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CONSTITUTIVE THEORY IN GENERAL RELATIVITY: BASIC

FIELDS, STATE SPACES AND THE PRINCIPLE OF MINIMAL

COUPLING

Abstract. A scheme is presented how to describe material properties under the in-
fluence of gravitation. The relativistic dissipation inequality is exploited by LIU‘s
procedure. As an example an ideal spinning fluid is considered in the given frame-
work.

1. Introduction

We investigate how constitutive properties can be introduced into Einstein‘s gravitation theory.
Starting out with the balances of particle number density, spin and energy - momentum, Ein-
stein‘s field equations and the relativistic dissipation inequality we consider constitutive equa-
tions and state spaces in 3-1- decomposition determining classes of materials. The set of possible
constitutive equations compatible with the balances, the state space and the dissipation inequality
is found out by LIU‘s exploitation of the dissipation inequality [1], [2].

2. Balances

We start out with the balances of particle number density, energy - momentum and spin in Ein-
stein‘s gravitation theory, that means in Riemann geometryof a curved space without torsion:

Nα
;α = 0, 1 equation,(1)

Tαβ ;β = 0, 4 equations,(2)

Sαβ

;β
= 0, 3 equations.(3)

Here the particle flux is defined byNα = nuα with the particle densityn and the 4-velocityuα .
First of all the energy - momentum tensor is proposed to be notsymmetricTαβ 6= Tβα . The
spin densitySαβ is antisymmetricSαβ = −Sβα and satisfies the so-called Frenkel condition
uα Sαβ = 0 = Sαβuβ which expresses that the spin tensor is purely spatial.

Because we want to describe material under the influence of gravitation in Riemann geometry
we need Einstein‘s field equations

R̃αβ − (1/2)gαβ R̃ = κT(αβ), 10 equations.(4)
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D-95085 Selb and the Deutsche Forschungsgemeinschaft for financial support.

133



134 H.J. Herrmann - W. Muschik - G. Rückner

Here areR̃αβ the Ricci tensor and̃R the curvature scalar due to the Riemann geometry. They are
marked with a tilde because we although examine material under the framework of other geome-
tries, so we have to distinguish between different geometric quantities. Due to the symmetry of
the left hand side only the symmetric part of the energy- momentum tensor appears in the field
equations.

Finally we have to take into account the dissipation inequality

Sα
;α = σ ≥ 0.(5)

HereSα = suα + sα , introducing the entropy densitys and the entropy flux densitysα .

The 18 equations (1) to (4) and the dissipation inequality contain more fields than equations
are. Therefore the set of equations is underdetermined. This is due to the fact, that (1) to (5) are
valid for all materials and up to now no special material was taken into consideration. Hence we
have to split the 37 fields appearing in (1) to (5) into the basic fields which we are looking for
and into the constitutive equations describing the considered material or the class of materials.
In more detail the 37 fields are:

Nα , 4 fields,
Tαβ , 16 fields,
Sαβ , 3 fields,
gαβ , 10 fields,
Sα, 4 fields.

From the energy - momentum tensor we can see, that parts of it belong to the constitutive equa-
tions, namely the 3 - stress tensor, and other parts, namely the energy density, belong to the basic
fields. Therefore we perform as usual the following 3-1 decomposition

ε := Tαβ
1
c2 uαuβ , energy density,

tαβ := hαγ Tγ σ hσβ , stress tensor,
qα := −hασ Tγ σ uγ , heat flux density,
pβ := hασ Tσγ uγ , momentum density.

Herehαβ is the projection tensor perpendicular to the 4-velocity:

hαγ := gαγ +
1

c2
uαuγ = hγ α.

Now we introduce the 18 basic fields:

{ε, n, uα, gαβ , Sαβ }(xα),

and the remaining 19 constitutive equations:

{tαβ, qα , pβ , Sα}(xα).

