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REGULAR TRIANGLES AND ISOCLINIC TRIANGLES IN

THE GRASSMANN MANIFOLDS G2
(� N

)

∗

Abstract. We give a complete set of orthogonal invariants for triangles inG2
(�n)

.
As a consequence we characterize regular triangles and isoclinic triangles and we
exhibit the existence regions of these objects in comparison with the angular in-
variants associated to them.

1. Introduction

By trigonometry in a given Riemannian space we mean the studyof triples of points in that space;
more precisely, one wants to find a complete system of isometrical invariants which permits to
determine uniquely the isometry class of the triple of points.

Trigonometry plays a fundamental role in geometry: indeed,the study of the geometric
properties of a given space is necessarily linked to the study of the most simple geometric objects
in that space, namely the triangles.

In classical trigonometry, i.e. trigonometry in Euclideanspaces, spheres and hyperbolic
spaces, we know that a triangle depends on three essential parameters (for example two sides
and the enclosed angle, provided triangular inequalities are verified). These spaces are rank-one
symmetric spaces with constant curvature. The situation inthe other rank-one symmetric spaces
(i.e. projective spaces and hyperbolic spaces, which are the corresponding non-compact duals) is
more complicated. Trigonometry in these spaces has been revealed by Brehm in [3] after partial
results of Blaschke and Terheggen, Coolidge, Hsiang (see [2, 4, 8]). Brehm shows that a triangle
depends on four invariants; he introduces the “shape invariant” σ which, in addition to the three
side lengths, permits to determine uniquely the isometry class of a triangle (these four invariants
must, of course, satisfy some inequalities). A geometricalinterpretation ofσ can be found in
[7].

For what concerns symmetric spaces of higher rank, we only know the trigonometry in the
Lie group SU(3) which is a rank-two symmetric space. These results are due toAslaksen [1].
Using an algebraic approach, Aslaksen shows, thanks to invariant theory, that the isometry class
of a triangle depends on eight essential parameters.

In this paper we examine trigonometry in another rank-two symmetric space, namely the
real Grassmann manifoldG2

(�n)

. This survey has been started up by Hangan in [6]; moreover,
some results have been discovered by Fruchard in [5] using a different approach. General laws
of trigonometry in the symmetric spaces of non-compact typehave been settled by Leuzinger in
[9].

A first obvious application of trigonometry consists in studying some particular triangles
such as regular triangles and isoclinic triangles. In a forthcoming paper ([12]) we will apply
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these results to the 4-tuples, to the regular 4-tuples and finally to n-tuples. Complete details can
be found in [11].

2. Invariants of triangles in G2
(�n)

Let
�n be the Euclidean space endowed with the usual scalar product〈·, ·〉. The Grassmann

manifold G2
(�n)

is the set of non oriented 2-planes in
�n . Let a 2-planeX spanned by an

orthonormal basis{u, v}; we can representX as an irreducible bivectorX = u ∧ v (up to the
sign), i.e. as an element of the exterior algebra32(�n)

. To the 2-planeX, we can also associate
the orthogonal projector denoted withPX and defined as:

PX(x) = 〈x, u〉u + 〈x, v〉v .

Conversely, we can associate to a 2-dimensional projectorPX the 2-planeIm(PX). With
respect to a fixed orthonormal basis in

�n, PX will be represented by a symmetric, idempotent
matrix with trace 2, which does not depend on the basis defining X. If we change the basis in�n , the matrix will be altered by conjugation with an orthogonal matrix. In other words, toX we
associate a conjugation class of symmetric, idempotent matrices with trace 2. Let us take now
{X, Y} ∈ G2

(�n)

and consider the angle betweenv ∈ X and its orthogonal projectionPY(v);
we denoteα1, α2 respectively the minimum and maximum angle asv varies inX (with v 6= 0).
These angles are called critical angles and they permit to introduce a distance inG2

(�n)

, defined
as:

d(X,Y) =

√

α2
1 + α2

2 .

