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REGULAR TRIANGLES AND ISOCLINIC TRIANGLES IN
THE GRASSMANN MANIFOLDS G(RN)*

Abstract. We give a complete set of orthogonal invariants for triaagteG »(R").
As a consequence we characterize regular triangles anéhisddangles and we
exhibit the existence regions of these objects in companigith the angular in-
variants associated to them.

1. Introduction

By trigonometry in a given Riemannian space we mean the sifigiples of points in that space;
more precisely, one wants to find a complete system of isécaétnvariants which permits to
determine uniquely the isometry class of the triple of pgint

Trigonometry plays a fundamental role in geometry: indebd, study of the geometric
properties of a given space is necessarily linked to theysifithe most simple geometric objects
in that space, namely the triangles.

In classical trigonometry, i.e. trigonometry in Euclidespaces, spheres and hyperbolic
spaces, we know that a triangle depends on three essent@aheizrs (for example two sides
and the enclosed angle, provided triangular inequalitieverified). These spaces are rank-one
symmetric spaces with constant curvature. The situatiohd€mther rank-one symmetric spaces
(i.e. projective spaces and hyperbolic spaces, which aredtresponding non-compact duals) is
more complicated. Trigonometry in these spaces has beealegl’/by Brehm in [3] after partial
results of Blaschke and Terheggen, Coolidge, Hsiang (sek 8). Brehm shows that a triangle
depends on four invariants; he introduces the “shape emtré which, in addition to the three
side lengths, permits to determine uniquely the isometgscbf a triangle (these four invariants
must, of course, satisfy some inequalities). A geometiit@rpretation ofo can be found in
[71.

For what concerns symmetric spaces of higher rank, we ordwkhe trigonometry in the
Lie group SU(3) which is a rank-two symmetric space. These results are dAslaksen [1].
Using an algebraic approach, Aslaksen shows, thanks taamiaheory, that the isometry class
of a triangle depends on eight essential parameters.

In this paper we examine trigonometry in another rank-twmmsyetric space, namely the
real Grassmann manifol@,(R"). This survey has been started up by Hangan in [6]; moreover,
some results have been discovered by Fruchard in [5] usiriffieaetht approach. General laws
of trigonometry in the symmetric spaces of non-compact hgee been settled by Leuzinger in
[9].

A first obvious application of trigonometry consists in stiud) some particular triangles
such as regular triangles and isoclinic triangles. In ahfoting paper ([12]) we will apply
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these results to the 4-tuples, to the regular 4-tuples aathfito n-tuples. Complete details can
be found in [11].

2. Invariants of triangles in G»(R")

Let R" be the Euclidean space endowed with the usual scalar prg¢duct The Grassmann
manifold G2(R") is the set of non oriented 2-planesk?. Let a 2-planeX spanned by an
orthonormal basi$u, v}; we can represenX as an irreducible bivectaX = u A v (up to the
sign), i.e. as an element of the exterior algem?e(R”). To the 2-planeX, we can also associate
the orthogonal projector denoted wilty and defined as:

Px (X) = (X, u)u + (X, v)v.

Conversely, we can associate to a 2-dimensional projdgtothe 2-planel m(Py). With
respect to a fixed orthonormal basisRA, Px will be represented by a symmetric, idempotent
matrix with trace 2, which does not depend on the basis defiKinIf we change the basis in
R", the matrix will be altered by conjugation with an orthogomeatrix. In other words, toX we
associate a conjugation class of symmetric, idempotentigaatwith trace 2. Let us take now
{X,Y} € G2(R") and consider the angle betweere X and its orthogonal projectioRy (v);
we denotexq, ap respectively the minimum and maximum anglevagries inX (with v # 0).
These angles are called critical angles and they permitrmdace a distance i@z(R”), defined

as:
d(X,Y) = ,/a%—l—ot%.

