto each orientation measuge
Thus the texture coefficienténn, originally defined onM»(G) by Eg. (11), are extended by
continuity to become weakiycontinuous functions oM (G).

Now consider an aggregatéwhich consists of a single crystalligwith crystal symmetry
specified by a point grou@cr which is a subgroup of the rotation grogp Let N¢r be the order
of Ger, and Ieték (k = 1, ..., N¢r) be the elements dfcr. SupposeB assumes an orientation
specified by the rotatioRg. The orientation measure gf is given by

wheresy is the Dirac measure concentratedRyQy. The texture coefficients aft are then
given by

NCF

2+1 1 —_
= )" Dhin(RoQu)-
k=1

13 - L
(13) Cmn 872 Ne

LetG™D be a finite subgroup & with elementngl), j =1, ..., N7, whereNy is the order
of gD, Let AD be an aggregate df; crystallitesB;j of equal volume, which have crystal
symmetryGcr and orientations specified tiyﬁl) Ro. The texture coefficients oA(D) are:

N]_ Ncr—

2+1 1 1 T

(14) Chnn = s 3 Dhn(QSY RoQu)-
j=1k=1




160 C.-S. Man - L. Noble

If the entire aggregatd D is rotated byR;, the rotated aggrega.té(Rl) will have texture coeffi-
cients

Nl Ncr
2+1 1 1 | @) .
(15) =5 oo 2 2 Dhn(R1Q{Y RoQy.
]
872 Ni Ner j—1k=1

Let G be a finite subgroup & with eIementsQi(z), i =1,..., Ny, whereN, is the order
of G@. Let A be the aggregate df; x N crystallites formed by replacing each crystallite
Bj in the aggregateﬁt(l), whose orientation iRlQﬁl) Ro, with N> copies whose orientations

areQi(Z) RlQﬁl) Ro (i =1, ..., Np). The texture coefficients of aggrega4é? are:

N2 Ni Ner

2+1 1 1 1 5 T
(16)  Ccmn= S Y S S Dhn(QP R1Q RoQu).
i=1j=1k=1

LetGer = GO, whereG@ c G is a specific point group. We calk®, and.A® aggre-
gates of typg D RyG @, andg@ Ry gD RyG (@), respectively. (We shall take aggregat to
be of the same type as that.éfl).) In general, fop > 1, for a set of rotation®&y, ..., Rp-1, and
finite subgroupg @, ..., G(P of the rotation groug, we can easily write down the formula for
the texture coefficientsh, , that pertain to the aggregate of type” Rp_1GP~..g U RyG©,
which consists oNp x Np_1 x --- x Ny crystallites of equal volume and witer = G©@,
namely:

Np N1 No

2+1 1 1 1 G Dn o0
(A7) Cin= 5 S Y Y Dhn(QiP Ry 1+ Q) RoQ).
8 Np N1 Np 1 imtiomt p 1 0

where the order and elements@f are denoted by anin((?) (io =1, ..., Np), respectively.

3. The ODF method

Let wigg = 1/(87t2), the ODF when all texture coefficients are zero. tret= 8724, and let
L2(g, m) be the space of complex functions @which are square integrable with respect to the
measuram. Let

(18) Ho = |f eLz(g,m):/ f dm= 0},
G
(19) H = {wel?G m:w=uwsy+ f, wheref € Ho}.

All orientation distribution functionsv fall in #.

Let w be the ODF which characterizes the crystallographic textdira polycrystalline ag-
gregateA. After A undergoes a rotatio®, its texture is described by a new Opw, which
is related tow, the ODF before rotation, by the formula

(20) Tow(R) = w(Q'R)

for each rotatiorR.
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The tensor functiofil : M(G) — V', as defined in Eq. (6) by orientational averaging,
is weakly* continuous. When restricted fof»(G), the functionH(-) can be taken as a function
of the ODF. This function is defined by Eq. (8), which makesssefor any argumenf in
L2(G, m). As is apparent from Eq. (8), the extended functfor> H( f) is strongly continuous
on L2(G, m). Substituting Eq. (9) into Eq. (8), we observe that

(21) H(w) = Hiso + ﬁ/[w — Wisg,

where
ﬁiso=/;jRWH‘]IOdKJH(R)

is the isotropic part off, and

oo | |
Hw - wisol =872 > 3 c'mn/g R®HOD!, (R)dpH (R),

I=1m=—I n=—I|

the anisotropic part, is linear and strongly continuoustg From the invariance of the Haar
measurgoy , we observe immediately thl satisfies the constraint

(22) H [Tow — wisal = Q%" (H'[w — wisd

for each rotatiorQ.