In comparison with this distance, the orthogonal groupO(n,
�

) acts as an isometry group and
the Grassmann manifold can be considered as the homogeneousrank-two symmetric manifold

G2
(�n)

=
O(n)

O(2) × O(n − 2)
.

Consider now{X,Y, Z} ∈ G2
(�n)

. The orthogonal projections inX of the unit circles of
Y and Z respectively are two ellipses. The angle between the great axes of these two ellipses,
denoted withωX , is called inner angle and represents the rotation angle between the critical
directions of{X,Y} and{X, Z} (see [5, 6]). So, to a triangle{X, Y, Z} we can associate nine
angular invariants: six critical angles (two for each pair of planes) and three inner anglesωX ,
ωY, ωZ .
Let {A, B, C} ∈ G2

(�n)

, we can find an orthonormal basis{e1, . . . , e6} in
�6 with respect to

which the triangle{A, B,C} takes the following form (see [5, 6, 11] for details):






A = e1 ∧ e2
B = ε1 ∧ ε2 = (cosc1e1 + sinc1e3) ∧ (cosc2e2 + sinc2e4)

C = ε̄1 ∧ ε̄2 = (cosb1ē1 + sinb1u) ∧ (cosb2ē2 + sinb2v)

(1)

where{b1, b2}, {c1, c2} are the critical angles of{A, C} and{A, B} respectively and{u, v} is an
orthonormal system inA⊥, i.e. u =

∑6
i=3 ui ei andv =

∑6
i=3 vi ei with

{

‖u‖ = ‖v‖ = 1
〈u, v〉 = 0 .

(2)

(1) is calledcanonical formof the triangle.
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We assume that 0< b1 < b2 < π

2 and 0< c1 < c2 < π

2 . Moreover, we can choose the
critical directions such that

{

ē1 = cosωAe1 + sinωAe2
ē2 = − sinωAe1 + cosωAe2

(3)

with 0 < ωA < π

2 . Such a triangle will be calledgeneric. Some special triangles will be studied
separately hereafter.

REMARK 1. Thanks to the action of the orthogonal group on(A + B)⊥, we can impose
thatv6 = 0, v5 > 0 andu6 > 0.

The parametersu5, u6, v5 can be uniquely deduced fromu3, u4, v3, v4; indeed, the condi-
tions (2) lead to:

v5 =

√

1 − v2
3 − v2

4

u5 = −
u3v3 + u4v4

v5

u6 =

√

1 − u2
3 − u2

4 − u2
5

so, we must impose the following existence conditions

(C1) f = v2
3 + v2

4 − 1 ≤ 0

(C2) g = u2
3 + u2

4 + u2
5 − 1 ≤ 0

which is equivalent to:

g = u2
3 + u2

4 + v2
3 + v2

4 − (u3v4 − u4v3)2 − 1 ≤ 0 .

Hence, we deduce that the canonical form contains nine independent parameters.

DEFINITION 1. Two triangles{A, B,C} and {Ā, B̄, C̄} are isometric if there existsφ ∈

O(n) such thatφ(A) = Ā, φ(B) = B̄, φ(C) = C̄.

In [11], we establish the following lemma:

LEMMA 1. Two triangles in G2
(�6)

are isometric if and only if they have the same canon-
ical form.

From this lemma, we deduce that the isometry class of a triangle is determined by a set of
invariants which enables us to determine uniquely the parameters in the canonical form. Recall
that to each planeX we associate a conjugation class of matrices representing the orthogonal
projector PX . We can denote with the same letter the plane and the matrix associated to the
projector; indeed, the isometry group is the orthogonal group O(n) which acts on matrices by
conjugation. Consequently, the geometric problem of finding the isometry class of the planes
{A, B.C} turns into the algebraic problem of finding a complete set of orthogonal invariants for
the symmetric matrices{A, B,C}. According to Procesi [13], such a set is composed of traces
(and determinants) of opportune combinations of these matrices. Such a set of invariants can be
found in [10]. Another more symmetric set will be given hereafter.
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From now on, when considering any combination betweenA, B andC, we shall consider
the restriction to the starting plane; for example,A.B.C will mean PA ◦ PB ◦ PC ◦ PA.