Dealing with Riemann geometry one finally have to satisfy some constraints:

uαuα = −c2, normalisation of the the 4-velocity,

gαβ
!
= gβα , symmetry of the metric,

gαβ;γ
!
= 0, vanishing of the non-metricity,

{α
βγ

} = F(gαβ , gαβ,γ ), symmetric connection as a function of the metric

and the first partial derivative of the metric,
Aα;β = Aα,β − {σ

αβ
}Aσ , covariant derivative according to the geometry.
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3. State Space

Because the system of equations (1) to (4) is underdetermined one has to introduce the constitu-
tive equations which depend on of state space variables, which are characterizing the material.

By introducing the state space one get balances on the state space in the following form:

Aβ

;β
(Z) = a, or Aαβ

;β
(Z) = aα .

Here the symbol Z represents all state space variables.

If we want to to describe material under the influence of gravitation we have to introduce
a state space inducing variables which describe gravitational effects. Hence in general the state
space looks like

Z = Z(Ztherm, Zgrav)

HereZgrav is the set of variables which describes effects of gravitation, andZtherm are all other
variables [3, 4, 5].

3.1. First derivative state space

First of all we have a look on state spaces which containes first derivatives:

Z I = Z(Ztherm, Ztherm
;α

, Zgrav, Zgrav

;α
) = Z(Ztherm, Ztherm

;α
, gαβ , gαβ;γ

︸ ︷︷ ︸

≡0

)

This chosen state space consists of covariant quantities. If we decompose the covariant derivative
of a tensor of first order

Aα;β = Aα,β − {σαβ }Aσ ,

and similary for tensors of higher order the state space writes

Z I = Z(Ztherm, Ztherm
,α , gαβ , {αβγ }).

Here the state space is spanned by non-covariant quantities, but the constitutive equations on it
depend on covariant combinations of these non-covariant state space variables.

3.2. Second derivative state space and the principle of minimal coupling

Next a second derivative state space is discussed:

Z I I = Z(Ztherm, Ztherm
;α , Ztherm

;αβ , gαβ , gαβ;γ
︸ ︷︷ ︸

≡0

, gαβ;γ δ, R̃αβγ δ).

With respect toAα;[βγ ] = R̃σ
αβγ

Aσ one can replace the skew-symmetric part of the second
covariant derivatives by the Riemann curvature tensor and the quantity itself. Consequently we
obtain

Z I I = Z(Ztherm, Ztherm
;α

, Ztherm
;(αβ)

︸ ︷︷ ︸

symmetric part

, gαβ , R̃αβγ δ).

As done before one can rewrite this state space containing only partial derivatives

Z I I = Z(Ztherm, Ztherm
,α , Ztherm

(,αβ) , gαβ , {αβγ }, {αβγ },δ).
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By introducing this second derivative state space we are in trouble with theprinciple of minimal
coupling. It states that second derivative state spaces must not include the curvature tensor or
the the partial derivative of the connection (or equivalently in Riemann geometry the second
derivative of the metric). Theprinciple of minimal couplingguarantees that the equivalence
principle holds. So we have to removẽRαβγ δ , Ztherm

;[βγ ] and{α
βγ

},δ from the state space, and we
get a second derivative state space obeying theprinciple of minimal coupling

Z I I = Z(Ztherm, Ztherm
,α , Ztherm

(,αβ)
, gαβ , {αβγ }).

With respect to the variables which are introduced to describe the effects of gravitation this state
space looks likeZ I .

3.3. State space without derivatives

A state space which contains no derivatives is:

Z0 = Z(Ztherm, gαβ ).

The higher (directional) derivatives belonging to this state space areZtherm
,α and{α

βγ
} or gαβ,γ ,

respectively. But the Ricci tensor and the curvature scalarin Einstein‘s field equations depend
on the partial derivatives of the Christoffel symbols or theof the connection, respectively. These
quantities are no higher derivatives with respect toZ0. Consequently the Einstein equations do
not determine higer derivatives of the chosen state space inthis case. ThereforeZ0 does not fit
to Einstein‘s equations and we cannot use it.

