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A. Agrachev

COMPACTNESS FOR SUB-RIEMANNIAN
LENGTH-MINIMIZERS AND SUBANALYTICITY

Abstract.

We establish compactness properties for sets of lengtimizimg admissi-
ble paths of a prescribed small length. This implies subkcity of small sub-
Riemannian balls for a wide class of real-analytic sub-Rienian structures: for
any structure without abnormal minimizers and for manycitmes without strictly
abnormal minimizers.

1. Introduction

Let M be aC® Riemannian manifold, ditM = n. A distribution onM is a smooth linear
subbundleA of the tangent bundi& M. We denote by\q the fiber ofA atqg e M; Aq C TqM.
A numberk = dim Ag is therank of the distribution. We assume thatdk < n. The restriction
of the Riemannian structure # is asub-Riemannian structure

Lipschitzian integral curves of the distributioh are calledadmissible pathsthese are
Lipschitzian curves — q(t), t € [0, 1], such thatj(t) € Aq() for aimost allt.

We fix a pointgg € M and study only admissible paths started from this point, we
impose the initial conditiom(0) = qg. Sections of the linear bundle are smooth vector fields;
iterated Lie brackets of these vector fields define a flag

Agy C Ajy C - C AR .- C TgM
in the following way:
Age = span{[Xg, [X2,[... . Xm]...1(@0) : Xj(@) € Aq, i =1,...,m, q € M}.

A distribution A is bracket generatingt qq if Agg) = TgyM for somem > 0. If A is bracket
generating, then according to a classical Rashevski-Chearém (see [15, 22]) there exist ad-
missible paths connectirgg with any point of an open neighborhoodagf. Moreover, applying

a general existence theorem for optimal controls [16] ortaiob that for anyy; from a small
enough neighborhood afy there exists a shortest admissible path connedjingith q;. The
length of this shortest path is tiseb-Riemanniaor Carnot-Caratheodory distandeetweengy
andqs.

For the rest of the paper we assume thais bracket generating at the given initial point
go- We denote byp(q) the sub-Riemannian distance betwegnandgq. It follows from the
Rashevsky-Chow theorem thatis a continuous function defined on a neighborhoodjgf
Moreover, p is Holder-continuous with the Holder expone#{t whereAgg) = TgyM. A sub-
Rielmannian sphere(B) is the set of all points at sub-Riemannian distandeom qg, S(r) =
p— ().
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In contrast to the Riemannian distance, the sub-Riemardigancep is never smooth in
a punctured neighborhood gf (see Theorem 1) and the main motivation for this research is
to understand regularity properties @f In the Riemannian case, where all paths are available,
the set of shortest paths connectiggwith the sphere of a small radiuds parametrized by the
points of the sphere. This is not true for the set of shortedtsissible paths connectilmg with
the sub-Riemannian spheBgr). The structure of the last set may be rather complicated; we
show that this set is at least compactr-topology (Theorem 2). The situation is much simpler
if no one among so called abnormal geodesics of lengtbnnectgg with S(r). In the last
case, the mentioned set of shortests admissible paths gaardmetrized by a compact part of a
cyIinderSk*1 x RNk (Theorem 3). In Theorem 4 we recall an efficient necessarglition for
a lengthr admissible path to be a shortest one. In Theorem 5 we staseils, ighich is similar
to that of Theorem 3 but more efficient and admitting nonyriabnormal geodesics as well.

We apply all mentioned results to the case of real-analytiand A. The main problem
here is to know whether the distance functj@is subanalytic. Positive results for some special
classes of distributions were obtained in [8, 17, 19, 20,&8] the first counterexample was
described in [10] (see [13, 14] for further examples and fody of the “transcendence” @f).

Both positive results and the counterexamples gave andtidicthat the problem is inti-
mately related to the existence of abnormal length-mingénsiz Corollaries 2, 3, 4 below make
this statement a well-established fact: they show very thed only abnormal length-minimizers
may destroy subanalyticity gf out of qg.