Tensor functions defined by orientational averaging ana@rmexamples of the class (*) of
material tensors that we study in this paper. We formalimedlass with a definition.

DEFINITION 2. Let Z be a subspace of'Mvhich is invariant under @' for each rotation
Q. We say that a tensor functid: M(G) — Z is of class (*) if
(i) Bis weakly continuous;
(i) when restricted toM»(G),

(23) B(w) = Biso + B'[w — wiso],

whereBjg is isotropic andB’[-] is linear and strongly continuous GH;
(iii) B[-] observes the constraint

(24) IB3/[7'Qw — Wiggl = Q®r (B/[w - wiso])

for each rotation Q.

Besides tensors defined by orientational averaging, ctagsc{udes material tensors per-
taining to “weakly textured” polycrystals [8, 9]. Hencefflorwe shall consider only tensor func-
tions of class (*).

LetB : M(G) — Z c V' be atensor function of class (*). In our method for designing
aggregates with an isotrofi; the following observation is instrumental:

(#)LetZ = ngDg+n1D1+ - - -+ nr Dy be the decomposition of the tensor space
Z into its irreducible parts. LéB(g) = Bo(p) + B1(g) + Ba(p) + ... + Br (),
whereBg(-) (k =0, 1, ..., r) takes values in they x (2k+1) dimensional subspace
ngDk of Z. Fork > 1, the components d () are linear combinations of only
those texture coef‘ficient$nn with | = k.
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Observation (#) is an immediate corollary of a theorem dudaa [13].

REMARK 1. The tensoiB(g) is isotropic if and only ifBx() = Ofork = 1,2, ...,r
Hence, to design an aggregate with an isotrd@idt suffices to find an orientation measuype
which has itsr:'mn = 0 for those 1< | < r with nj # 0 in the decomposition formula fof
above.

REMARK 2. Let G andG(P) be finite rotation groups that satisfy the crystallographic
restriction, and leg @, ..., G(P~D pe finite rotation groups. Letl and.A be aggregates of
type g<P>Rp,1g(P 1)...9(1) RoG© and typeg @R gD.. g(P-D R’T)_ G(P, respectively,

and letcl,, and &, be their texture coefficients. Sindal,(RT) = Dhm(R) for each ro-

tation R, we see thaﬁlm = chm. Hence, if aIIann = 0 for a specific set of’s, then all
€nn = O for the same set dfs, and vice versa. Thus, if we can find an aggregate of type
GPR,_16P~D..gW Ry GO which has an isotropiB, we obtain at once another aggregate
of typeGOR) gD ..gP-D Rg_lg(p) which has an isotropiB.

By Remark 1, the problem of designing aggregates with tHastieity tensors isotropic
reduces to that of designing aggregates with all tbﬁ%,ws andc n'S zero. By the same token,
an aggregate with all |témn Ofor1<I < 6 has both its elast|C|ty and acoustoelastic tensors
isotropic. In any case, to design an aggregate which hasta §ei of specific material tensors
isotropic, we just need to determine an arrangements afigsa that the resulting aggregate has
all its c'mn = 0 for an appropriate finite set 6. Let us now proceed to examine this problem.

With the original formulation of the problem of Bertram et |l, 2] in mind, here we seek
only aggregates whose constituting crystallites all hayekvolume. For simplicity, whenever
no confusion should arise, we shall simply say “identicaligg” or just “grains” when we really
mean crystallites of the same material that have equal v@lumfact, all solutions reported in
Sections 4 and 5 below are aggregates of “identical grains”.

