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A. Agrachev

COMPACTNESS FOR SUB-RIEMANNIAN

LENGTH-MINIMIZERS AND SUBANALYTICITY

Abstract.
We establish compactness properties for sets of length-minimizing admissi-

ble paths of a prescribed small length. This implies subanayticity of small sub-
Riemannian balls for a wide class of real-analytic sub-Riemannian structures: for
any structure without abnormal minimizers and for many structures without strictly
abnormal minimizers.

1. Introduction

Let M be aC∞ Riemannian manifold, dimM = n. A distribution onM is a smooth linear
subbundle1 of the tangent bundleT M. We denote by1q the fiber of1 atq ∈ M; 1q ⊂ Tq M.
A numberk = dim1q is therankof the distribution. We assume that 1< k < n. The restriction
of the Riemannian structure to1 is asub-Riemannian structure.

Lipschitzian integral curves of the distribution1 are calledadmissible paths; these are
Lipschitzian curvest 7→ q(t), t ∈ [0,1], such thaṫq(t) ∈ 1q(t) for almost allt .

We fix a pointq0 ∈ M and study only admissible paths started from this point, i.e. we
impose the initial conditionq(0) = q0. Sections of the linear bundle1 are smooth vector fields;
iterated Lie brackets of these vector fields define a flag

1q0 ⊂ 12
q0

⊂ · · · ⊂ 1m
q0

· · · ⊂ Tq M

in the following way:

1m
q0

= span{[X1, [X2, [. . . , Xm] . . . ](q0) : Xi (q) ∈ 1q, i = 1, . . . ,m, q ∈ M}.

A distribution1 is bracket generatingat q0 if 1m
q0

= Tq0 M for somem > 0. If 1 is bracket
generating, then according to a classical Rashevski-Chow theorem (see [15, 22]) there exist ad-
missible paths connectingq0 with any point of an open neighborhood ofq0. Moreover, applying
a general existence theorem for optimal controls [16] one obtains that for anyq1 from a small
enough neighborhood ofq0 there exists a shortest admissible path connectingq0 with q1. The
length of this shortest path is thesub-Riemannianor Carnot-Caratheodory distancebetweenq0
andq1.

For the rest of the paper we assume that1 is bracket generating at the given initial point
q0. We denote byρ(q) the sub-Riemannian distance betweenq0 andq. It follows from the
Rashevsky-Chow theorem thatρ is a continuous function defined on a neighborhood ofq0.
Moreover,ρ is Hölder-continuous with the Hölder exponent1

m , where1m
q0

= Tq0 M. A sub-
Riemannian sphere S(r ) is the set of all points at sub-Riemannian distancer from q0, S(r ) =
ρ−1(r ).
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In contrast to the Riemannian distance, the sub-Riemanniandistanceρ is never smooth in
a punctured neighborhood ofq0 (see Theorem 1) and the main motivation for this research is
to understand regularity properties ofρ. In the Riemannian case, where all paths are available,
the set of shortest paths connectingq0 with the sphere of a small radiusr is parametrized by the
points of the sphere. This is not true for the set of shortestsadmissible paths connectingq0 with
the sub-Riemannian sphereS(r ). The structure of the last set may be rather complicated; we
show that this set is at least compact inH1-topology (Theorem 2). The situation is much simpler
if no one among so called abnormal geodesics of lengthr connectq0 with S(r ). In the last
case, the mentioned set of shortests admissible paths can beparametrized by a compact part of a
cylinderSk−1 ×�n−k (Theorem 3). In Theorem 4 we recall an efficient necessary condition for
a lengthr admissible path to be a shortest one. In Theorem 5 we state a result, which is similar
to that of Theorem 3 but more efficient and admitting nonstrictly abnormal geodesics as well.

We apply all mentioned results to the case of real-analyticM and1. The main problem
here is to know whether the distance functionρ is subanalytic. Positive results for some special
classes of distributions were obtained in [8, 17, 19, 20, 23]and the first counterexample was
described in [10] (see [13, 14] for further examples and for study of the “transcendence” ofρ).

Both positive results and the counterexamples gave an indication that the problem is inti-
mately related to the existence of abnormal length-minimizers. Corollaries 2, 3, 4 below make
this statement a well-established fact: they show very clear that only abnormal length-minimizers
may destroy subanalyticity ofρ out of q0.