What remains? The situation with subanalyticity in a whaéghborhood includingyg is
not yet clarified. This subanalyticity is known only for alrat special type of distributions (the
best result is stated in [20]). Another problem is to passfexamples to general statements
for sub-Riemannian structures with abnormal length-mipérs. Such length-minimizers are
exclusive for rankk > 3 distributions (see discussion at the end of the paper) ygidal for
rank 2 distributions (see [7, 21, 24]). A natural conjectigre
If k =2andAZ # A3, thenp is not subanalytic.

2. Geodesics

We are working in a small neighborhody, of gop € M, where we fix an orthonormal frame
X1, ..., Xk € VectM of the sub-Riemannian structure under consideration. Asiitvie paths
are thus solutions to the differential equations

k
@ 4= ui(OX(), g€ Oy, q(0) = dp,
i=1
whereu = (U1 (), ... , uk() € LK[0, 1].
_(lvk 2 vz, 1k _
Below |ju]| = (/0 Dol (t)dt) is the norm inL3[0, 1]. We also sefiq(-)[| = [lufl,
whereq(-) is the solution to (1). Let

Ur = {ueLX0,1]: Jul=r}

be the sphere of radiusin Lg[o, 1]. Solutions to (1) are defined for dlle [0, 1], if u belongs
to the sphere of a small enough radiudn this paper we taka only from such spheres without

1/2
special mentioning. The lengtiiq() = fo- (Z!‘zl uiz(t)) /2 it is well-defined and satisfies
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the inequality

@ l@ae) < laGl=r.

The length doesn’t depend on the parametrization of theecwhile the normjju|| depends. We
say thatu andq(-) arenormalizedif Zikzl uiz(t) doesn’'t depend ot For normalizedu, and
only for them, inequality (2) becoms equality.

REMARK 1. The notationg|q(-)|| andl(q(-)) reflect the fact that these quantities do not
depend on the choice of the orthonormal fraxye . . . , Xk and are characteristics of thajec-
tory q(-) rather than theontrol u. L»-topology in the space of controls H;-topology in the
space of trajectories.

We consider the endpoint mappirfg: u — q(1). This is a well-defined smooth mapping
of a neighborhood of the origin dfg[o, 1] into M. We setf, = f|U,' Critical points of the
mapping f; : Uy — M are callecextremal controlsnd correspondent solutions to the equation
(1) are callecextremal trajectorie®r geodesics

An extremal control and the correspondent geodesic) areregularif u is a regular point
of f; otherwise they arsingularor abnormal

Let C; be the set of normalized critical points &f; in other wordsC; is the set of normal-
ized extremal controls of the length It is easy to check thatr_l(S(r)) C Cr. Indeed, among
all admissible curves of the length no greater thamly geodesics of the length exactlycan
reach the sub-Riemannian sph&e). Controlsu e fr’l(S(r)) and correspondent geodesics
are calledninimal

LetDyf : L'é[o, 1] — T¢ M be the differential off atu. Extremal controls (and only
them) satisfy the equation

3) ADyf = vu

with some “Lagrange multiplierst Tf*(u) M\O0,v € R. HereaADy f is the composition of the

linear mappinddy f and the linear form : T¢((yM — R, i.e.(ADyf) € LE[O, 1* = LE[O, 1].
We havev # 0 for regular extremal controls, while for abnormal corgrolcan be taken 0. In
principle, abnormal controls may admit Lagrange multigieith both zero and nonzero If it
is not the case, then the control and the geodesic are citietly abnormal

Pontryagin maximum principle gives an efficient way to sageiation (3), i.e. to find ex-
tremal controls and Lagrange multipliers. A coordinate fiamulation of the maximum princi-
ple uses the canonical symplectic structure on the cotahgewlleT*M. The symplectic struc-
ture associates a Hamiltonian vector figlé VectT*M to any smooth functioa: T*M — R
(see [11] for the introduction to symplectic methods).