The invariant det(A.B.C) has a nice topological interpretation; let

5 : G2
(�6)

−→
��14

be the Plücker embedding andσ = 〈x, y〉.〈y, z〉.〈z, x〉 be the shape invariant (see [3]) for the
triangle([x], [y], [z]) in the real projective space. We have:

PROPOSITION1. det(A.B.C) = σ(5(A),5(B),5(C)).

See [11] for a proof.

In the real projective space,σ > 0 if and only if the geodesic triangle is null-homotopic;
σ < 0 if and only if the geodesic triangle is non null-homotopic (see [3]).

A fundamental problem is the following: as the algebraic dimension of the orbit space

G2
(�6)

× G2
(�6)

× G2
(�6)

O(6,
�

)

representing the isometry class of triangles inG2
(�6)

is nine, it is natural to ask to what extent
the nine angular invariants define the isometry class of the triangle. We have the following

THEOREM 1. There exist at most sixteen non isometric generic triangleshaving prescribed
critical angles and inner angles.

Proof. We must determine the parameters in the canonical form. The parametersb1, b2, c1, c2
andωA are already known. However, they can be determined thanks tothe following invariants:



































tr(A.B) = cos2 c1 + cos2 c2
det(A.B) = cos2 c1 cos2 c2

tr(A.C) = cos2 b1 + cos2 b2
det(A.C) = cos2 b1 cos2 b2

tr(A.B.A.C) =
(

cos2 b1 cos2 c1 + cos2 b2 cos2 c2
)

cos2 ωA
+

(

cos2 b1 cos2 c2 + cos2 b2 cos2 c1
)

sin2 ωA .

(4)

So, we only have to determineu3, u4, v3, v4 using the remaining invariants:a1 and a2, the
critical angles of the pair{B,C}, and the inner anglesωB andωC.

Let us perform the change of parameters:















x = 〈ε1, ε̄1〉 = cosb1 cosc1 cosωA + sinb1 sinc1u3
y = 〈ε1, ε̄2〉 = − cosb2 cosc1 sinωA + sinb2 sinc1v3
z = 〈ε2, ε̄1〉 = cosb1 cosc2 sinωA + sinb1 sinc2u4
t = 〈ε2, ε̄2〉 = cosb2 cosc2 cosωA + sinb2 sinc2v4 .

(5)

We deduce that determiningu3, u4, v3, v4 is equivalent to determiningx, y, z, t . Now, if
we permute cyclicallyA, B andC in the expressions (4), we see that the invariants tr(B.C),
det(B.C), tr(B.A.B.C), tr(C.A.C.B) are determined by the remaining critical anglesa1, a2 and
inner anglesωB, ωC.
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On the other hand, they have an equivalent expression by calculating directly on the canon-
ical form. Finally, we have the following quadratic system in the parametersx, y, z, t :















x2 + y2 + z2 + t2 = tr(B.C)

(xt − yz)2 = det(B.C)

cos2 c1
(

x2 + y2)

+ cos2 c2
(

z2 + t2) = tr(B.A.B.C)

cos2 b1
(

x2 + z2)

+ cos2 b2
(

y2 + t2) = tr(C.A.C.B) .

(6)

If (x, y, z, t) is a solution of (6) then the following are also solutions of (6): (−x, −y, −z,−t),
(−x, −y, z, t), (x, y,−z,−t), (−x, y, z,−t), (x, −y,−z, t), (−x, y,−z, t), (x, −y, z,−t).
Finally, we obtain two groups of eight solutions given by:















x = cosa1 cosωB cosωC ± cosa2 sinωB sinωC
y = ∓ cosa1 cosωB sinωC + cosa2 sinωB cosωC
z = cosa1 sinωB cosωC ∓ cosa2 cosωB sinωC
t = ∓ cosa1 sinωB sinωC − cosa2 cosωB cosωC .