What remains? The situation with subanalyticity in a whole neighborhood includingq0 is
not yet clarified. This subanalyticity is known only for a rather special type of distributions (the
best result is stated in [20]). Another problem is to pass from examples to general statements
for sub-Riemannian structures with abnormal length-minimizers. Such length-minimizers are
exclusive for rankk ≥ 3 distributions (see discussion at the end of the paper) and typical for
rank 2 distributions (see [7, 21, 24]). A natural conjectureis:
If k = 2 and12

q0
6= 13

q0
, thenρ is not subanalytic.

2. Geodesics

We are working in a small neighborhoodOq0 of q0 ∈ M, where we fix an orthonormal frame
X1, . . . , Xk ∈ VectM of the sub-Riemannian structure under consideration. Admissible paths
are thus solutions to the differential equations

q̇ =
k

∑

i=1

ui (t)Xi (q), q ∈ Oq0, q(0) = q0,(1)

whereu = (u1(·), . . . ,uk(·)) ∈ Lk
2[0,1].

Below ‖u‖ =
(

∫ 1
0

∑k
i=0 u2

i (t)dt
)1/2

is the norm inLk
2[0, 1]. We also set‖q(·)‖ = ‖u‖,

whereq(·) is the solution to (1). Let

Ur = {u ∈ Lk
2[0, 1] : ‖u‖ = r }

be the sphere of radiusr in Lk
2[0, 1]. Solutions to (1) are defined for allt ∈ [0,1], if u belongs

to the sphere of a small enough radiusr . In this paper we takeu only from such spheres without

special mentioning. The lengthl (q(·)) =
∫ 1
0

(

∑k
i=1 u2

i (t)
)1/2

dt is well-defined and satisfies
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the inequality

l (q(·)) ≤ ‖q(·)‖ = r .(2)

The length doesn’t depend on the parametrization of the curve while the norm‖u‖ depends. We
say thatu andq(·) arenormalizedif

∑k
i=1 u2

i (t) doesn’t depend ont . For normalizedu, and
only for them, inequality (2) becoms equality.

REMARK 1. The notations‖q(·)‖ and l (q(·)) reflect the fact that these quantities do not
depend on the choice of the orthonormal frameX1, . . . , Xk and are characteristics of thetrajec-
tory q(·) rather than thecontrol u. L2-topology in the space of controls isH1-topology in the
space of trajectories.

We consider the endpoint mappingf : u 7→ q(1). This is a well-defined smooth mapping
of a neighborhood of the origin ofLk

2[0,1] into M. We set fr = f
∣

∣

Ur
. Critical points of the

mapping fr : Ur → M are calledextremal controlsand correspondent solutions to the equation
(1) are calledextremal trajectoriesor geodesics.

An extremal controlu and the correspondent geodesicq(·) areregular if u is a regular point
of f ; otherwise they aresingularor abnormal.

Let Cr be the set of normalized critical points offr ; in other words,Cr is the set of normal-
ized extremal controls of the lengthr . It is easy to check thatf −1

r (S(r )) ⊂ Cr . Indeed, among
all admissible curves of the length no greater thanr only geodesics of the length exactlyr can
reach the sub-Riemannian sphereS(r ). Controlsu ∈ f −1

r (S(r )) and correspondent geodesics
are calledminimal.

Let Du f : Lk
2[0, 1] → T f (u)M be the differential off at u. Extremal controls (and only

them) satisfy the equation

λDu f = νu(3)

with some “Lagrange multipliers”λ ∈ T∗
f (u)M \0, ν ∈ �

. HereλDu f is the composition of the

linear mappingDu f and the linear formλ : T f (u)M → �
, i.e. (λDu f ) ∈ Lk

2[0, 1]∗ = Lk
2[0, 1].

We haveν 6= 0 for regular extremal controls, while for abnormal controls ν can be taken 0. In
principle, abnormal controls may admit Lagrange multipliers with both zero and nonzeroν. If it
is not the case, then the control and the geodesic are calledstrictly abnormal.