Consider a polycrystalline aggregate which undergoes a rotatia@. Letch,,andd,, , be
the texture coefficients of the aggregate before and afterdtation. These two sets of texture
coefficients are related by the formula [8, 11]

(25) Cn = Z Cpn pm(Q b,
p=-—I

For a fixedl andn, if c'mn =O0foral -l <m <, then(:'mn =O0foral - <m <

I, irrespective of the rotatioQ. This observation suggests a procedure for constructing an
aggregate of crystallites witicr = G(© which has all itsx:'mn = 0 for a specific finite set dfs

(say, forl =14, ...,13):

1. Forl = |1 and am; between—I4 andl4, find an aggregatel® of type GV RyG©@ (see
Section 2.2 above) which haiﬁlm = 0for—I1 < m < I4. The job here is to seek an
appropriate rotatiofRg and a finite rotation groug® which meet the requirement. The
aggregated® hasg® andg© as its group of texture symmetry and crystal symmetry,
respectively. This knowledge will facilitate the search4m appropriatdRy andgD, as
we shall see from the specific examples in the next two sextion

2. Depending on the specifig andG(©, the aggregated may already have ite, =
Oforall-I1 < m < Ilyand—lqy < n < I1. If that is the case, fof = I, and an



Designing textured polycrystals 163

n; between—I, andl, find an aggregated® of type G@ RGPV ReG@ which has
c'n?m = 0for —Is < m < l,. SinceRg andG™® have already been determined, the task
here is to find an appropriate rotatiéty and a suitable finite rotation gro@(z). The
aggregated® hasG® andg© as its group of texture symmetry and crystal symmetry,
respectively. Because of the transformation formula (mpregateft(z) still has its
clnlm = 0, irrespective of our choice d?; andg® which renders the texture coefficients
c'r?m of AP null for all =l < m < I,. Ifthere is am; # n; such that:'rﬁnj # 0 for
somem, find an aggregatel® of type G@ RGP RyG© such thalt:'nlmj = 0 for all
—lp <m<ly.

3. Repeat the preceding procedure iteratively to find aneagdge of typeg (P Ry_,G(P~D
.G RGO which has all ite),, = 0 forl =14, ..., la.

We shall work out a few concrete examples in the next two eestio illustrate the proce-
dure described above.

4. Example: elasticity tensor

As our first example, let us consider the elasticity terf8oBy decomposition formula (3) and
observation (#), if we wish to design an aggregate with atrapic elasticity tensor of class
(*), we need only to find an aggregate whcnﬁen andcﬁ‘nn coefficients are zero. We begin our
discussion by revisiting the problem solved by Bertram gflal?], namely, that of cubic grains.
In what follows we always assume that a fixed spatial Canteardinate system has been
chosen. We writee, e, andes for the orthonormal basis vectors that define this coordinat
system. For a unit vect@and an angle € [0, 7], we denote byR(e, w) the rotation aboué
by anglew. All angles given below are in radians.

4.1. Cubic grains

HereGcr = O. We choose a reference crystallite which has its threefiadraxes of cubic sym-
metry in line with the three spatial coordinate axes. Thisugamount to choosinB(ey, 7/2),
R(ep, 7/2), andR(e3, /2) to be the generators of the gro@of crystal symmetry. With this
choice of reference, the texture coefficients of any agdeegicubic grains satisfy [10, 11] the
equation

|
(26) Cn=Y_ CmpPhp(Q).
p=—I

for each of the 24 rotation® in the symmetry group of the reference crystallite. As altgsu
any aggregate of cubic grains has [22] thﬁﬁ{n coefficients all zero. Moreover, of tmﬁm
coefficients, only one coefficient is independent for eadtdin (—4 < m < 4), andcﬁ‘no (-4 <
m < 4) may be chosen as the independent coefficients. An aggrefjatebiz grains with

4 itqe2 4 i ; i ;
Cmo = 0 for eachm has all itsc,, andcpy,, coefficients vanish and thence has an isotr@hic

For an aggregate of one grain, there are nine equationsdgocéRo) =0, cgo(Ro) =0,
c5o(R0) = 0., c55(Ro) = 0, c35(Ro) = 0, ¢zo(Ro) = 0, where each texture coefficient is in

the form of Eq. (13)) to be solved for one orientati®p(g, 9o, o). Clearly there need not be a
solution. In fact, thanks to the work of Bertram et al. [1], afeeady know that this system of nine
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equations has no solution féty. By adding additional identical grains in specific orieigas
dictated by a groug® of texture symmetry, we can place additional restrictionshe texture
coefficients and reduce the number of equations which musatisfied.