(7)

This completes the proof

REMARK 2. A. Fruchard found the same result using a different approach (see [5]). The
sixteen solutions are reached if the conditions(C1) and(C2) are satisfied. A. Fruchard shows
that all the solutions exist if the critical angles are greater than arccos13 .

We will consider additional algebraic invariants to distinguish the sixteen solutions. We
consider at first:

det(A.B.C) = cosb1 cosb2 cosc1 cosc2(xt − yz) .

The factorxt − yz, when substituting in (7) takes only the values± cosa1 cosa2, so det(A.B.C)

separates the sixteen solutions in two groups.

Finally, we consider the following four invariants, evaluated on the canonical form:

tr(A.B.C) = cosb1 cosc1 cosωAx − cosb2 cosc1 sinωAy

+ cosb1 cosc2 sinωAz + cosb2 cosc2 cosωAt

tr(A.B.C.A.C) = cos3 b1 cosc1 cosωAx − cos3 b2 cosc1 sinωAy

+ cos3 b1 cosc2 sinωAz + cos3 b2 cosc2 cosωAt

tr(A.B.C.A.B) = cosb1 cos3 c1 cosωAx − cosb2 cos3 c1 sinωAy

+ cosb1 cos3 c2 sinωAz + cosb2 cos3 c2 cosωAt

tr(A.B.C.B.C) =
[

cosb1 cosc1
(

cos2 a1 + cos2 a2
)

cosωA

− cosb2 cosc2(xt − yz) cosωA
]

x

−
[

cosb2 cosc1
(

cos2 a1 + cos2 a2
)

sinωA

− cosb1 cosc2(xt − yz) sinωA
]

y

+
[

cosb1 cosc2
(

cos2 a1 + cos2 a2
)

sinωA

− cosb2 cosc1(xt − yz) sinωA
]

z

+
[

cosb2 cosc2
(

cos2 a1 + cos2 a2
)

cosωA

− cosb1 cosc1(xt − yz) cosωA
]

t .
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This gives us a linear system with four equations in the parametersx, y, z, t (indeed,xt − yz =

± cosa1 cosa2). The determinant of the coefficients matrix is:

− cosa1 cosa2 cosb1 cosb2 cosc1 cosc2
(

cos2 b1 − cos2 b2
)2

·

·
(

cos2 c1 − cos2 c2
)

sin2 ωA cos2 ωA

if xt − yz > 0, otherwise it is the opposite, and never vanishes (the caseb1 = b2 andc1 = c2
will be studied separately in another section).

We conclude so that these invariants determine uniquelyx, y, z, t (i.e. they separate the
sixteen orbits). This completes the proof of the following theorem:

THEOREM 2. The isometry class of a generic triangle{A, B, C} in G2
(�6)

is uniquely de-
termined by the following list of orthogonal invariants: LABC = [tr(A.B), det(A.B), tr(A.C),

det(A.C), tr(B.C), det(B.C), tr(A.B.C), det(A.B.C), tr(A.B.A.C), tr(B.A.B.C), tr(C.A.

C.B), tr(A.B.C.A.B), tr(A.B.C.A.C), tr(A.B.C.B.C)].

REMARK 3. As a triangle depends essentially on nine continuous parameters, we shall ex-
pect to find five syzygies between the fourteen invariants of the list L ABC. According to the
general theory (see [13]) the syzygies (functional relations between non independent invariants)
are consequences of the Hamilton-Cayley theorem.

3. Regular triangles

DEFINITION 2. A triangle{A, B, C} will be called regular if it admits the symmetric group
S3 as isometry group.

We want now to feature regular triangles; by virtue of Theorem 2, we must impose that each
invariant of the listL ABC does not vary under the action of each permutation ofS3. However, it
is sufficient to impose the invariance under the action of thegenerators ofS3. As generators, we
can consider

R :(A, B, C) −→ (B,C, A)

S :(A, B, C) −→ (A, C, B) .