Pontryagin maximum principle gives an efficient way to solveequation (3), i.e. to find ex-
tremal controls and Lagrange multipliers. A coordinate free formulation of the maximum princi-
ple uses the canonical symplectic structure on the cotangent bundleT∗M. The symplectic struc-
ture associates a Hamiltonian vector fieldEa ∈ VectT∗M to any smooth functiona : T∗M → �

(see [11] for the introduction to symplectic methods).

We define the functionshi , i = 1, . . . , k, andh on T∗M by the formulas

hi (ψ) = 〈ψ, Xi (q)〉 , h(ψ) = 1

2

k
∑

i=1

h2
i (ψ) , ∀q ∈ M, ψ ∈ T∗

q M .

Pontryagin maximum principle implies the following

PROPOSITION1. A triple (u, λ, ν) satisfies equation (3) if and only if there exists a solution
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ψ(t), 0 ≤ t ≤ 1, to the system of differential and pointwise equations

ψ̇ =
k

∑

i=1

ui (t)Ehi (ψ) , hi (ψ(t)) = νui (t)(4)

with boundary conditionsψ(0) ∈ T∗
q0

M, ψ(1) = λ.

Here(ψ(t), ν) are Lagrange multipliers for the extremal controlut : τ 7→ tu(tτ); in other
words,ψ(t)Dut f = νut .

Note that abnormal geodesics remain to be geodesics after anarbitrary reparametrization,
while regular geodesics are automatically normalized. We say that a geodesic isquasi-regularif
it is normalized and is not strictly abnormal. Settingν = 1 we obtain a simple description of all
quasi-regular geodesics.

COROLLARY 1. Quasi-regular geodesics are exactly projections to M of thesolutions to
the differential equationψ̇ = Eh(ψ) with initial conditionsψ(0) ∈ T∗

q0
M. If h(ψ(0)) is small

enough, then such a solution exists (i.e. is defined on the whole segment[0,1]). The length of
the geodesic equals

√
2h(ψ(0)) and the Lagrange multiplierλ = ψ(1).

The next result demonstrates a sharp difference between Riemannian and sub-Riemannian
distance functions.

THEOREM 1. Any neighbourhood of q0 in M contains a point q6= q0, where the distance
functionρ is not continuously differentiable.

This theorem is a kind of folklore; everybody agrees it is true but I have never seen the
proof. What follows is a sketch of the proof.

Supposeρ is continuously differentiable out ofq0. Take a minimal geodesicq(·) of the
lengthr . Thenτ 7→ q(tτ) is a minimal geodesic of the lengthtr for any t ∈ [0,1] and we have
ρ(q(t)) ≡ r t ; hence〈dq(t)ρ, q̇(t)〉 = r . Since any point of a neighborhood ofq0 belongs to
some minimal geodesic, we obtain thatρ has no critical points in the punctured neighborhood. In
particular, the spheresS(r ) = ρ−1(r ) areC1-hypersurfaces inM. Moreover,S(r ) = ∂ f (Ur );
hence

(

dq(1)ρ
)

Du fr = 0 and we obtain the equality
(

dq(1)ρ
)

Du f = 1
r u, whereu is the

extremal control associated withq(·). Henceq(·) is the projection toM of the solution to the
equationψ̇ = Eh(ψ)with the boundary conditionψ(1) = rdq(1)ρ. Moreover, we easily conclude
thatψ(t) = rdq(t)ρ and come to the equation

q̇(t) = r
k

∑

i=1

〈dq(t)ρ, Xi (q(t))〉Xi (q(t)) .

For the rest of the proof we fix local coordinates in a neighborhood ofq0. We are going to prove
that the vector fieldV(q) = r

∑k
i=1〈dqρ, Xi (q)〉Xi (q), q 6= q0, has index 1 at its isolated

singularityq0. Let Bε = {q ∈ �n : |q − q0| ≤ ε} be a so small ball thatρ(q) < r
2 , ∀q ∈

Bε. Let s 7→ q(s; qε) be the solution to the equatioṅq = V(q) with the initial condition
q(0; qε) = qε ∈ Bε. Thenq( r

2; qε) 6∈ Bε. In particular, the vector fieldWε on Bε defined by
the formulaW(qε) = q( r

2; qε) − qε looks “outward” and has index 1. The family of the fields

Vs(qε) = 1
s (q(s; qε) − qε), 0 ≤ s ≤ r

2 provides a homotopy ofV
∣

∣

Bε
and r

2W, henceV has
index 1 atq0 as well.
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On the other hand, the fieldV is a linear combination ofX1, . . . , Xk and takes its values
near thek-dimensional subspace span{X1(q0), . . . , Xk(q0)}. Such a field must have index 0 at
q0. This contradiction completes the proof.