In comparison with this distance, the orthogonal gr@m, R) acts as an isometry group and
the Grassmann manifold can be considered as the homogerssdutvo symmetric manifold

(0]
Gy = O
0(2) x O(n—2)

Consider now( X, Y, Z} € GZ(R"). The orthogonal projections iK of the unit circles of
Y and Z respectively are two ellipses. The angle between the grest af these two ellipses,
denoted withwy, is called inner angle and represents the rotation angledeet the critical
directions of{X, Y} and{X, Z} (see [5, 6]). So, to a triangleX, Y, Z} we can associate nine
angular invariants: six critical angles (two for each pdiplanes) and three inner angles,
wy, wz7.
Let{A,B,C} € GZ(R"), we can find an orthonormal badis, .. ., eg} in RS with respect to
which the trianglg A, B, C} takes the following form (see [5, 6, 11] for details):

A=e A&
@) B = €1 A €p = (cOSC1€1 + SiNC1€3) A (COSCo€ + SiNCo€ey)
C = €1 A ép = (cosbq81 + sinbiu) A (cosho& + sinbov)

where{by, by}, {c1, cp} are the critical angles dfA, C} and{A, B} respectively andu, v} is an
orthonormal system i, i.e.u = ZF:?, ujg andv = 2?23 vj g with

ull =lvll =1
@) { (u,v) =0.

(1) is calledcanonical formof the triangle.
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We assume that & by < by < % and0<c <C < % Moreover, we can choose the
critical directions such that

3) €] = coswae] + Sinwpe
& = —sSinwae; + CoSwaE

with0 < wp < % Such a triangle will be calledeneric Some special triangles will be studied
separately hereafter.

REMARK 1. Thanks to the action of the orthogonal group(@n+ B)L, we can impose
thatvg = 0, v5 > 0 andug > 0.

The parameterss, ug, vs can be uniquely deduced from, ug, v3, v4; indeed, the condi-
tions (2) lead to:

v = 1- v:,z’ - v%
Uzv3 + Ugvg
us = ——————=
U5

ug = /1-ui—ujd—u2
s0, we must impose the following existence conditions
(o) f=vi+v5-1<0
(C2) g=u§+uﬁ+u§—1§0

which is equivalent to:
g:u%—l—ui—l—v%—l—vz—(U3v4—U4v3)2—1§O.
Hence, we deduce that the canonical form contains nine erdmt parameters.

DEFINITION 1. Two triangles{A, B, C} and {A, B, C} are isometric if there exist$ <
O(n) such thatp(A) = A, ¢(B) = B,¢(C) =C.

In [11], we establish the following lemma:

LEMMA 1. Two triangles in Q(Re) are isometric if and only if they have the same canon-
ical form.

From this lemma, we deduce that the isometry class of a fedegletermined by a set of
invariants which enables us to determine uniquely the params in the canonical form. Recall
that to each plan& we associate a conjugation class of matrices represertengrthogonal
projector Px. We can denote with the same letter the plane and the masociaded to the
projector; indeed, the isometry group is the orthogonaligr@(n) which acts on matrices by
conjugation. Consequently, the geometric problem of figdire isometry class of the planes
{A, B.C} turns into the algebraic problem of finding a complete setrtifagonal invariants for
the symmetric matricegA, B, C}. According to Procesi [13], such a set is composed of traces
(and determinants) of opportune combinations of theseiceatrSuch a set of invariants can be
found in [10]. Another more symmetric set will be given hétea
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From now on, when considering any combination betwAeiB andC, we shall consider
the restriction to the starting plane; for exampteB.C will mean Pa o Pg o Pc o Pa.

The invariant dgtA.B.C) has a nice topological interpretation; let
: Gy(R%) — RPM4

be the Plicker embedding and= (X, y).(y, 2).(z, X) be the shape invariant (see [3]) for the
triangle([x], [y], [2]) in the real projective space. We have:

ProPOSITIONL. def{A.B.C) = o (T1(A), IT(B), I1(C)).

See [11] for a proof.

In the real projective space, > 0 if and only if the geodesic triangle is null-homotopic;
o < 0ifand only if the geodesic triangle is non null-homotogsed [3]).