We define the functionk;, i =1, ..., k, andh onT*M by the formulas

1 k
hi(w) = (. Xi@). hw)=3> hZw). YaeM. ¥ eTgM.
i=1

Pontryagin maximum principle implies the following

PrRopPosITION. Atriple (u, A, v) satisfies equation (3) if and only if there exists a solution
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¥(t), 0 <t <1, to the system of differential and pointwise equations

k
@) = Zui Ohi(¥), hi@®) =yt

i=1

with boundary conditiong (0) € T(;‘OM, P (1) = A

Here(y (1), v) are Lagrange multipliers for the extremal contwel: T — tu(tz); in other
words,y (t) Dy, f = vut.

Note that abnormal geodesics remain to be geodesics aftabéarary reparametrization,
while regular geodesics are automatically normalized. &lyetlsat a geodesic puasi-regularif
it is normalized and is not strictly abnormal. Setting= 1 we obtain a simple description of all
quasi-regular geodesics.

COROLLARY 1. Quasi-regular geodesics are exactly projections to M ofgbkitions to
the differential equationb = 5(1//) with initial conditionsy(0) € T&BM. If h(y(0)) is small
enough, then such a solution exists (i.e. is defined on théevdegmenfO, 1]). The length of
the geodesic equalg2h(y (0)) and the Lagrange multipliex = v (1).

The next result demonstrates a sharp difference betweenaRi@an and sub-Riemannian
distance functions.

THEOREM1. Any neighbourhood ofgin M contains a point g# qg, where the distance
functionp is not continuously differentiable.

This theorem is a kind of folklore; everybody agrees it iethut | have never seen the
proof. What follows is a sketch of the proof.

Supposep is continuously differentiable out afy. Take a minimal geodesig(-) of the
lengthr. Thent — q(tt) is a minimal geodesic of the length for anyt € [0, 1] and we have
p(q(t)) = rt; hence(dy)p, 4(t)) = r. Since any point of a neighborhood g belongs to
some minimal geodesic, we obtain thatas no critical points in the punctured neighborhood.
particular, the sphereS(r) = pfl(r) areCl-hypersurfaces itM. Moreover,S(r) = af (Uy);
hence(dg1)0) Dufr = 0 and we obtain the equalitfdg1)p) Duf = Lu, whereu is the
extremal control associated witl(-). Henceq(-) is the projection taM of the solution to the
equationjs = 5(1//) with the boundary conditiogr (1) = rdq1)p. Moreover, we easily conclude
thaty (t) = rdq() 0 and come to the equation

n

k
4t =1 (dgyp, Xi (@D X (@)
i=1

For the rest of the proof we fix local coordinates in a neighbod ofgg. We are going to prove
that the vector fieldV(q) = r Zikzl(dqp, Xi(@)Xi (@), g # g, has index 1 at its isolated
singularitygo. Let B; = {q € R" : |g — do| < &} be a so small ball that(q) < 12 vq €
B:. Lets — q(s; g:) be the solution to the equatiap = V(q) with the initial condition
g(0; g¢) = Qe € Be. Thenq(%; ge) € Be. In particular, the vector fieldlV; on B, defined by
the formulaW(qs) = q(iz; 0e) — Qe looks “outward” and has index 1. The family of the fields

Vs(Qe) = %(q(s; 0:) — Ge), 0 < s < 5 provides a homotopy d€/|B‘E and5W, henceV has
index 1 atqg as well.



Compactness for Sub-Riemannian 5

On the other hand, the fieM is a linear combination oK1, ... , Xk and takes its values
near thek-dimensional subspace sgafi (qp), - - . , Xk(dp)}. Such a field must have index 0 at
go- This contradiction completes the proof.

Corollary 1 gives us a parametrization of the space of queggiar geodesics by the poins
of an open subseb of Tg‘oM. Namely,¥ consists ofig € TO"“OM such that the solutiogt (t) to

the equation) = ﬁ(w) with the initial conditiony (0) = v is defined for alt € [0, 1]. The
composition of this parametrization with the endpoint niagpf is the exponential mapping
£V — M. Thusé (¥ (0)) = n (¥ (1)), wherer : T*M — M is the canonical projection.