Corollary 1 gives us a parametrization of the space of quasi-regular geodesics by the poins
of an open subset9 of T∗

q0
M. Namely,9 consists ofψ0 ∈ T∗

q0
M such that the solutionψ(t) to

the equationψ̇ = Eh(ψ) with the initial conditionψ(0) = ψ0 is defined for allt ∈ [0,1]. The
composition of this parametrization with the endpoint mapping f is theexponential mapping�

: 9 → M. Thus
�
(ψ(0)) = π(ψ(1)), whereπ : T∗M → M is the canonical projection.

The space of quasi-regular geodesics of a small enough length r are parametrized by the

points of the manifoldH(r ) = h−1( r 2

2 ) ∩ T∗
q0

M ⊂ 9. Clearly, H(r ) is diffeomorphic to
�n−k × Sk−1 andH(sr) = sH(r ) for any nonnegatives.

All results about subanalyticity of the distance functionρ are based on the following state-
ment. As usually, the distancesr are assumed to be small enough.

PROPOSITION2. Let M and the sub-Riemannian structure be real-analytic. Suppose that
there exists a compact K⊂ h−1(1

2) ∩ T∗
q0

M such that S(r ) ⊂ �
(r K ), ∀r ∈ (r0, r1). Thenρ is

subanalytic onρ−1 ((r0, r1)).

Proof. It follows from our assumptions and Corollary 1 that

ρ(q) = min{r : ψ ∈ K ,
�
(rψ) = q} , ∀q ∈ ρ−1 ((r0, r1)) .

The mapping
�

is analytic thanks to the analyticity of the vector fieldEh. The compactK can
obviously be chosen semi-analytic. The proposition follows now from [25, Prop. 1.3.7].

3. Compactness

Let � ⊂ Lk
2[0,1] be the domain of the endpoint mappingf . Recall that� is a neighborhood

of the origin ofLk
2[0,1] and f : � → M is a smooth mapping. We are going to use not only

defined by the norm “strong” topology in the Hilbert spaceLk
2[0,1], but also weak topology. We

denote by�weakthe topological space defined by weak topology restricted to� .

PROPOSITION3. f : �weak→ M is a continuous mapping.

This proposition easily follows from some classical results on the continuous dependence
of solutions to ordinary differential equations on the right-hand side. Nevertheless, I give an
independent proof in terms of the chronological calculus (see [1, 5]) since it is very short. We
have

f (u) = q0
−→exp

∫ 1

0

k
∑

i=1

ui (t)Xi dt

= q0 +
k

∑

i=1

q0

∫ 1

0



ui (t)
−→exp

∫ t

0

k
∑

j =1

u j (t)X j dτ



 dt ◦ Xi .
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The integration by parts gives:

∫ 1

0

(

ui (t)−→exp
∫ t

0

k
∑

j =1

u j (t)X j dτ

)

dt =
∫ 1

0
ui (t)dt −→exp

∫ 1

0

k
∑

j =1

u j (t)X j dt

−
k

∑

i=1

∫ 1

0

(

u j (t)
∫ t

0
ui (τ) dτ −→exp

∫ t

0

k
∑

j =1

u j (t)X j dτ

)

dt ◦ X j .

It remains to mention that the mappingu(·) 7→
∫ ·
0 u(τ) dτ is a compact operator inLk

2[0,1]. A
detailed study of the continuity of−→exp in various topologies see in [18].

THEOREM 2. The set of minimal geodesics of a prescribed length r is compact in H1-
topology for any small enough r.

Proof. We have to prove thatf −1
r (S(r )) is a compact subset ofUr . First of all, f −1

r (S(r )) =
f −1(S(r )) ∩ convUr , where convUr is a ball in Lk

2[0,1]. This is just becauseS(r ) cannot
be reached by trajectories of the length smaller thanr . Then the continuity ofρ implies that
S(r ) = ρ−1(r ) is a closed set and the continuity off in weak topology implies thatf −1(S(r )) is
weakly closed. Since convUr is weakly compact we obtain thatf −1

r (S(r )) is weakly compact.
What remains is to note that weak topology resricted to the sphereUr in the Hilbert space is
equivalent to strong topology.