A fundamental problem is the following: as the algebraicelision of the orbit space

G2(R®) x G,(R8) x G»(R®)
O(6,R)

representing the isometry class of triangle@i@(RB) is nine, it is natural to ask to what extent
the nine angular invariants define the isometry class ofrthedle. We have the following

THEOREM1. There exist at most sixteen non isometric generic trianigdesng prescribed
critical angles and inner angles.

Proof. We must determine the parameters in the canonical form. @henpeterdq, by, 1, ¢
andwp are already known. However, they can be determined thartke tiwllowing invariants:

tr(A.B) = cofcy+ cofcy
detA.B) = cofcicofcy
@ tr(A.C) = cofby +cofhy
detA.C) = cofb;cofby
tr(A.B.A.C) = (cosbycos c; + cos’ by cog cp) cos wa

+(cog by cog ¢y + co by cog ¢1) SiP wa .

So, we only have to determings, ug, v3, v4 using the remaining invariants; andap, the
critical angles of the paifB, C}, and the inner anglesg andwc.

Let us perform the change of parameters:

X = (€1, €1) = cosby COSC1 COSwa + Sinby sinciug
©) y = (€1, €2) = — coshy coscy Sinwp + sinby sincvg

Z = (ep, €1) = cosbq cosCy Sinwa + Sinby sincyuy

t = (ep, €g) = COSby COSCy COSwA + Sinby sincovy .

We deduce that determiningg, ug, v, v4 iS equivalent to determining, vy, z, t. Now, if
we permute cyclicallyA, B and C in the expressions (4), we see that the invariantB.€),
det(B.C), tr(B.A.B.C), tr(C.A.C.B) are determined by the remaining critical angdgsa, and
inner anglesvg, wc.
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On the other hand, they have an equivalent expression bylatifgy directly on the canon-
ical form. Finally, we have the following quadratic systamthe parameters, y, z, t:

X2 +y2 + 72 +t2 = tr(B.C)

(xt — y2)2 = det(B.C)

co& ¢ (x? + y?) + cof cp(2? + t?) = tr(B.A.B.C)
cof by (x? 4 22) + cog by(y? + t?) = tr(C.A.C.B).

(6)

If (X, Y,z 1) is a solution of (6) then the following are also solutions &f (—x, —y, —z, —t),
(=X, =Y,z 1), X, ¥, =2z, —t), (—X,Y, 2z, —-1), (X,=-y,—21), (=X, Y, —21), (X, Y, z, —t).
Finally, we obtain two groups of eight solutions given by:

X = €0Sa; COSwpg COSwc £ €osay Sinwpg Sinwc
Yy = F C0Saj COSwp Sinwc + Cosay Sinwpg CoSwc

7 . A
) Z = C0Say Sinwpg COSwc F COSay COSwg SiNwc
t = F cosa; Sinwpg Sinwc — €C0Say COSwg COSwC .
This completes the proof O

REMARK 2. A. Fruchard found the same result using a different agbrd¢see [5]). The
sixteen solutions are reached if the conditig84) and (C2) are satisfied. A. Fruchard shows
that all the solutions exist if the critical angles are geedban arcco%.

We will consider additional algebraic invariants to digtiish the sixteen solutions. We
consider at first:

det(A.B.C) = cosby coshy coscy cosca(xt — y2).
The factorxt — yz, when substituting in (7) takes only the valuesosa; cosay, so detA.B.C)
separates the sixteen solutions in two groups.
Finally, we consider the following four invariants, evatieh on the canonical form:

tr(A.B.C) = cosbj cosc; COSwaX — COShy coSscy Sinway
-+ cosby cosCy sinwaz + cosby coscy cosw at
tr(A.B.C.A.C) = cos b1 coscq coswaXx — cos by coscy sinway
+cos b1 coscy sinwpaz + cos by coscy coswat
tr(A.B.C.A.B) = cosb; cos €1 COSwaX — cOShby cos c1Sinway
+ cosby cos® Co SinwaZ + cosby cos® Co COswat
tr(A.B.C.B.C) = [coshycosc( cos ag + cos ap) coswp

