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CONSTITUTIVE THEORY IN GENERAL RELATIVITY:
SPIN-MATERIAL IN SPACES WITH TORSION

Abstract. Some of the problems arising in general relativistic canstie the-

ory can be solved by using the Riemann-Cartan geometry, ergezation of the
Riemann geometry containing torsion. As an example thel isigianing fluid

(Weyssenhoff fluid) is discussed and different results fmsiin and Einstein-
Cartan theories are compared.

1. Introduction

It is possible to formulate a relativistic constitutive ¢ing in the framework of Einstein’s theory
of gravitation [1], but there are several unsatisfying p@irOne problem is that only symmet-
ric energy-momentum tensors are compatible with the fieldaggns, another problem is that
the energy-momentum tensor has to have a vanishing divegdgéms is also a consequence of
the field equations). Other problems arise from the priecigfl minimal coupling. One can
expect, that at least some problems can be solved by usingeaadieed theory of gravitation
that includes spin (angular momentum) as source of gramitahe Einstein-Cartan theory of
gravitation is such a generalized theory, it is based on eetipae with curvature and torsion,
the Riemann-Cartan geometry.

2. Einstein-Cartan theory

2.1. Geometry

There is a general connectidh which is different from the Christoffel symbol. This commtien
is not symmetric, the antisymmetric part defines the torgipwhich is a tensor of degree 3. The
torsion vector is defined by a contraction of the torsion wétspect to the first and third indices:

Sk . K
Tow = T

_ Srom

T = E A -

It is possible to represent the connection as a combinatidheoChristoffel symbol and the
so-called contorsion:

K _ K C K K- K- -
FM_ {M} +7;M- _Tk# +T-M
——
Christoffel symbols Contorsion
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The tensor of curvature and the Ricci tensor are defined as:usu

<K _ K K P
Row. = 20T + 200, 0
R,LL)» = RK/U»K

The covariant derivatives are defined in the same way as m#&ia geometry, but the symmetric
Christoffel symbols are replaced by the non-symmetric ectionT:

v _ v v oA
U'EM = u,’M—H“Mu

_ _ v
U = Unp F)»u.uv

2.2. Field equations

It is possible to derive field equations by a variation piptei[2]. The variation of the special
Lagrange densityC(gy, I'y;,, ¢, dmug) given in [2] with respect to tetrades and connection
results in two sets of field equations with curvature anddors

€ R’“’—%g“"R = kT

S 2 e
7;/3 + 38[05773] = Ksaﬂ
geometry < material

The first set of field equations reads the same as in Einsteanythbut neither the Ricci tensor
nor the energy-momentum tensor are symmetric. Both siddgsoéquation are not divergence-
free, in contrast to Einstein’s theory. The second set ofitid equations connects the torsion
with the spin-tensor, which is a constitutive function.

Differentiating the Einstein-Cartan tensor, i.e. the sfte of the first set of field-equations
(1) and contracting over the second index results in thevoflg equations (the contracted
Bianchi identity):

1 . P
V(RS =S8R = 2Ty "R = T "Ry,

Using the field equation one finds that the divergence of tleeggrmomentum tensor is given
by:

=V T, = 2Ty’ R;;K - 77(,up Rup e
In contrast to the Einstein theory the divergence of thegraromentum tensor does not vanish
anymore, but is geometrically determined.
2.3. Balances

It is possible to derive balances for the energy-momentudnfamnthe spin from the field equa-
tions. This can be done by splitting the first set of field emumest into a symmetric and an
antisymmetric part:

1
R(;Lv)_ﬁg(;w)R = KT
Ruw) = €T
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By taking the divergence of the symmetric equation and ufiegcontracted Bianchi identity
one can derive the balance of energy-momentum:

@) (Vo = 3T) T, + 27,57  + 5,5 R, = 0

The balance of angular momentum can be directly derived frenantisymmetric part by using
a geometrical identity for the antisymmetric part of thedRtensor and the second set of field
equations:

?3) (Vo —3T) (7;;);“ + 35&7}]) = kT
—_———
kS %

A

The balance of angular momentum connects the change of ithéesigor to the antisymmetric
part of the energy-momentum-tensor.

3. Weyssenhoff fluid

3.1. Heuristic description

Now the Weyssenhoff fluid [3] will be discussed as it is donediyukhov and Korotky [4].