Suppose we add three identical cubic grains and arrange sbettmat the aggregate has
orthorhombic texture symmetry with the coordinate axesdpéie axes of two-fold rotational
symmetry (i.e.gD = D, with R(ey, ) andR(es, =) as generators). The texture coefficients
must be calculated as in EqQ. (14) but there are fewer indepgmbefficients. FoQ € Do, Eq.
(25) implies that

|
(27) Gin= Y CmpDhp(Q™H
p=-—I
holds. By considerind(y, 9, ¢) = (0, 7,0 andQ(y, 6, ¢) = (0,0, ), we determine that
c'mn = 0if mis odd, anclc'mn = (—1)'c'mn if mis even. Hence, under this texture symme-
try/crystal symmetry combination, the only independef% coefficients can be chosen to be
Cho Caor andcdy, and by making these coefficients zero Gil, vanish.

The result is a system of three equations:
(28) o(R) =0,  Gy(R) =0,  c4p(Ro) =0,

where each texture coefficient is of the form given in Eq. (18)nce Ry is parametrized by
Euler angles, the equations need only be solved®@t 6g, ¢g). We used the computer algebra
system Maple to find solutions to the three simultaneoustemsa Because of th®, texture
symmetry andO crystal symmetry, two solutionBy and Rg of system (28) describe the same
arrangement of grains if o

R§=QRoQ
for someQ ¢ D, andQ e O. Surely we should regard such &py and Rg as equivalent
solutions. SincéDy| = 4, |O| = 24, andD» is a subgroup ofO, given a solutionRgy there
will be 96, 48, or 24 solutions equivalent to it By commutes with none, one, or both of the
generators oD»,. From our Maple solutions of (28), we identified the follogifour, which are
not equivalent in the preceding sense:

(29) R (0,60, $0) = (0.595492750.521743970.59549275,
(30) RP (yo.60.40) = (2.166289080.521743970.59549275,
(31) R (yo.60.40) = (0.975303580.521743970.97530358,
(32) R (Wo. 60, 0) = (2546099900.521743970.97530358,

where the angles are given in radians. The preceding sofutie clearly related by the equations
(33) R? = Rees, 7/2R,  R{Y = Rees, 7/2RY.
Solution R(()l) is none other than the 4-grain solution found by Bertram dtlaP].
Let A4; (i =1, 2, 3, 4) be the aggregate described by soluﬂRgf . Since
R(e3, 7/2)Da = DaR(e3, 7/2),

we observe from (33) thatl, and. A4 result if we rotate aggregate$; and. A3 by R(e3, 7/2),
respectively. We take aggregatds and.44 to be of the same type a$; and.43, respectively.
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For brevity, let us simply writéRq for Rgl). Then aggregatgl is of type DoRgO. If we
write Ro(vo, 60, d0) = (@, B, @), thenRS> (Yo, fg, ¢o) = (/2 — , B, /2 — ). Construct
an aggregat&t by rearranging the grains id; so thatR is replaced b)Rg, which has Euler
angles(r —«, B, m —«a) and is equivalent tér —«, 8, 7/2—«) fora DzRg O aggregate. If we
rotate A by R(e3, —7/2), we obtain aggregatds becausdR(es, —m/2) Dy, = DaR(e3, —7/2).
HenceAs is of type D, R] O.

4.2. Grains of other crystal symmetries

In Eq. (29) we obtain an aggrega#(! of type D2RyO, which has its elasticity tensdf
isotropic. From this solution we can construct, for crylitizd of anyGer C G, an aggregate with
an isotropicC.