— coshy cosCy(Xt — yz) coswa |x

—[ cosby coscy ( cos ag + cos ap) sinwa
— cosby coscy(xt — y2) sinwaly

+[ cosby cosc(cos ay + cod ay) sinwa
— coshy coscy (Xt — y2) sinwA]z

+[ cosby coscy( cos a1 + cos ap) coswa
— cosby coscy (Xt — yz) coswa]t .
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This gives us a linear system with four equations in the patarsx, vy, z, t (indeedxt — yz=
=+ cosa; cosay). The determinant of the coefficients matrix is:

— C0Ssa; cosay cosby cosby coscy coscz( cod b1 — cod b2)2-

~(c052 c1 — cos c2) sif wa COL wp

if Xt — yz > 0, otherwise it is the opposite, and never vanishes (thelgaseb, andc; = ¢
will be studied separately in another section).

We conclude so that these invariants determine unigugly, z, t (i.e. they separate the
sixteen orbits). This completes the proof of the followihgdrem:

THEOREM2. The isometry class of a generic triandl&, B, C} in GZ(RG) is uniquely de-
termined by the following list of orthogonal invariantsialgc = [tr(A.B), det(A.B), tr(A.C),
det(A.C), tr(B.C), detB.C), tr(A.B.C), detA.B.C), tr(A.B.A.C), tr(B.A.B.C), tr(C.A.
C.B), tr(A.B.C.A.B), tr(A.B.C.A.C), tr(A.B.C.B.C)].

REMARK 3. As a triangle depends essentially on nine continuouspeteas, we shall ex-
pect to find five syzygies between the fourteen invarianteflist L ogc. According to the
general theory (see [13]) the syzygies (functional refetibetween non independent invariants)
are consequences of the Hamilton-Cayley theorem.

3. Regular triangles

DEFINITION 2. Atriangle{A, B, C} will be called regular if it admits the symmetric group
Sz as isometry group.

We want now to feature regular triangles; by virtue of Theo& we must impose that each
invariant of the list_ ogc does not vary under the action of each permutatioBzoHowever, it
is sufficient to impose the invariance under the action ofmerators 083. As generators, we
can consider

R:(A,B,C) — (B,C, A

S:(A,B,C) — (A,C, B).
By considering the action dR and S on the elements of ogc, we deduce immediately the
following:
THEOREM3. A triangle{A, B, C} in G2(R®) is regular if and only if
(i) tr(A.B) =tr(A.C) =tr(B.C)

(i) detA.B) = det(A.C) = det(B.C)

(iii) tr(A.C.A.B)=tr(B.A.B.C) = tr(C.A.C.B)

(iv) tr(A.B.C.A.B)=1tr(A.B.C.A.C) =tr(A.B.C.B.C).

REMARK 4. The elements ¢A.B.C) and detA.B.C) are always invariant under the influ-
ence of permutations ¢fA, B, C} because these matrices are symmetric.

Let us deduce now some consequences from conditions. ., (iv).
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From conditiongi) and(ii ), we deduce:
aj=b;=0¢ =hot o

not
=hh=c=""2:

this means that the triangle is equilateral.
From condition(iii ) we deduce that:

WA = WB = WC =n0ta).

So, a regular triangle possesses only three angular imggrinamelyx, 8 andw. We already
know that there exist at most sixteen non isometric trismbbeving angular invariants, 8 and

o (these triangles are called “semi-regular” by Fruchardhidlf ones are regular? We show the
following:

THEOREMA4. There exist at most four non isometric regular trianglesihgvrescribed
critical angles and inner angles.

Proof. Let us suppose, 8 andw are given. We must determine the parameters of the canonical
form, such that conditiong), ..., (iv) are satisfied.

e tr(A.B) = tr(A.C) and detA.B) = detA.C) imply by = ¢; = o andby = ¢ = 8.

o tr(A.B.C.A.B)—tr(A.B.C.A.C) = cosa cosp( cos a—cog B) sinw (y+2) with y+z =
sina sinB(ug + v3) according to (5).