Now we have to exploit the dissipation inequality.

4. LIU’s procedure

Balances
Constitutive
Equations

State Space

Liu Procedure

constraints by the 
dissipation inequality

A general balance looks like
Aαβ;β (Z) = aα .
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Applying the chain rule with respect to the chosen state space variables we obtain

⇐⇒ aα
︸︷︷︸

∈B

= ∂
∂ Z (Aαβ)Z,β − {σαβ }Aβ

σ − {
β
σβ

}Aσ
α

︸ ︷︷ ︸

∈B

.

Only the first term on the right hand side contains quantitieswhich are higher higher derivatives
than those included in the state space. So one can split the terms in such containing higher
derivatives and such which do not. Rewriting the balances and the dissipation inequality we
obtain then in the form

A · y − B = 0,

α · y − β ≥ 0.

Here areA, B, α andβ state functions depending on the constitutive properties and y represents
the process direction in the chosen state space. The equations above are linear iny.

DEFINITION 1. All constitutive equations being compatible with the chosen state space and
satisfying the balances and the dissipation inequality determine theclass of materials([6], [7]).

There exist two possibilities to find this class of materials:

• For fixedA, B, α andβ certainy are excluded,

• For all possibley the A, B, α andβ have to be determined in such a way, that the dissi-
pation inequality is satisfied.

Starting out with the Coleman-Mizel formulation of the second law that all solutions of the
balances are satisfying the dissipation inequality

A · y − B = 0 H⇒ α · y − β ≥ 0,

Liu‘s proposition is valid:

α(Z) = 3(Z) · A(Z),

3(Z) · B(Z) ≥ β(Z).

This expresses that the entropy productionσ := 3(Z) · B(Z)−β(Z) ≥ 0 is independent of
the process direction and so the second possibilty for finding the class of materials holds. These
equations are the so-called LIU equations. By eliminating the lagrange parameters3 from the
LIU equations and inserting them into the dissipation inequality we obtain constraints restricting
the possible materials.

5. Weyssenhoff fluid in Riemann geometry

A covariant description of a classical fluid with spin in Riemann spacetime can be obtained by
generalising the work of Weyssenhofff and Raabe as it is doneby by Obukhoy and Piskareva [8],
[9] and [10].

Tensors of spin and energy-momentum for the Weyssenhoff dust are postulated to be:

Sα
βγ

!
= uα Sβγ ,

Tαβ = T̂αβ
!
= uα Pβ .
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Here isSβγ the skew symmetric spin density, satisfying the Frenkel condition uβ Sβγ = 0 =

uγ Sβγ , uα the 4-velocity andPβ the 4-vector density of energy-momentum. The explicit form

of Pβ can be derived from the spin conservation lawT̂[αβ] = 2∇̃γ Sγ
αβ

T̂[αβ] = uα Pβ − uβ Pα = 2∇̃γ Sγ
αβ

.(6)

Taking into account the definitionuα Pα = ε whereε is the the energy density we obtain from
(6) by contracting with the 4-velocityuβ :

Pα = εuα + 2uβ2∇̃γ Sγ
βα

.(7)

Inserting (7) into (6) one obtain the motion of spin, which describes the rotational dynamics of
the fluid.