The space of quasi-regular geodesics of a small enoughhlengste parametrized by the
points of the manifoldH (r) = h_l(g) al T(;"OM C V. Clearly, H(r) is diffeomorphic to
R"K x =1 andH (sr) = sH(r) for any nonnegative.

All results about subanalyticity of the distance functjpare based on the following state-
ment. As usually, the distancesre assumed to be small enough.

PrROPOSITION2. Let M and the sub-Riemannian structure be real-analytiqpg®se that
there exists a compact K hfl(%) N T&“OM such that &) c £(rK), Vvr € (rg,r1). Thenp is

subanalytic op~1 ((rg, r1)).

Proof. It follows from our assumptions and Corollary 1 that

p(@) =minfr : ¥ e K, Ery)=q}, Ygep L((ro.ry).

The mappingf is analytic thanks to the analyticity of the vector figld The compacK can
obviously be chosen semi-analytic. The proposition fooww from [25, Prop. 1.3.7].

|

3. Compactness

LetO C LE[O, 1] be the domain of the endpoint mappitig Recall thatO is a neighborhood
of the origin ofLE[O, 1llandf : © — M is a smooth mapping. We are going to use not only

defined by the norm “strong” topology in the Hilbert spacg{o, 1], but also weak topology. We
denote byO,yeakthe topological space defined by weak topology restrictefl.to

PrRoPOSITIONS. f : Oyeak— M is a continuous mapping.

This proposition easily follows from some classical reswaih the continuous dependence
of solutions to ordinary differential equations on the tipland side. Nevertheless, | give an
independent proof in terms of the chronological calcule® (&, 5]) since it is very short. We
have

f(u

1 k
qo@?pfo > Ui X dt
i=1

k 1 t k
Qo+ZO|o/O (ui(t)e—xbfo ZUj(t)de‘L’) dto X; .
i=1 j=1
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The integration by parts gives:
1 t K 1 1k
/(ui(t)e‘)?b/ ZUJ(t)de‘L’)dt:/ ui(t)dte‘ib/ ZUj(t)det
0 0ix 0 0 i:1

Kk r1 t t K
—Z/ <Uj(t)/ ui(r)dte_xb/ ZUJ(I)XJd‘E)dtOXj.
=170 0 0 i=1

It remains to mention that the mapping) — [, u(r) dz is a compact operator ih'é[o, 1]. A
detailed study of the continuity @&xp in various topologies see in [18].

THEOREM2. The set of minimal geodesics of a prescribed length r is cemipaH;-
topology for any small enoughr.

Proof. We have to prove thatr_l(S(r)) is a compact subset &f; . First of all, fr_l(S(r)) =
f=1(S(r)) N convU;, where conW; is a ball in L'E[O, 1]. This is just becaus&(r) cannot
be reached by trajectories of the length smaller thaThen the continuity ofp implies that
S(r) = p~L(r)is a closed set and the continuity bin weak topology implies that —1(S(r)) is
weakly closed. Since coy; is weakly compact we obtain thzi;_l(S(r)) is weakly compact.
What remains is to note that weak topology resricted to theigdJ, in the Hilbert space is
equivalent to strong topology.

|

THEOREM 3. Suppose that all minimal geodesics of the length r are ragiilaen we have
that£~1(S(r)) N H(r) is compact.

Proof. Denote byuy ) the extremal control associated with0) € H(r) so thatf (¢ (0)) =
f(uy (o)) We haveuy, o) = (h1 (¥ (), ... , hk(¥(-))) (see Proposition 1 and its Corollary). In
particular,uy, ) continuously depends afa(0).

Take a sequencém(0) € EXSrH NHE), m= 1,2 ...; the controlsuy, ) are
minimal, the set of minimal controls of the lengths compact, hence there exists a convergent
subsequence of this sequence of controls and the limit is @gainimal control. To simplify
notations, we suppose without losing generality that trisaceuy, ), m = 1,2,..., is
already convergenglimm— co Uy, ) = U.

It follows from Proposition 1 tha¢m(1) Du,,,, o f = Uy, 0)- Suppose thaM is endowed
with some Riemannian structure so that the length(1)| of the cotangent vectafm(1) has a
sense. There are two possibilities: eitfigm(1)] — co (M — oo) or ym(), m = 1,2, ...,
contains a convergent subsequence.