The Weyssenhoff fluid is defined as an ideal spinning fluid. i dpnsity is now introduced
as a skew-symmetric tensor:
SHY — _gVH

The spin density is spacelike, what is ensured by the Frextkalition:
S*u, =0
The constitutive assumptions (postulates) for a Weysdefihia are as follows:

e The spin tensor is a function of the spin density and theotig constitutive equation is
assumed:

S = U'Sy

e The energy-momentum tensor should be a function of the grraomentum density, and
is defined as follows:

Ty = Uu'P,

Next one calculate the explicit form of the energy-momentiensity P,. This can be done by
starting out with the antisymmetric part of the energy-motam tensor (3) and (4):

2T[;w] =uPy—uwP, = 2(Vy— 37503@“
e and with the usual definition of the internal-energy
u Py RN

one obtains:
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—®Py = €Uy + 2 (Vg — 3To) (U Syy)
1 1 .
T = —?eu“uv - ?ZUMUO{VﬁSwﬁ

If it is now assumed, that the interaction between the elésnafithe fluid is given in such a way
that

e Pascal law is valid, one has to modify the equations by andpiat pressure:

~ 1 1 .
o= 4ol - Sut et + 200V S0P

3.2. Exploiting the 29 law
Balances

From the thermodynamical point of view the correct way wdoédto write down the balances
and the constraints and for deriving restrictions to thestitutive equations by use of the Liu
procedure.

First there is the balance of particle number density whichiven in the same way as in
Einstein’s theory:

VuNK = 0 = (nu,,

Next there are the balances of energy-momentum and angolaentum, which are given by
the geometrical identities (2) and (3):

(Vo = 3T)TY, + 27,57l + 5, R, = 0

(Voz_37:x)sl;');a = T[p,v]

The next equation one needs is the balance of entropy, eieg the second law of thermody-
namics

n
VIR = (su),, +s.,= 0
and the field equations are
RHYV — 1g““R = «TH
2
T + 3T = kS

Other constaints, as there are the normalization of the@eig and the form of the covariant
derivative have also to be taken into account.

We now choose the state space for an ideal fluid with spin. Jtaie space has to contain
the wanted fields, the metric and the connection:

Z = (N Us € Sup Gup Thg)
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Liu procedure

In order to apply Liu’s procedure [5, 6, 7] one has to inseet ¢xplicit form of the covariant
derivative into the balances and then use the chain ruleifferehtiating the constitutive quan-
tities.
Next the balances and constraints have to be rewritten irbnfatmulation:
Ay+tB =0
a-y+p = 0

PROPOSITION1 (COLEMAN-MIZEL-FORMULATION OF THE2'P LAw [8]).
If Z is no trap, the following inclusion is valid for all:y

Ay=-B = a-y>-8
that means, all yvhich are solutions of the balances satisfy the dissipatieguality.
Then one can apply Liu’s proposition, which runs as follows:

PrRoOPOSITION2 (Liu [5]). Starting with proposition 1 one can show:

In large state spaces exist state space functierso that the constitutive equations satisfy the
Liu relations

and the residual inequality
®) -A-B>-8

From (4) and (5) we obtain the restrictions to the constituéquations we are looking for.
Taking these restrictions into account we obtain constégquations which are in accordance
with the second law of thermodynamics.

4. Comparison of Einstein and Einstein-Cartan theory

We now discuss differences and similarities of Einsteinimdtein-Cartan theories with respect
to coupling of constitutive properties to geometry.

In Einstein-Cartan theory with non-vanishing torsion andvature the spin couples to
torsion, and the energy-momentum tensor which is spinfug®, non-symmetric, and not
divergence-free couples to curvature. If the torsion Vass also the spin tensor and the skew-
symme-tric part of the energy-momentum tensor vanish.

In Einstein theory with vanishing torsion and non-vanighirvature the spin appears as in
Einstein-Cartan theory in the non-symmetric and not diercg-free energy-momentum tensor
which is split into its symmetric and skew-symme-tric pditte divergence-free symmetric part
couples by the Einstein equations to curvature, whereaskthve-symmetric part does not couple
to any geometric quantity. It represents the source in sgianze.

In Minkowski theory being flat and torsion-free there are mometric objects to which
spin and energy-momentum tensor can couple. If we regarétdviski and Einstein theory as
special cases of the Einstein-Cartan theory all having dneestype of coupling, then Einstein
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theory has to be spin-free and Minkowski theory is only validacuum. Of course, this is not
the case by experience and therefore we have to regard tivesetheories as having different
types of coupling to constitutive properties.

5. Conclusion

As dicussed above the energy-momentum tensor of the Wehyafdluid was obtained by use
of a variational problem without taking into account thes®t law of thermodynamics. This
variational problem generates the balance equations ofjgmeomentum and spin which now
are supplemented by the dissipation inequality. The Licgdare of exploiting this dissipation
inequality generates restrictions to the constitutiventjtias energy-momentum and spin.
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