By considering the action ofR and S on the elements ofL ABC, we deduce immediately the
following:

THEOREM 3. A triangle{A, B,C} in G2
(�6)

is regular if and only if

(i) tr(A.B) = tr(A.C) = tr(B.C)

(ii) det(A.B) = det(A.C) = det(B.C)

(iii) tr(A.C.A.B) = tr(B.A.B.C) = tr(C.A.C.B)

(iv) tr(A.B.C.A.B) = tr(A.B.C.A.C) = tr(A.B.C.B.C).

REMARK 4. The elements tr(A.B.C) and det(A.B.C) are always invariant under the influ-
ence of permutations of{A, B,C} because these matrices are symmetric.

Let us deduce now some consequences from conditions(i ), . . . , (i v).
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From conditions(i ) and(i i ), we deduce:

a1 = b1 = c1 =not α

a2 = b2 = c2 =not β

this means that the triangle is equilateral.
From condition(i i i ) we deduce that:

ωA = ωB = ωC =not ω .

So, a regular triangle possesses only three angular invariants, namelyα, β andω. We already
know that there exist at most sixteen non isometric triangles having angular invariantsα, β and
ω (these triangles are called “semi-regular” by Fruchard). Which ones are regular? We show the
following:

THEOREM 4. There exist at most four non isometric regular triangles having prescribed
critical angles and inner angles.

Proof. Let us supposeα, β andω are given. We must determine the parameters of the canonical
form, such that conditions(i ), . . . , (i v) are satisfied.

• tr(A.B) = tr(A.C) and det(A.B) = det(A.C) imply b1 = c1 = α andb2 = c2 = β.

• tr(A.B.C.A.B)−tr(A.B.C.A.C) = cosα cosβ
(

cos2 α−cos2 β
)

sinω(y+z) with y+z =

sinα sinβ(u4 + v3) according to (5).

So, tr(A.B.C.A.B) = tr(A.B.C.A.C) if and only if u4 = −v3.

• From (6), we get tr(B.A.B.C) = tr(C.A.C.B) if and only if y2 = z2. This condition is
already verified becausey = −z.

• From tr(A.B) = tr(B.C) and det(A.B) = det(B.C) we deduce:
{

x2 + 2y2 + t2 = cos2 α + cos2 β

xt + y2 = ± cosα cosβ
(8)

which imply:

x − t = ±(cosα − cosβ) if xt + y2 > 0

x − t = ±(cosα + cosβ) if xt + y2 < 0 .

• tr(A.B.A.C) = tr(B.A.B.C) if and only if ωA = ωB = ω givesx2 + y2 = cos2 β +
(

cos2 α − cos2 β
)

cos2 ωA.

When considering the following system:






x2 + t2 = cos2 α + cos2 β − 2y2

xt + y2 = ± cosα cosβ
x2 + y2 = cos2 β +

(

cos2 α − cos2 β
)

cos2 ωA

(9)

we deduce that:

y = ±(cosα + cosβ) sinωA cosωA if xt − y2 > 0

y = ±(cosα − cosβ) sinωA cosωA if xt − y2 < 0 .

• Finally, by calculating on the canonical form, we get:

tr(A.B.C.A.B) = tr(A.B.C.B.C)
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if and only if

x cosβ cosωA − t cosα cosωA + y(cosβ − cosα) sinωA = 0

if xt + y2 > 0

and
x cosωA

(

cosα cosβ + cos2 β
)

+ t cosωA
(

cosα cosβ + cos2 α
)

−y sinωA(cosα + cosβ)2 = 0

if xt + y2 < 0 .

By separating the two casesxt + y2 > 0 (< 0), we find the following four solutions (where we
denotea = cosα, b = cosβ, ε1 = ±1, ε2 = ±1):















x = ε1a cos2 ω + ε2b sin2 ω

y = −(ε2a − ε1b) sinω cosω
z = −y
t = −ε1a sin2 ω − ε2bcos2 ω .