In the first case we come to the equatioDg f = 0, wherex is a limiting point of the
sequencm ¥m(1), || = 1. Henced is an abnormal minimal control that contradicts the
assumption of the theorem.

In the second case letm (1), | = 1, 2,..., be a convergent subsequence. Tiigq (0),

I =1,2,...,is also convergeng lim|_, oc ¥m (0) = ¥(0) € H(r). Theni = Uz and we
are done.

O

COROLLARY 2. Let M and the sub-Riemannian structure be real-analyticpg®se that
all minimal geodesics of the lengtl are regular for somed < r. Thenp is subanalytic on
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p~((ro. rD.

Proof. According to Theorem 3Kg = £~1(S(rg)) N H(rp) is a compact set anfliy o) :
¥ (0) € Kp} is the set of all minimal extremal controls of the lenggh The minimality of an
extremal controliy, (o) implies the minimality of the contralgy o) for s < 1, sinceugy, ) (r) =
Suy ) (7) and a reparametrized piece of a minimal geodesic is autoatigtiminimal. Hence

Stry) cé (% KO) forr1 > rg and the required subanalyticity follows from Proposition 2
Od

Corollary 2 gives a rather strong sufficient condition fobawalyticity of the distance func-
tion p out of gg. In particular, the absence of abnormal minimal geodesigdiés subanalyticity
of p in a punctured neighborhood gf. This condition is not however quite satisfactory because
it doesn’t admit abnormal quasi-regular geodesics. Thdigihg non generic, abnormal quasi-
regular geodesics appear naturally in problems with symesetMoreover, they are common in
so called nilpotent approximations of sub-Riemanniancstimes at (see [5, 12]). The nilpotent
approximation (or nilpotenization) of a generic sub-Riemian structureyy leads to a simplified
quasi-homogeneous approximation of the original distdnoetion. It is very unlikely thafo
loses subanalyticity under the nilpotent approximatidthcaigh the above sufficient condition
loses its validity. In the next section we give chekable sigfit conditions for subanalyticity,
wich are free of the above mentioned defect.

4. Second Variation

Letu € Uy be an extremal control, i.e. a critical point &f. Recall that the Hessian df atu
is a quadratic mapping
Hes, fr : kerDy fy — cokerDy f ,

an independent on the choice of local coordinates part of¢ksend derivative ofy atu. Let
(1, v) be Lagrange multipliers associated witlso that equation (3) is satisfied. Then the cov-
ectori : TfyM — R annihilates imDy, fr and the composition

(5) AHeg, fr : ker Du fr — R

is well-defined.

Quadratic form (5) is theecond variatiorof the sub-Riemannian problem @t, 2, v). We
have
MHesg, fr (v) = AD&f(u, v) — v|v|2, v € kerDy f .

Letq(-) be the geodesic associated with the confirdlVe set
(6) ind(q(-), A, v) = ind+ (AHeg, fr) — dim cokerDy f; ,

where ind-(AHesg, fy) is the positive inertia index of the quadratic forrhles, fr. Decoding
some of the symbols we can re-write:

ind(q(-). »,v) = sufdimV :V CkerDyfr, ADZf(v,v) > v|v|2, Vv € V \ 0}
—dlm{)»/ S T?(U)M . )\./Du fr = 0} .

The value of indq(-), A, v) may be an integer ofoco.
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REMARK 2. Index (5) doesn’t depend on the choice of the orthonormaahéX+, ... , Xk
and is actually a characteristic of the geodegi¢ and the Lagrange multiplier@., v). Indeed,
a change of the frame leads to a smooth transformation ofitbertimanifoldU, and to a linear
transformation of variables in the quadratic foxies, fr and linear mappin®y fr . Both terms
in the right-hand side of (5) remain unchanged.

PROPOSITION4. (u, A, v) +— ind(q(-), A, v) is a lower semicontinuous function on the
space of solutions of (3).