THEOREM 3. Suppose that all minimal geodesics of the length r are regular. Then we have
that

�−1(S(r )) ∩ H(r ) is compact.

Proof. Denote byuψ(0) the extremal control associated withψ(0) ∈ H(r ) so that
�
(ψ(0)) =

f (uψ(0)). We haveuψ(0) = (h1(ψ(·)), . . . ,hk(ψ(·))) (see Proposition 1 and its Corollary). In
particular,uψ(0) continuously depends onψ(0).

Take a sequenceψm(0) ∈ �−1(S(r )) ∩ H(r ), m = 1,2, . . . ; the controlsuψm(0) are
minimal, the set of minimal controls of the lengthr is compact, hence there exists a convergent
subsequence of this sequence of controls and the limit is again a minimal control. To simplify
notations, we suppose without losing generality that the sequenceuψm(0), m = 1, 2, . . . , is
already convergent,∃ limm→∞ uψm(0) = ū.

It follows from Proposition 1 thatψm(1)Duψm(0)
f = uψm(0). Suppose thatM is endowed

with some Riemannian structure so that the length|ψm(1)| of the cotangent vectorψm(1) has a
sense. There are two possibilities: either|ψm(1)| → ∞ (m → ∞) or ψm(1), m = 1,2, . . . ,
contains a convergent subsequence.

In the first case we come to the equationλDū f = 0, whereλ is a limiting point of the
sequence 1

|ψm(1)|
ψm(1), |λ| = 1. Henceū is an abnormal minimal control that contradicts the

assumption of the theorem.

In the second case letψml (1), l = 1,2, . . . , be a convergent subsequence. Thenψml (0),
l = 1,2, . . . , is also convergent,∃ liml→∞ ψml (0) = ψ̄(0) ∈ H(r ). Thenū = u

ψ̄(0) and we
are done.

COROLLARY 2. Let M and the sub-Riemannian structure be real-analytic. Suppose that
all minimal geodesics of the length r0 are regular for some r0 < r . Thenρ is subanalytic on
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ρ−1 ((r0, r ]).

Proof. According to Theorem 3,K0 = �−1(S(r0)) ∩ H(r0) is a compact set and{uψ(0) :
ψ(0) ∈ K0} is the set of all minimal extremal controls of the lengthr0. The minimality of an
extremal controluψ(0) implies the minimality of the controlusψ(0) for s < 1, sinceusψ(0)(τ) =
suψ(0)(τ) and a reparametrized piece of a minimal geodesic is automatically minimal. Hence

S(r1) ⊂ � (

r1
r0

K0

)

for r1 ≥ r0 and the required subanalyticity follows from Proposition 2.

Corollary 2 gives a rather strong sufficient condition for subanalyticity of the distance func-
tion ρ out ofq0. In particular, the absence of abnormal minimal geodesics implies subanalyticity
of ρ in a punctured neighborhood ofq0. This condition is not however quite satisfactory because
it doesn’t admit abnormal quasi-regular geodesics. Thoughbeing non generic, abnormal quasi-
regular geodesics appear naturally in problems with symmetries. Moreover, they are common in
so called nilpotent approximations of sub-Riemannian structures at (see [5, 12]). The nilpotent
approximation (or nilpotenization) of a generic sub-Riemannian structureq0 leads to a simplified
quasi-homogeneous approximation of the original distancefunction. It is very unlikely thatρ
loses subanalyticity under the nilpotent approximation, although the above sufficient condition
loses its validity. In the next section we give chekable sufficient conditions for subanalyticity,
wich are free of the above mentioned defect.

4. Second Variation

Let u ∈ Ur be an extremal control, i.e. a critical point offr . Recall that the Hessian offr at u
is a quadratic mapping

Hesu fr : ker Du fr → cokerDu fr ,

an independent on the choice of local coordinates part of thesecond derivative offr at u. Let
(λ, ν) be Lagrange multipliers associated withu so that equation (3) is satisfied. Then the cov-
ectorλ : T f (u)M → �

annihilates imDu fr and the composition

λHesu fr : ker Du fr → �
(5)

is well-defined.