So, t{A.B.C.A.B) = tr(A.B.C.A.C)if and only ifug = —v3.

e From (6), we get {{B.A.B.C) = tr(C.A.C.B) if and only if y2 = z2. This condition is
already verified because= —z.

e From t{A.B) = tr(B.C) and detA.B) = det(B.C) we deduce:

@®) { X2 +2y2 +t2 = cof o + cof B

Xt + y2 = = cosa cosp

which imply:

X —t = +(cosa — cospB) if xt+y2>0
X —t = +(cosa + cosB) if xt+y2 <0.

e tr(A.B.A.C) = tr(B.A.B.C) ifand only if wp = wg = o givesx? + y2 = co B +
(cog a — cof B) cog wa.

When considering the following system:

x2 +t2 = cof o + co B — 2y?
9) xt 4+ y2 = + cosa cosp
x2 +y2 = cog B + (cof a — co B) cof wa

we deduce that:
y = £(cosa + cosB) Sinwpa coSwp  if Xt — y2 >0
y = £(cosa — CosB) sinwp COSwp  if Xt — y2 < 0.
e Finally, by calculating on the canonical form, we get:

tr(A.B.C.A.B) =tr(A.B.C.B.C)
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if and only if
X COSB COSwp — t COSw COSwA + Y(COSB — cosw) Sinwp = 0

if xt+y2>0

and
X Cosw (Cosa Cosp + cos B) + t coswa ( cosa cosp + cos a)
—ysinwa(cosx + cosp) =0

if xt+y?<0.
By separating the two cas&s + y2 > 0 (< 0), we find the following four solutions (where we
denotea = cosw, b = cosp, €1 = +1,¢€p = +1):
X = €1aC0L w + eobsif w
y = —(ega — €1b) sinw cosw

z=-y
t = —1asifw — esbcof w.

(10

|

These solutions can be deduced as particular solutions)pfM@ just have to consider
ag=bi=c=a,aa=hby=cy=pandowp = wg = wc = w.

The problem now is to establish when the four solutions effstctively. The relations (5)
reduce to:

X = co a COSw + Sinf U3

Yy = — COSw COSP Sinw + Sina sinBvg
z=-y

t = coS B cosw + Sir? Buga .

1y

If we combine now the (11) with the (10), we get the followinghere we denote = cosw):

aw? + b(l - wz) — a%w
Uz =
1-—a?
(—a+bwy1l— w2 +aby/1l— w?
V3 =
(12) (1-a?)(1-1?)
Ug = —v3
—a(l - wz) — bw? — b2w
vg =
1-b?

If we substitute these values in the conditi@@sl) and(C2), we obtain the existence region for
the first regular triangle, expressed in terms of the pararsatb, w:

f(a,b,w) <0
g(a, b,w) <0.

13)
These conditions can be nicely factorized, with the aitathematicd M. We get explicitly:
@2 -1)(0>-1)°f@bw = [1—a’+ab—b%+(b—aw+ (b—ad)w?][1-a?
—ab—b? + (a—b - 2ab?)w + (a2 — b?)w?]
[(w—Da— (w+ Db+ 1[(w—Db— (w+ Da
~1)[1—a®+ab—b? + (b—ayw + (b—a)?w?]?.

(a2 — 1)2(b2 — 1)Zg(a, b, w)
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Figure 1

The three other cases have analogous expressions, we yestchmansforma into —a, b into
—b anda, b into —a, —b. When we fixw, the existence region expressed in terma afhdb

is the interior of a domain bordered by two lines and an aligc (for each triangle). We must
of course consider the region under the bisedri¢ b. An example takings = % is shown in
Figure 1.

For existence regions in the semi-regular case, see also [5]

4. Isoclinic triangles

Another interesting class of triangles is given by the igocitriangles.

DEFINITION 3. Two planes A, B in @(R6) are called isoclinic if the angle between any
nonzero vector in A and its orthogonal projection in B is dang, in other words, the two
critical angles coincide and all the directions are critladirections. A triangle{A, B, C} in
GZ(R6) will be called isoclinic if each sub-pair of planes is isat.