(10)

These solutions can be deduced as particular solutions of (7); we just have to consider
a1 = b1 = c1 = α, a2 = b2 = c2 = β andωA = ωB = ωC = ω.

The problem now is to establish when the four solutions existeffectively. The relations (5)
reduce to:















x = cos2 α cosω + sin2 αu3
y = − cosα cosβ sinω + sinα sinβv3
z = −y
t = cos2 β cosω + sin2 βv4 .

(11)

If we combine now the (11) with the (10), we get the following (where we denotew = cosω):














































u3 =
aw2 + b

(

1 − w2)

− a2w

1 − a2

v3 =
(−a + b)w

√

1 − w2 + ab
√

1 − w2
√

(

1 − a2
)(

1 − b2
)

u4 = −v3

v4 =
−a

(

1 − w2)

− bw2 − b2w

1 − b2
.

(12)

If we substitute these values in the conditions(C1) and(C2), we obtain the existence region for
the first regular triangle, expressed in terms of the parametersa, b, w:

{

f (a, b, w) ≤ 0
g(a, b, w) ≤ 0 .

(13)

These conditions can be nicely factorized, with the aid ofMathematicaT M . We get explicitly:
(

a2 − 1
)(

b2 − 1
)2 f (a, b, w) =

[

1 − a2 + ab− b2 + (b − a)w +
(

b − a2)

w2][1 − a2

−ab− b2 +
(

a − b − 2ab2)

w +
(

a2 − b2)

w2]

(

a2 − 1
)2(

b2 − 1
)2g(a, b, w) = [(w − 1)a − (w + 1)b + 1][(w − 1)b − (w + 1)a

−1]
[

1 − a2 + ab− b2 + (b − a)w + (b − a)2w2]2
.



Triangles in the Grassmann manifolds 99

Figure 1

The three other cases have analogous expressions, we just have to transforma into −a, b into
−b anda, b into −a, −b. When we fixω, the existence region expressed in terms ofa andb
is the interior of a domain bordered by two lines and an ellipse arc (for each triangle). We must
of course consider the region under the bisectrixa = b. An example takingω = π

3 is shown in
Figure 1.

For existence regions in the semi-regular case, see also [5].

4. Isoclinic triangles

Another interesting class of triangles is given by the isoclinic triangles.

DEFINITION 3. Two planes A, B in G2
(�6)

are called isoclinic if the angle between any
nonzero vector in A and its orthogonal projection in B is constant; in other words, the two
critical angles coincide and all the directions are critical directions. A triangle{A, B,C} in
G2

(�6)

will be called isoclinic if each sub-pair of planes is isoclinic.
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It is straightforward that if{A, B} is isoclinic, then(PA)|B and (PB)|A are similarities.

The first step now is to deduce a canonical form for{A, B,C}. Let us write:






A = e1 ∧ e2
B = ε1 ∧ ε2 = (cosce1 + since3) ∧ (cosce2 + since4)

C = ε̄1 ∧ ε̄2 = (cosbe1 + sinbu) ∧ (cosbe2 + sinbv) .

(14)

In (14), we imposedb1 = b2 = b, c1 = c2 = c. We can set the inner angleωA = 0 by
choosing judiciously the critical directions; the same canbe done forωB but the last inner angle
ωC =not ω does not vanish in general. Let us put:















x = cosbcosc + sinbsincu3
y = sinbsincv3
z = sinbsincu4
t = cosbcosc + sinbsincv4 .

(15)

The last condition we have to impose isa1 = a2, which leads to:

tr(B.C) = x2 + y2 + z2 + t2 = 2 cos2 a ,

det(B.C) = (xt − yz)2 = cos4 a .

This gives
(

x2 + y2 + z2 + t2)2
= 4(xt − yz)2 if and only if

[

(x − t)2 + (y + z)2
][

(x + t)2 +

(y − z)2
]

= 0.
Two cases can occur:

1. x = t andy = −z corresponds to positive triangles

2. x = −t andy = z corresponds to negative triangles.