Proof. We have dim cokeby fr = codimkerDy fr. Here keDy fr = kerDyf N {u}t ¢
LE[O, 1] is a subspace of finite codimension |'u§[o, 1]. The multivalued mappingl —
(kerDy fr) N Uy is upper semicontinuous in the Hausdorff topology, justioseu — Dy f
is continuous.

Take (u, A, v) satisfying (3). Ifu’ is close enough ta, then keD,, fr is arbitraryly close
to a subspace of codimension

dim cokerDy, fr — dim cokerDy fr

in Dy fr. SupposeV C kerDyfy is a finite-dimensional subspace such thetes, fr\v is
a positive definite quadratic form. If’ is sufficiently close tau, then ke fy contains a
subspace/’ of dimension

dimV — (dimcokerDy fr — dim cokerD,y fr)

that is arbitrarily close to a subspace\of If A’ is sufficiently close ta., then the quadratic form
V'Hesy fr |,/ is positive definite.
We come to the inequality irid’(-), A’, v") > ind(q(-), A, v) for any solution(u’, A’, v") of
(3) close enough teu, A, v); hereq’(-) is the geodesic associated to the control
Od

THEOREMA4. If q(-) is minimal geodesic, then there exist associated with bagrange
multipliers ., v such thatnd(q(-), A, v) < 0.

This theorem is a direct corollary of a general result angedrin [2] and proved in [3]; see
also [8] for the updated proof of exactly this corollary.

THEOREMS5. Suppose thahd(q(-), A, 0) > 0for any abnormal geodesiag of the length
r and associated Lagrange multiplie¢s, 0). Then there exists a compact K H (r) such that
Sr) = E(Ky).

Proof. We use notations introduced in the first paragraph of thefbdheorem 3. Letyy (o
be the geodesic associated to the contigly). We set

M Kr = {¥(0) € H(r) N ETX(Sr)) : ind(ay o). (D). 1) < 0}

It follows from Theorem 4 and the assumption of Theorem 5 &#; ) = S(r). What remains
is to prove thaK; is compact.
Take a sequencgm(0) € Ky, m = 1,2,...; the controlsuy, ) are minimal, the set
of minimal controls of the length is compact, hence there exists a convergent subsequence
of this sequence of controls and the limit is again a minineaitol. To simplify notations, we
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suppose without losing generality that the sequenggo), m= 1, 2, ..., isalready convergent,
FliMm— oo Uym(0) = U.

It follows from Proposition 1 that/m(1) Duy,, o f = Uy (0)- There are two possibilities:
either|ym(1)| — oo (M — oo) or ym(1), m= 1,2, ..., contains a convergent subsequence.

In the first case we come to the equatioBg f = 0, wherex is a limiting point of the
sequencmwm(l), || = 1. Lower semicontinuity of in¢fj(-), A, v) implies the inequality
ind(q(-), »,0) < 0, whereq(-) is the geodesic associated with the confrolWe come to a
contradiction with the assumption of the theorem.

In the second case letm (1), | = 1,2,..., be a convergent subsequence. Tiigh (0),
I =1,2,..., is also convergeng lim|_, o, ¥m (0) = ¥(0) € H(r). Thend = Ui 0 and
ind(q(-), ¥ (1), 1) < 0 because of lower semicontinuity of ifef-), 1, v). Hencey (0) € Ky
and we are done.

|

COROLLARY 3. Let M and the sub-Riemannian structure be real-analytipp®se p < r
is such thatind(q(-), », 0) > 0 for any abnormal geodesic(q of the length g and associated
Lagrange multipliergi, 0). Thenp is subanalytic or)o—1 ((ro,rD.

