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CONSTITUTIVE THEORY IN GENERAL RELATIVITY: BASIC
FIELDS, STATE SPACES AND THE PRINCIPLE OF MINIMAL
COUPLING

Abstract. A scheme is presented how to describe material propertsrhe in-
fluence of gravitation. The relativistic dissipation inafity is exploited by LIU‘s
procedure. As an example an ideal spinning fluid is consitieréhe given frame-
work.

1. Introduction

We investigate how constitutive properties can be intreduato Einstein‘s gravitation theory.
Starting out with the balances of particle number densftin and energy - momentum, Ein-
stein‘s field equations and the relativistic dissipatioeguality we consider constitutive equa-
tions and state spaces in 3-1- decomposition determinasgeb of materials. The set of possible
constitutive equations compatible with the balances, tdite space and the dissipation inequality
is found out by LIU's exploitation of the dissipation inedjta[1], [2].

2. Balances

We start out with the balances of particle number densitgrg@n- momentum and spin in Ein-
stein‘s gravitation theory, that means in Riemann geonteycurved space without torsion:

1) N = 0, 1equation,
&) T%;5 = 0, 4equations,
(3) Sxf = 0, 3equations.

Here the particle flux is defined By* = nu® with the particle density and the 4-velocity®.
First of all the energy - momentum tensor is proposed to besymimetricT*? £ TA%. The
spin densityS* is antisymmetricS* = —SP¢ and satisfies the so-called Frenkel condition
U S =0= S"‘ﬁuﬂ which expresses that the spin tensor is purely spatial.

Because we want to describe material under the influenceawftgtion in Riemann geometry
we need Einstein's field equations

4 Rep — (1/20,8R = «T(ep), 10 equations.

*We would like to thank H.-H. von Borzeszkowski and Thoralfr@ok for interesting discussions and
introduction to geometries with curvature and torsion. Veila also like to thank the VISHAY Company,
D-95085 Selb and the Deutsche Forschungsgemeinschafbéoicial support.
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Here areliaﬂ the Ricci tensor an® the curvature scalar due to the Riemann geometry. They are
marked with a tilde because we although examine materianhe framework of other geome-
tries, so we have to distinguish between different geomeuantities. Due to the symmetry of
the left hand side only the symmetric part of the energy- muoma tensor appears in the field
equations.

Finally we have to take into account the dissipation ineityal
(%) S = o>0.

3

HereS* = su” + s%, introducing the entropy densit/and the entropy flux densis?.

The 18 equations (1) to (4) and the dissipation inequalityt@io more fields than equations
are. Therefore the set of equations is underdetermined.i¥kue to the fact, that (1) to (5) are
valid for all materials and up to now no special material ved®h into consideration. Hence we
have to split the 37 fields appearing in (1) to (5) into the béigids which we are looking for
and into the constitutive equations describing the comsilenaterial or the class of materials.
In more detail the 37 fields are:

N%,  4fields,
T8, 16 fields,
B, 3fields,
g*#, 10 fields,
¥, 4 fields.

From the energy - momentum tensor we can see, that partsebitdpto the constitutive equa-
tions, namely the 3 - stress tensor, and other parts, naimebrtergy density, belong to the basic
fields. Therefore we perform as usual the following 3-1 depasition

€ = Tup C—lzu"‘uﬁ, energy density,
t*f = h*’T,,h°P, stress tensor,

g* = -—h*T,,u¥, heatfluxdensity,
pf = hoo ToyUu?”,  momentum density.

Hereh?? is the projection tensor perpendicular to the 4-velocity:
1
oqy «_ Ay oY _ hYo
h*Y :=g¢g +—02u u¥ =hr*,

Now we introduce the 18 basic fields:
{€,n, Ug, Gups Sp} (X),
and the remaining 19 constitutive equations:

{tozﬂ’ qO(! pﬂ» S)!}(Xa)
Dealing with Riemann geometry one finally have to satisfy s@monstraints:

uu, = —c?, normalisation of the the 4-velocity,
Oup :: 98a; symmetry of the metric,
Oup;y = O, vanishing of the non-metricity,
%V} = F(9us. %up,y),  Symmetric connection as a function of the metric
and the first partial derivative of the metric,
Avpg = Aap— {gﬁ}Aa, covariant derivative according to the geometry.
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3. State Space

Because the system of equations (1) to (4) is underdetednoine has to introduce the constitu-
tive equations which depend on of state space variableshvane characterizing the material.