The method is as follows: LeR; be any rotation an@@ be any finite subgroup of
which satisfies the crystallographic restriction. If weatetthe aggregatd® by Ry, the rotated
aggregatectg) still has itsC isotropic. Now append grains m(Rl) to obtain an aggregate of type
G@ Ry D2RyO, which is simply an assembly &, (the order ofG(?) rotated copies o.f4(R1).
Clearly the new assembly has an isotrofiic By Remark 2, we conclude that the aggregate
of type ORI D2R] G(@, which consists of 24 4 = 96 grains withGer = G(), also has an
isotropicC. In other words, for crystallites with it§¢r being a finite rotation group, including
triclinic crystallites withGer = C1, we can always design an aggregate with 96 identical grains
which has an isotropic elasticity tensor.

The appearance of an arbitrary rotati@nin the preceding scheme suggests that this recipe
generally will not lead to a solution with the least possiblenber of grains. Indeed for many
crystal symmetries we can achieve our goal using less grdies us now present one other
solution for eaclcr C G other tharCy.

Ger = Do, Dy, Dg

By Remark 2,0 Rg D5 is a solution with 24 orthorhombic grains. Moreovergifd con-
tains D, as a subgroup, then the 24-grain aggregate of @]5% ¢® also has an isotropi€.
Indeed, ley = |GV|/|D,| and

q
(34) ¢ =JaD,  (disjointunion
i=1

where{gj : i = 1, ...,q} is a set of left coset representatives®j in G'. An aggregate of
typeg® RpO can be taken as a “super-aggregatetjgbtated copies of the aggregate of type
D>RgO, whereg; (i = 1, ..., q) describe the rotations in question. Since each rotatey lcap
an isotropicC, so does the super-aggregate. It follows from Remark 2 thapgregate of type
ORJ G also has an isotropi€.

The same argument in fact proves a general assertion, whagiutas the next remark.

REMARK 3. Let Ga and Gy be point groups such théta € Gy € G = SO(3). If an
aggregate of typ§ (P Ry_1G(P~D .G RyG4 has its material tensoB™, ..., H(P isotropic,
so does an aggregate of ty@e” Rp_1G P~V ..¢ D RuGp,.
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By the preceding remark, cubic aggregates of 24 tetragowithexagonal crystallites which
are of typeO Rg D4 andO Rg Dg, respectively, have their elasticity tensor isotropigehee take
rotationsR(ep, ) andR(e3, 7 /2) as the two generators of groly and rotationdR(ep, ) and
R(es, 7/3) as the two generators of grolj.

Gor=C2,C4,Ce

Let Cél) = {I, R(es3, n)} and Céz) = {l, R(ep, m)}, wherel is the identity inG. The
solution of typeD2RpO can be looked upon as of typbél)lcéz) RpO. By Remark 2, we
obtain a solution of type Rgcf) I Cél), which consists of 24« 2 = 48 Cy-grains of equal
volume.

Let R(es, 7/2) and R(es, 7 /3) be the generator of group, andCg, respectively. Since
both C4 andCg incIudeCél) as a subgroup, by Remark 3 we conclude that aggregates of type

(0] R(T)Céz) IC4andO R(T)Céz) 1Cg are also solutions. These aggregates are made up Gj48
andCg-grains, respectively.

Gor= Cs

First we present a solution of hexagonal grains which exh®j texture symmetry. To start
with, we arrange an aggregate of 8 identical hexagonal gisonthat it has tetragonal texture
symmetry (i.e.GD = D4, whereR(ey, 7) and R(es, 7/2) are taken as generators). Then,
by determining the independent coefficientsifee 4 and solving the resulting equations with
texture coefficients of form shown in Eq. (14), we find that dnientation

(35) Ro(¥0. 0. ¢0) = (0.39269908 1.223899590)

generates an aggregate of tyipgRyDg Which has all its:f‘nn coefficients zero.

By placing three copies of this aggregate in such a way thastiper-aggregate h&
texture (i.e.g(z) = Cg, with R(eg, 27 /3) as generator), we are able to determine that among
the c?,m coefficients of the super-aggregate only the coeffiod%gﬁs independent, ancgo =0

renders albﬁm coefficients zero. Moreover, we find that
R1(¥1, 61, 1) = (0, 0.955316620)

is a solution ofcg0 = 0, where the texture coefficient is of form Eq. (16) wiiy given by
Eq. (35). Thus we obtain an aggregate of tfpeR1 D4 RgDg, which has an isotropic elasticity
tensorC.