Using (15), we deduce then:

1. u3 = v4 andu4 = −v3

2. u3 + v4 = cotbcotc andu4 = v3.

The isoclinic triangles depend so on the four invariantsa, b, c andω. Let us see to what extent
these parameters determine the triangle. We introduce firstthe following

DEFINITION 4. A triangle{A, B, C} in G2
(�6)

is positive (negative respectively) ifdet(A.

B.C) > 0 (< 0 respectively).

We have now:

THEOREM 5. 1. There are at most two positive isoclinic triangles in G2
(�6)

having
prescribed critical angles a, b, c and inner angleω.

2. There are at most two negative isoclinic triangles in G2
(�6)

having prescribed critical
angles a, b, c.

Proof. We just have to determine the parametersx andy.

Consider the linear applicationPA◦PB◦PC◦PA. We study the two cases 1 and 2 separately.
1. Calculus gives:

tr(A.B.C) = 2 cosbcoscx

det(A.B.C) = cos2 a cos2 bcos2 c
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and

tr(B.C) = 2
(

x2 + y2)

= 2 cos2 a

det(B.C) =
(

x2 + y2)2
= cos4 a

which imply thatx2 + y2 = cos2 a. The characteristic polynomial ofA.B.C is:

Pλ = λ2 − 2 cosb coscxλ + cos2 a cos2 b cos2 c = 0

so, the eigenvalues are cosb cosc(x±i y). On the other hand, we know thatA.B.C is a similarity,
as the result of the composition of an homothetic transformation with magnification factorρ =

cosa cosbcosc and a rotation with angleω.

Such a similarity admits the following eigenvalues:

cosa cosb cosce±iω = cosa cosbcosc(cosω ± i sinω) .

Comparing now the two sets of eigenvalues gives:

{

cosbcoscx = cosa cosbcosccosω
± cosb coscy = cosa cosb coscsinω

(16)

which imply:

{

x = cosa cosω
y = ± cosa sinω .

(17)

Substituting then in (15) gives the two solutions


























u3 =
cosa cosω − cosbcosc

sinb sinc
u4 = −v3

v3 = ±
cosa sinω

sinbsinc
v4 = u3 .

(18)

2. Calculus gives:

tr(A.B.C) = 0

det(A.B.C) = − cos2 a cos2 bcos2 c .

The eigenvalues ofA.B.C areλ = ± cosa cosbcosc and the similarity reduces to an homothetic
transformation. This means we can choose the critical directions such thatω vanishes. In this
case, according to (7),y also vanishes. Finally, it remainsx2 = cos2 a and we get the two
solutions:



















u3 =
± cosa − cosbcosc

sinb sinc
u4 = v3 = 0

v4 =
± cosa − cosbcosc

sinb sinc
.

(19)
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The solutions (18) and (19) exist effectively if the conditions(C1) and(C2) are satisfied.
In the semi-regular case (fora = b = c), these conditions take the form:

in the case (18):

f (a, ω) =
−1 + 3 cos2 a − 2 cos3 a cosω

sin4 a
≤ 0

g(a, ω) = −

(

1 − 3 cos2 a + 2 cos3 a cosω
)2

sin8 a
≤ 0 .

For the second triangle, we just have to transform cosa into − cosa;

in the case (19):

f (a) =
2 cosa − 1

(cosa − 1)2
≤ 0

g(a) =
(2 cosa + 1)(2 cosa − 1)

sin4 a
≤ 0 .

For the second triangle, the same remark as for (18) holds.

Furthermore, the positive isoclinic triangles inG2
(�6)

behave as triangles in�
�2. We

have:

PROPOSITION2. 1. There is a one-to-one correspondence between positive isoclinic
triangles in G2

(�6)

and generic triangles in the complex projective plane�
�2.