By introducing the state space one get balances on the ptate & the following form:

B _ ap _ o
A;ﬁ(Z)_a, or A;ﬁ(Z)_a .

Here the symbol Z represents all state space variables.

If we want to to describe material under the influence of dediin we have to introduce
a state space inducing variables which describe grawvitatieffects. Hence in general the state
space looks like
Z = Z(Ztherm Zgrav)

HereZgray is the set of variables which describes effects of grawitataindZiherm are all other
variables [3, 4, 5].

3.1. First derivative state space
First of all we have a look on state spaces which containagifirssatives:
I th th grav th th
7! = Z(Z erm’ Z;aerm’ Zgrav, Z;a ) — Z(Z erm’ Z;aerm’ gozﬂ» golﬂ;y)
N ——’
=0

This chosen state space consists of covariant quantitiee. decompose the covariant derivative
of a tensor of first order

Avip = Ao = (3p}As

and similary for tensors of higher order the state spacessrit
I th th
Z' =2zZZMM Z33%™, gog, {5, ).

Here the state space is spanned by non-covariant quankitiethe constitutive equations on it
depend on covariant combinations of these non-covariate space variables.

3.2. Second derivative state space and the principle of mimal coupling

Next a second derivative state space is discussed:

I th th th )
Z" =2z Z M Z208 ™, Gap. Gupiy - Gapiys: Rupys)-
N’

=0

With respect toAy;(g,] = F?gﬂVAJ one can replace the skew-symmetric part of the second
covariant derivatives by the Riemann curvature tensor hedjtiantity itself. Consequently we

obtain

11 therm —therm therm S
VAR W AVA ) Z;a ) Z;(otﬁ) » Qg Rolﬁy(S)'
——

symmetric part
As done before one can rewrite this state space containilygartial derivatives

1l h h h
z! = zztherm, zIperm, (NS, gup. 5, (5, ).0)-
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By introducing this second derivative state space we an@irbte with theprinciple of minimal
coupling It states that second derivative state spaces must noidim¢he curvature tensor or
the the partial derivative of the connection (or equivdieit Riemann geometry the second
derivative of the metric). Therinciple of minimal couplingguarantees that the equivalence
principle holds. So we have to remofRg, s, ZF{‘ﬁe;iT‘ and{%‘y},,g from the state space, and we
get a second derivative state space obeyingtheiple of minimal coupling
1 therm —therm —therm

' =27(Z ) Z,a ’ Z(,aﬂ) » Qas {%V})
With respect to the variables which are introduced to dbsdtie effects of gravitation this state
space looks likez! .

3.3. State space without derivatives
A state space which contains no derivatives is:
ZO — Z(ztherm’ gaﬁ)

The higher (directional) derivatives belonging to thigespace arerQerm and{%y} Or Gup,
respectively. But the Ricci tensor and the curvature sdal&instein's field equations depend
on the partial derivatives of the Christoffel symbols or ¢fi¢he connection, respectively. These
quantities are no higher derivatives with respecsz Consequently the Einstein equations do
not determine higer derivatives of the chosen state spaitesicase. Therefor&? does not fit

to Einstein‘s equations and we cannot use it.

Now we have to exploit the dissipation inequality.

4. LIU’s procedure

Constitutive
Bal ances e Equati ons
a
Stat e Space

Liu Procedure

constraints by the
di ssi pation inequality

A general balance looks like
Agp:p(Z) = agy.
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Applying the chain rule with respect to the chosen stateespadables we obtain

= A = (AZp—15A0 — (gl AL

B eB
Only the first term on the right hand side contains quantitibich are higher higher derivatives
than those included in the state space. So one can split tfms i@ such containing higher
derivatives and such which do not. Rewriting the balancektha dissipation inequality we
obtain then in the form

= 07
> 0.

IR ||:g>

< <
= |w

Here areA, B, « andg state functions depending on the constitutive propertielsyaepresents
the process direction in the chosen state space. The eggiatiove are linear ip.

DerINITION 1. All constitutive equations being compatible with the cimostate space and
satisfying the balances and the dissipation inequalitgdetne theclass of materialg6], [7]).