By Remark 2, aggreggtes of.t)./;ﬁlg Rg D4.RI Cs, .WhiCh consist of 12 8 = 96 C3-grains
of equal volume, have their elasticity tensor isotropic.

Gor= D3

We found an arrangement of B¥s-grains, for which the elasticity tens@rof the aggregate
is isotropic. The arrangement is of ty@eRyD3, where

Ro(0. 0. o) = (0.553574367/2, 0).
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Gor=T
In paper [1] Bertram et al. have presented a solution of iyRgO, where
(36) Ro(¥0. 6o, ¢o) = (0.240023582.674806092.90156907.

Hence there is a solution of typ@ RST with 24 tetrahedral grains. In facRg = Rp in this
case.

In summary, we have presented at least one solution for @acWwhich is a finite rotation
group that satisfies the crystallographic restriction. &achGcr, our best solution at present
(where using a smaller number of grains means better) egjdigrains foG¢r = O; 24 grains
for Ger = Do, D3, Dy, Dg, or T; 48 grains forGer = Co, Cy, or Cg; 96 grains forGer = Cq, or
C3. Except for the case of cubic grains, where a proof was giyaBdstram et al. [1], it remains
unclear whether the solution we presented would be a mirswiation, i.e., one with the least
possible number of identical grains for tgr in question. In fact, we believe that many of our
present “best solutions” can be improved upon.

5. Example: acoustoelastic tensor

In a similar manner, it is possible to build textured aggtegavhich have isotropic tensors of
higher order. As an example, here we seek designs which rémelsixth-order acoustoelastic
tensorD [5, 6] isotropic. A glance at decomposition formula (5) ragethat we should design
aggregates with the'n‘mn coefficients all zero for & | < 6. A solution in this regard will not
only have its acoustoelastic tenddiisotropic, but will also attain (cf. Section 2.1) isotropyr f
all its material tensors of ordér< 6, including the fourth-order elasticity tensor

For all the finite rotation groups that appear below, we hdready specified their gener-
ators in the preceding section. For groups of crystal symyntite generators help specify the
orientation of the reference crystallite with respect te dhosen spatial Cartesian coordinate
system.

5.1. Cubic grains

With our choice of reference crystallite and spatial cooatle system, the restrictions imposed
by crystal symmetry (see Eq. (26)) dictate [10, 22] that ayregate of cubic grains must have
all their ¢l coefficients vanish fof = 1,2, 3, 5. Hence we just need to worry about ttfe,
andc8, , coefficients.

Consider an arrangement of 8 identical cubic grains sotiestggregatelD) has tetragonal
texture symmetry (i.eGer = O andG@® = D,). From the fact that Egs. (26) and (27) should
hold for Q € O andQ € Dy, respectively, we observe that all ttﬁn coefficients will vanish if
¢S, andc§, are null. Using Maple to solve the equatiasg(Ro) = 0 andc§(Ro) = 0, where
the texture coefficients are in the form of Eq. (14), we foumat t

(37) Ro(¥0. 00, $0) = (0.080331152.639237760.99945255

is an orientation which makes all thﬁnn coefficients vanish for the aggregaté? of type
D4RpO.

Place 4 identical copies of thidD aggregate so that the new super-aggregdﬁ% has
orthorhombic texture symmetip,. Equation (25) reminds us that th%m coefficients ot4(®
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vanish since all theg, , coefficients ofA() are zero. Because of the, texture symmetry, we
only need to solve a system of three equations:

(38) (RO =0, Sy(RD=0,  cjo(R) =0,

where each texture coefficient is of the form given in Eq. (16)
Using Maple, we found a solution

(39) R1(y1, 61, ¢1) = (0.105234260.479361610.28647879.

Thus we have constructed an aggregate of p&; D4 RO consisting of 4x 8 = 32 identical
cubic grains which has all its material tensors of older6 isotropic.