Proof. Let Kr, be defined as in (7). TheK;, is compact anduy ) : ¥ (0) € Ky} is the
set of all minimal extremal controls of the lengty. The minimality of an extremal control
Uy (o) implies the minimality of the controligy, () for s < 1, sinceugy )(z) = Sy () ()
and a reparametrized piece of a minimal geodesic is autoatigtiminimal. HenceS(r{) C
£ (% Kro) forry > rg and the required subanalyticity follows from Proposition 2

a

Among 2 terms in expression (6) for i@-), A, v) only the first one, the inertia index of the
second variation, is nontrivial to evaluate. Fortunatidgre is an efficient way to compute this
index for both regular and singular (abnormal) geodesiksvell as a good supply of conditions
that garantee the finiteness or infinity of the index (see [B, 8]). The simplest one is th@&oh
condition(see [6]):

If ind(q(-), ¥ (1), 0) < +oo, theny (t) annihilatesAg(t), vt € [0, 1].

Recall thaty (t) annihilatesAq(t), 0 <t <1, for any Lagrange multipliefy (1), 0) associated
with gq(-). We say that(-) is aGoh geodesidf there exist Lagrange multiplierg/ (1), 0) such
thaty (t) annihilatesAg(t), vVt € [0, 1]. In particuar, strictly abnormal minimal geodesics must
be Goh geodesics. Besides that, the Goh condition and @ordlimply

COROLLARY 4. Let M and the sub-Riemannian structure be real-analytic gne r. If
there are no Goh geodesics of the lengghthenp is subanalytic orp~1((rg, r]).

I'll finish the paper with a brief analysis of the Goh conditio Suppose that(-) is an
abnormal geodesic with Lagrange multipli€ig(1), 0), andk = 2. Differentiating the iden-
tities hy (¥ (1)) = ha(y(t)) = 0 with respect tat, we obtain ux(t) {hy,h1} (¥ (t)) =
up () {h1, ha}(¥ (1)) = 0, wherefhq, ho} (v (1)) = (¥ (1), [ X1, X2](q(t))) is the Poisson bracket.
In other words, the Goh condition is automatically satisbigdiny abnormal geodesic.

The situation changes dramaticallykif> 2. In order to understand why, we need some
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notation. Take. € T*M and set

bo(%) = (thg, h2}(b), th1, ha}(V), ..., {hk_1, he} (),

. kk=1) . . . . .
a vector inR™ 2 whose coordinates are numbélg, hj W), 1 <i < j <k, with lexico-

graphically ordered indecsds, j). Set alsofg = @ The Goh condition foq(-), ¥ (1)
implies the identityog (v (1)) = 0, Vt € [0, 1]. The differentiation of this identity with respect to
t in virtue of (4) gives the equality

k
® > uihi bol(¥ () =0, 0<t<1.
i=1
Consider the spac)e\kRﬂO, thek-th exterior power oRf0. The standard lexicographic basis in

(%)

br(3) = (bo(1), {h1, bo}(A) A -+ A {hy, bo}(h) € RPL.
Equality (8) implies:by(y(t)) =0,0<t < 1.

AKRAo gives the identificatiop\ K R =~ R .Wesetp; = + ( /?(0 ) and

Now we set by inductiorBj 1 = B + ( i ) i =0,1,2, ..., and fix identifications
Bi
(7)

bi 100 = (b (W), (hy, B} A -~ A fh, b})) e RFI+L i =12, ... .

RA xR = RFi+1. Finaly, we define

Successive differentiations of the Goh condition give theagionsb; (¥ (t)) = 0,i =1,2,....
Itis easy to check that the equatibn_q (A) = Ois not, in general, a consequence of the equation
b; () = 0 and we indeed impose more and more restrictive conditionthe locus of Goh
geodesics.

A natural conjecture is that admitting Goh geodesics distibns of rankk > 2 form a set
of infinite codimension in the space of all rakklistributions, i.e. they do not appear in generic
smooth families of distributions parametrized by finiteadnsional manifolds. It may be not
technically easy, however, to turn this conjecture intottiemrem.

Anyway, Goh geodesics are very exclusive for the distrdngiof rank greater than 2. Yet
they may become typical under a priori restictions on thevgjiosector of the distribution (see

[6])-

Note in proof. An essential progress was made while the paper was waitimgédublication.

In particular, the conjecture on Goh geodesics has beeregras well as the conjecture stated
at the end of the Introduction. These and other results wiihigsluded in our joined paper with
Jean Paul Gauthier, now in preparation.
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