2. The inequalities satisfied by the shape invariant of the projective triangle are equivalent
to the conditions(C1) and(C2) for the Grassmannian triangle.

3. If a, b, c denote the length of the sides of the projective triangle, the link between the
shape invariantσ and the inner angleω is:

σ = cosa cosbcosccosω .

Proof. 1. To an element̄X = [x] ∈ �
�2, we can associate the plane

X = x ∧ i x ∈ G2
(

� 3)

⊂ G2
(�6)

(X does not depend on the representing vectorx).

Let us consider the canonical form of a triangle{Ā, B̄, C̄} in �
�2 (see [3]):







Ā = e1
B̄ = cosce1 + since2
C̄ = cosbe2 + (z2 + i z̃2)e2 + z3e3

(20)

with z2, z̃2, z3 ∈
�

; z̃2, z3 ≥ 0, z2
2 + z̃2

2 + z2
3 = sin2 b.

If we setie1 = e4, ie2 = e5, ie3 = e6, we get the following triangle inG2
(�6)

:







Ā = e1 ∧ e4
B̄ = (cosce1 + since2) ∧ (cosce4 + since5)

C̄ = (cosbe1 + z2e2 + z3e3 + z̃2e5) ∧
(

− z̃2e2 + cosbe4 + z2e5 + z3e6
)

.

(21)
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The calculus of tr(A.B), det(A.B), tr(A.C), det(A.C), tr(B.C), det(B.C) shows immediately
that the triangle is isoclinic. Moreover:















x = cosbcosc + z2 sinc
y = −z̃2 sinc
z = z̃2 sinc
t = cosbcosc + z2 sinc

(22)

shows that det(A.B.C) > 0.

Conversely, to the triangle (14), we can associate the triangle in �
�2 given by:







Ā = e1
B̄ = cosce1 + since3
C̄ = cosbe1 + sinb(−iu3 + u4)e4 + z3e5 + z4e6

(23)

(not in canonical form).
2. Leta, b, c denote the side lengths of

{

Ā, B̄, C̄
}

and

d([x], [y]) = arccos
|〈x, y〉|

‖x‖ · ‖y‖

the distance function. We have:

cosd
(

Ā, B̄
)

= cosc

cosd
(

Ā, C̄
)

= cosb

cos2 d
(

B̄, C̄
)

= (cosbcosc + z2 sinc)2 + z̃2
2 sin2 c

= x2 + y2 = cos2 a .

Moreover,σ = cosb cosc(cosb cosc + z2 sinc) = cosbcoscx (see [3]) butx = cosa cosω,
which proves 3.

The existence conditions are

(C2) g = v2
3 + v2

4 − 1 ≤ 0

and substituting into (15), we get:

y2 + x2 + cos2 b cos2 c − 2x cosbcosc − sin2 bsin2 c

sin2 bsin2 c
≤ 0

(C1) f = u2
3 + u2

4 + v2
3 + v2

4 − (u3v4 − u4v3)2 − 1 ≤ 0

gives:

f = 2
(

v2
3 + v2

4
)

−
(

v2
3 + v2

4
)2

− 1 ≤ 0 .

If (C2) is satisfied, it implies automatically that(C1) is also satisfied.

Now, the inequalities involving the shape invariantσ are:

1

2

(

cos2 a + cos2 b + cos2 c − 1
)

≤ σ ≤ |σ | ≤ cosa cosbcosc .
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Substitutingσ = cosbcoscx andx2 + y2 = cos2 a, we obtain:

1

2

(

x2 + y2 + cos2 b + cos2 c − 1
)

≤ cosbcoscx ≤ cosbcosc|x| ≤ cosb cosc
√

x2 + y2 .

The first inequality is equivalent to(C2) because cos2 bcos2 c−sin2 bsin2 c = cos2 b+cos2 c−

1; the second inequality is always true.

Acknowledgements.Thanks are due to A. Fruchard, Th. Hangan and S. Marchiafava for helpful
discussions.
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