5.2. Grains of other crystal symmetries

By the argument given in Section 4.2, we know that for anytimtaR, and point groug® ¢
G, an aggregatet® of type OR] D4R] D,R] G®, whereRg and Ry are given by Egs. (37)
and (39), respectively, has all its material tensors of okde 6 isotropic. Such an aggregate
consists of 24« 8 x 4 = 768 identical grains of crystal symmetgr = G,

For most crystal symmetries, we expect that we can achie/eame goal with a smaller
number of grains. For instance, by Remark 2 and 3, aggregttigsesO R] D4R] D, OR] D4
R] D4, andOR] D4R] Dg, whereRg andR; are given by Egs. (37) and (39), respectively, have
all their material tensors of order< 6 isotropic. These aggregates are made up of 84= 192
identical orthorhombic, tetragonal, and hexagonal gragspectively.

Likewise, by treating an aggregate of type R1 D4 RgO as of typeCél) I Céz) R1D4Rp0O,
Wherecél) andCéZ) are defined in Sec. 4.2, we obtain a solution of t(]plég Dy R-lr Céz) | Cél),
which consists of 24 8 x 2 = 384 C,-grains of equal volume. By Remark 3, aggregates of type

OR] D4R} ng) IC4 and of typeO R] D4R} Céz) ICg are also solutions. These aggregates are
made up of 384C4- andCg-grains, respectively.

6. Discussion

The outlined method allows the construction of aggregasniy isotropic tensors of various
orders. So long a§¢y is a finite subgroup of the rotation grogp the specific crystal symmetry
of the crystallites is of no concern. Indeed we have showrettiBns 4 and 5 that once a design
of any type is found for an aggregate of identical grains Whias a specific set of material
tensors isotropic, it generates for each sgeh a solution which has the same set of tensors
isotropic. Our ODF method can be easily implemented usingsaftware which can solve
(nonlinear) systems of equations.

But there are limitations. At each step, say fih, the method requires finding a rotation
Rp-1(¥p-1,0p-1, #p—1) Which satisfies a system of nonlinear equatioh&(Rp,l) =0,
whered!,,, is of the form (17)} andn are given, andn runs over those indices betweeh and
| for which the texture coefficiento:s'mn are independent for aggregates wittP) as the group
of texture symmetry. When the number of independent indiedsgger than three, there are
more equations than the number of unknowns. While nothimgbeasaid for sure because the
equations are nonlinear, it is likely that the method wouldalx down when that happens. To
reduce the number of independents, we could takeG(P) to be a group of larger order. For
example, forlG(P = O, the number of independents is not bigger than three whén< 34.
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Of course, we hardly need to worry about tensors of ordereritiian 34 in practice. But
takingG(P) = O at every step is also impractical. The equations descrillbieg'mn coefficients
quickly become unwieldy dsis increased or when the orders of the symmetry groups iedolv
are large. In this case, it may be infeasible to find solutiewen if they exist. Usingjcr and
G(P (p > 1) of smaller orders will simplify the equations. A smaksr, however, will increase
the number of steps required because for ¢éahbre will be morgl, n) pairs for which the:'mn
coefficients must be considered. A smalEP) will increase the number of equations at the
p-th step. Hence the method relies on finding a suitable caoatibim of G¢r andg(P (p=2D
which produces solvable systems of equations at all thessacgsteps that lead to the design of a
suitable aggregate. This requires some trial-and-errgraumore systematic approach is worked
out. In fact, some texture and crystal symmetry combinatidm not have solutions to produce
AWM aggregates with isotropic elasticity tensor. (For exam@le = Dg with GV = C, has
no solution forc%O(Ro) =0, c%z( Rp) = 0.) Finally, even if our method successfully produces a
solution for a giverG¢r and a given set of material tens@té) (i = 1, ..., s), the solution found
need not be a minimal solution, i.e., there might still besothrrangements involving a smaller
number ofG¢r-grains for which all théI(®) tensors of the aggregate are isotropic.

Our ODF method seeks solutions which exhibit texture symynetarrying texture sym-
metry is clearly not a necessary condition for a solution. drerbasic question, which remains
to be answered, is whether the set of minimal solutions faaréiqularGcr and set of material
tensorsH®, if non-empty, would always include some member that exhileixture symmetry.
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