100 G. Masala

Itis straightforward that if A, B} is isoclinic, then(Pa)|g and (Pg)| 5 are similarities.
The first step now is to deduce a canonical form{far B, C}. Let us write:

A= e1 N e
(14) B = €1 A €p = (coscey + sinces) A (cosce, + sincey)
C = €1 A €2 = (cosbey + sinbu) A (cosbe + sinbv) .

In (14), we imposedb; = by = b, c; = ¢ = ¢. We can set the inner anglea = 0 by
choosing judiciously the critical directions; the same bardone fowpg but the last inner angle
wc ="°! » does not vanish in general. Let us put:

X = cosbcosc + sinbsincus
y = sinbsincug
z = sinbsincuy
t = cosbcosc + sinbsincuvg .

(15)

The last condition we have to imposeais = ay, which leads to:

tr(B.C) = x2+y2+722+1t%2=2coda,
detB.C) = (xt-— yz)2 —cofa.

This gives(x? + y? + 2% + t2)2 = &(xt — y2)? ifand only if [(x — )%+ (y + 2)?][(x + 1)% +
(y-22?]=0.
Two cases can occur:
1. x =t andy = —z corresponds to positive triangles
2. x = —t andy = z corresponds to negative triangles.
Using (15), we deduce then:
1. uz =vgandug = —v3
2. uz + vq = cotbcotc andug = v3.

The isoclinic triangles depend so on the four invarianth, ¢ andw. Let us see to what extent
these parameters determine the triangle. We introducetegbllowing

DEFINITION 4. Atriangle{A, B, C}in GZ(RB) is positive (negative respectively)iét A.
B.C) > 0 (< Orespectively).

We have now:

THEOREMS. 1. There are at most two positive isoclinic triangles irQ((IRG) having
prescribed critical angles a, b, ¢ and inner ange

2. There are at most two negative isoclinic triangles iQ(EB) having prescribed critical
angles a, b, c.

Proof. We just have to determine the parameteendy.

Consider the linear applicatidPa o Pg o Pc o Pa. We study the two cases 1 and 2 separately.
1. Calculus gives:

tr(A.B.C) = 2cosbcoscx
det(A.B.C) cofacofbcod c
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and

tr(B.C) 2(x2 + y?) =2cofa
de(B.C) = (x+y?)?=coda

which imply thatx? + y2 = co€ a. The characteristic polynomial @.B.C is:
P, = 22 — 2 cosbcoscxi + cof acoLbcofc =0
S0, the eigenvalues are dososc(x+iy). On the other hand, we know thatB.C is a similarity,

as the result of the composition of an homothetic transftionavith magnification factop =
cosa cosb cosc and a rotation with angle.

Such a similarity admits the following eigenvalues:
cosa cosb cosce™® = cosacosb cosc(cosw *i sinw) .

Comparing now the two sets of eigenvalues gives:

(16) cosb coscx = cosa cosb cosc Cosw
=+ cosb coscy = cosa cosb cosc sinw
which imply:
X = €0Sa Ccosw
(@7 { y = Fcosasinw.

Substituting then in (15) gives the two solutions

cosacosw — cosbcosc

usz =

sinbsinc
Ug = —v3
(18) cosasinw
V3=
sinbsinc
v4 = Ug.
2. Calculus gives:
tr(A.B.C) = 0
dettA.B.C) = —cofacofbcodc.