There exist two possibilities to find this class of materials

o ForfixedA, B, o andg certainy are excluded,
e For all possibIQ/_ theé, B, @ andB have to be determined in such a way, that the dissi-
pation inequality is satisfied.

Starting out with the Coleman-Mizel formulation of the seddaw that all solutions of the
balances are satisfying the dissipation inequality
A.y-B=0 = a-y—8=0,
Liu‘s proposition is valid:

a(2) = A(2) - A(Z),
A(Z) - B(Z) = B(2).

This expresses that the entropy production= A(Z) - B(Z) — 8(Z) > Ois independent of
the process direction and so the second possibilty for fipthia class of materials holds. These
equations are the so-called LIU equations. By eliminathgylagrange parametensfrom the
LIU equations and inserting them into the dissipation iradiyiwe obtain constraints restricting
the possible materials.

5. Weyssenhoff fluid in Riemann geometry

A covariant description of a classical fluid with spin in Ri@nm spacetime can be obtained by
generalising the work of Weyssenhofff and Raabe as it is tgriey Obukhoy and Piskareva [8],
[9] and [10].

Tensors of spin and energy-momentum for the Weyssenhaffadagostulated to be:

S

By u*Spy,

. |
TaﬂzTaﬂ = Uapﬂ.
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Here is Sy, the skew symmetric spin density, satisfying the Frenkediamn ufSg, = 0 =
u¥ Sy, Uy the 4-velocity andPg the 4-vector density of energy-momentum. The explicit form

of Pg can be derived from the spin conservation Iﬁwﬁ] =2V, S;:ﬂ
(6) Tiup] = Ua Pg — Up P = 2V, sgﬁ.

Taking into account the definition™ P, = ¢ wheree is the the energy density we obtain from
(6) by contracting with the 4-velocity?:

(7 Py = euy+20P2V, Shar

Inserting (7) into (6) one obtain the motion of spin, whiclsciébes the rotational dynamics of
the fluid.

Assuming that the elements of the medium interact in suchyatiat Pascal law is valid
we get the model for an ideal spinning fluid. By doing this weehto modify the stress tensor
given above for the description of dust by the contributibthe isotropic pressure

® g = WPy P(F — u®up) = —psf + U*[up(e + P) + 2u7 V) u¥ Syo].

Taking the divergence of the Einstein field equations (4) gets after 3-1-decomposition with
respect to (8) the equations for the tranlational dynamms1- decomposition:

!t

0= Tﬁ);a
(p+ E)ua (uﬂ;a) + (—5% + Uauﬁ) p;ot+
+2[uSg U’ 1.y + Ryoap S oU”
0 = (p+6)u‘,"a+u"‘ea

As it is shown above the spin enters in the spatial part of yimensetric energy-momentum
tensor. So the spin is over the energy connected to the Eirgsigvitation equations and in this
sense connected to the geometry. But there exist no direchefeic quantity with which the
spin is coupled and further on any skew symmetric parts obtiances stands alone. So one

can say that Einstein gravitation field theory can deal wlith physical quantity spin but say
nothing about the skew symmetric parts which appear in thenbaes.

o
Il

6. Conclusions

As usual in constitutive theory the split of the fields intsioafields and constitutive equations
is also possible, if gravitation is taken into account. Tha-relativistic state space is extended
by geometrical variables induced by curvature which dbedts influence on constitutive prop-
erties. Although the choice of the state spaces is free imciplie, some restrictions appear in
Riemann geometry: Because Einstein's field equations otiita second derivatives of the met-
ric, its first derivatives have to be included among the stat@bles in form of the Christoffel
symbols (connection) or the partial derivatives of the metself. This involves that the state
space is spanned by non-covariant quantities. But neVestheonstitutive properties are de-
scribed by covariant combinations of these non-covariaantties. A second consequence is ,
that state spaces containing only the metric as a geometadable cannot be used.
The second derivative state spaces have a speciality:

They have to obey therinciple of minimal coupling This principle runs as follows: sec-
ond derivative state spaces do not include the curvatusotesr the partial derivatives of the
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Christoffel symbols (or those of the connection). From agitsl point of view this principle
states, that there are no materials by which the curvatuspafe-time can be measured by
observing constitutive properties. This principle of miail coupling is related to the equiva-
lence principle which states, that for free falling, nomating observers locally the curvature of
space-time vanishes.
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