Assuming that the elements of the medium interact in such a way that Pascal law is valid
we get the model for an ideal spinning fluid. By doing this we have to modify the stress tensor
given above for the description of dust by the contribution of the isotropic pressure

T̂α
β

!
= uα Pβ − p(δα

β − uαuβ ) = −pδα
β + uα [uβ (ε + p) + 2uσ ∇̃γ uγ Sσα].(8)

Taking the divergence of the Einstein field equations (4) onegets after 3-1-decomposition with
respect to (8) the equations for the tranlational dynamics in 3-1- decomposition:

0
!
= T̂ (α

β);α









0 = (p + ε)uα(uβ;α) + (−δα
β

+ uαuβ )p;α+

+2[uα Sβγ uσ uγ

;σ
];α + Rγ σαβ Sγ σ uα

0 = (p + ε)uα
;α

+ uαεα

As it is shown above the spin enters in the spatial part of the symmetric energy-momentum
tensor. So the spin is over the energy connected to the Einstein gravitation equations and in this
sense connected to the geometry. But there exist no direct geometric quantity with which the
spin is coupled and further on any skew symmetric parts of thebalances stands alone. So one
can say that Einstein gravitation field theory can deal with the physical quantity spin but say
nothing about the skew symmetric parts which appear in the balances.

6. Conclusions

As usual in constitutive theory the split of the fields into basic fields and constitutive equations
is also possible, if gravitation is taken into account. The non-relativistic state space is extended
by geometrical variables induced by curvature which describe its influence on constitutive prop-
erties. Although the choice of the state spaces is free in principle, some restrictions appear in
Riemann geometry: Because Einstein‘s field equations contain the second derivatives of the met-
ric, its first derivatives have to be included among the statevariables in form of the Christoffel
symbols (connection) or the partial derivatives of the metric itself. This involves that the state
space is spanned by non-covariant quantities. But nevertheless constitutive properties are de-
scribed by covariant combinations of these non-covariant quantities. A second consequence is ,
that state spaces containing only the metric as a geometrical variable cannot be used.

The second derivative state spaces have a speciality:
They have to obey theprinciple of minimal coupling. This principle runs as follows: sec-
ond derivative state spaces do not include the curvature tensor or the partial derivatives of the
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Christoffel symbols (or those of the connection). From a physical point of view this principle
states, that there are no materials by which the curvature ofspace-time can be measured by
observing constitutive properties. This principle of minimal coupling is related to the equiva-
lence principle which states, that for free falling, non-rotating observers locally the curvature of
space-time vanishes.
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ploiting the dissipation-inequality in case of constrained state space variables; in: “Trends
in application of mathematics to mechanics”, Chapman & Hall2000.

[6] M USCHIK W.AND EHRENTRAUT H, An amendment to the second law, J. Non-Equilib.
Thermodyn.21 (1976), 175.

[7] COLEMAN B.D. AND M IZEL V.J., Existence of caloric equations of state in thermody-
namics, J. Chem. Phys.40 (1964), 1116–1125.

[8] WEYSSENHOFFJ.AND RAABE A., Relativistic dynamics of spin-fluids and spin-particles,
Acta Phys. Polon.9 (1947), 7–53.

[9] OBUKHOV YU. N. AND KOROTKY V.A., The Weyssenhoff fluid in Einstein-Cartan theory,
Class. Quantum Grav.4 (1987), 1633–1657.

[10] OBUKHOV YU. N. AND PISKAREVA O.B., Spinning fluid in general relativity, Class.
Quantum Grav.6 (1989), L15–L19.

[11] M ISNER C.W., THORNE K.S. AND WHEELER J.A., Gravitation, W.H. Freeman and
Company, San Francisco 1973.

[12] HEHEL F.W., MCCREA J.D., MIELKE E.W. AND NE’ EMAN Y., Metric-affine gauge the-
ory of gravity: field equations, noether identities, world spinors, and breaking of dilation
invariance, Physics Reports258(1995), 1–171.

AMS Subject Classification: 83C99, 80A10.

Heiko HERRMANN, Gunnar R̈UCKNER, Wolfgang MUSCHIK
Institut für Theoretische Physik
Technische Universität Berlin
D-10623 Berlin GERMANY
e-mail:

������ ������� ��	
��
��� ���
e-mail: �
���� ������� ��	
��
��� ���
e-mail:�	��� ��������� ��	
��
��� ���



140 H.J. Herrmann - W. Muschik - G. Rückner