The eigenvalues o&.B.C are) = =+ cosa cosb cosc and the similarity reduces to an homothetic
transformation. This means we can choose the critical tiireg such that vanishes. In this
case, according to (7) also vanishes. Finally, it remainé = coa and we get the two
solutions:

=+ cosa — cosb cosc

uz = - -
3 sinbsinc
(19) U4 = U3 = O
4 cosa — cosb cosc
V4 = - -
sinbsinc
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The solutions (18) and (19) exist effectively if the coralits (C1) and (C2) are satisfied.
In the semi-regular case (far= b = c), these conditions take the form:

in the case (18):

—1+3cofa— 2cos acosw

f(a, = <0
@) sinfa
(1—3cos°—a+2co§a003w)2
ga,w) = -— - <0.
sifa

For the second triangle, we just have to transformeciogo — cosa;
in the case (19):

2cosa—1
f@ = (cosa—1)2 ~
9@ = (Zcosa+})(2cosa—1) <o.
sinfa

For the second triangle, the same remark as for (18) holds.
Furthermore, the positive isoclinic triangles (B‘Q(R6) behave as triangles iaP2. We
have:

PROPOSITION2. 1. There is a one-to-one correspondence between positieénic
triangles in GZ(RB) and generic triangles in the complex projective pl&iR?.

2. The inequalities satisfied by the shape invariant of tlogegtive triangle are equivalent
to the conditiongC1) and (C2) for the Grassmannian triangle.

3. If a, b, c denote the length of the sides of the projectiiangle, the link between the
shape invariant and the inner angle is:

o = €0sa cosh COSC CoSw .
Proof. 1. To an elemenk = [x] € CP2, we can associate the plane
X =x Aix € Go(C3) ¢ Go(R®)

(X does not depend on the representing vexjor
Let us consider the canonical form of a trianghe B, C} in CP? (see [3]):

A=e
(20) B = coscey + since,
C

cosbe, + (2o +i12p)er + 7363

with 25, 25, 23 € R; 23,23 > 0,25 + 25 + 25 = sir? b.
If we setie; = ey, iep = es5, ieg = g5, we get the following triangle iGZ(RG):

€L N€e
cosce; + sincey) A (coscey + sinces)

A =
(21) B=(
C = (cosbey + 2oy + 7363 + Z72€5) A ( — 7o) + cosbhey + 2065 + 2396) .
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The calculus of fA.B), det(A.B), tr(A.C), detA.C), tr(B.C), det(B.C) shows immediately
that the triangle is isoclinic. Moreover:

X = cosbcosc + 7o sinc
y = —Zpsinc

z = 2Zpsinc

t = cosbcosc + z5 sinc

(22)

shows that d€A.B.C) > 0.
Conversely, to the triangle (14), we can associate thegigain CP2 given by:

A =€e1
(23) B = coscey + since3

C = cosbey + sinb(—iug + uUg)eq + z3€5 + 2465

(not in canonical form). o
2. Leta, b, c denote the side lengths ¢A, B, C} and

d(1x], [y)) = arccos =YL

11yl

the distance function. We have:

cosd (A,B) = cosc
cosd (A,C) = cosb
codd(B,C) = (cosbcosc+ zpsinc)? + zsir ¢

= x2+y?=cofa.

Moreover,oc = cosb cosc(cosb cosc + zp sinc) = cosbcoscx (see [3]) butx = cosacosw,
which proves 3.

The existence conditions are
(C2) g=v§+v§—1§0
and substituting into (15), we get:

y2 + x2 + co? bcog ¢ — 2x cosb cosc — sir? bsin? ¢
si? bsir ¢

=<

(CD f =u3+uj+ 03+ 02— (Ugug —Uguz)> —1<0

gives:
f =2(v§+v§) - (v%—l—vi)z—lfo.
If (C2) is satisfied, it implies automatically theE 1) is also satisfied.
Now, the inequalities involving the shape invarianare:

1
E(cosza+coszb+coszc—l) <o <|o| < cosacosbcosc.
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Substitutings = cosb coscx andx? + y2 = co< a, we obtain:
1
> (x% + y? + cog b+ cod ¢ — 1) < cosbcoscx < coshcosclx| < cosbcoscy/x2 + y2.

The firstinequality is equivalent {€2) because cds cos c—sir? bsin? ¢ = co b+cof c—
1; the second inequality is always true. |

Acknowledgements.Thanks are due to A. Fruchard, Th. Hangan and S. Marchiataeefpful
discussions.
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