Quadratic form (5) is thesecond variationof the sub-Riemannian problem at(u, λ, ν). We
have

λHesu fr (v) = λD2
u f (v, v)− ν|v|2 , v ∈ ker Du fr .

Let q(·) be the geodesic associated with the controlu. We set

ind(q(·), λ, ν) = ind+(λHesu fr )− dim cokerDu fr ,(6)

where ind+(λHesu fr ) is the positive inertia index of the quadratic formλHesu fr . Decoding
some of the symbols we can re-write:

ind(q(·), λ, ν) = sup{dim V : V ⊂ ker Du fr , λD2
u f (v, v) > ν|v|2, ∀v ∈ V \ 0}

− dim{λ′ ∈ T∗
f (u)M : λ′Du fr = 0} .

The value of ind(q(·), λ, ν) may be an integer or+∞.
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REMARK 2. Index (5) doesn’t depend on the choice of the orthonormal frameX1, . . . , Xk
and is actually a characteristic of the geodesicq(·) and the Lagrange multipliers(λ, ν). Indeed,
a change of the frame leads to a smooth transformation of the Hilbert manifoldUr and to a linear
transformation of variables in the quadratic formλHesu fr and linear mappingDu fr . Both terms
in the right-hand side of (5) remain unchanged.

PROPOSITION4. (u, λ, ν) 7→ ind(q(·), λ, ν) is a lower semicontinuous function on the
space of solutions of (3).

Proof. We have dim cokerDu fr = codim kerDu fr . Here kerDu fr = ker Du f ∩ {u}⊥ ⊂
Lk

2[0,1] is a subspace of finite codimension inLk
2[0, 1]. The multivalued mappingu 7−→

(ker Du fr ) ∩ Ur is upper semicontinuous in the Hausdorff topology, just becauseu 7→ Du f
is continuous.

Take(u, λ, ν) satisfying (3). Ifu′ is close enough tou, then kerDu′ fr is arbitraryly close
to a subspace of codimension

dim cokerDu fr − dim cokerDu′ fr

in Du fr . SupposeV ⊂ ker Du fr is a finite-dimensional subspace such thatλHesu fr
∣

∣

V is
a positive definite quadratic form. Ifu′ is sufficiently close tou, then kerDu′ fr contains a
subspaceV ′ of dimension

dim V − (dim cokerDu fr − dim cokerDu′ fr )

that is arbitrarily close to a subspace ofV . If λ′ is sufficiently close toλ, then the quadratic form
λ′Hesu′ fr

∣

∣

V ′ is positive definite.

We come to the inequality ind(q′(·), λ′, ν′) ≥ ind(q(·), λ, ν) for any solution(u′, λ′, ν′) of
(3) close enough to(u, λ, ν); hereq′(·) is the geodesic associated to the controlu′.

THEOREM 4. If q(·) is minimal geodesic, then there exist associated with q(·) Lagrange
multipliersλ, ν such thatind(q(·), λ, ν) < 0.

This theorem is a direct corollary of a general result announced in [2] and proved in [3]; see
also [8] for the updated proof of exactly this corollary.

THEOREM 5. Suppose thatind(q(·), λ,0) ≥ 0 for any abnormal geodesic q(·) of the length
r and associated Lagrange multipliers(λ,0). Then there exists a compact Kr ⊂ H(r ) such that
S(r ) = �

(Kr ).

Proof. We use notations introduced in the first paragraph of the proof of Theorem 3. Letqψ(0)
be the geodesic associated to the controluψ(0). We set

Kr = {ψ(0) ∈ H(r ) ∩ �−1(S(r )) : ind(qψ(0), ψ(1),1) < 0} .(7)

It follows from Theorem 4 and the assumption of Theorem 5 that
�
(Kr ) = S(r ). What remains

is to prove thatKr is compact.

Take a sequenceψm(0) ∈ Kr , m = 1, 2, . . . ; the controlsuψm(0) are minimal, the set
of minimal controls of the lengthr is compact, hence there exists a convergent subsequence
of this sequence of controls and the limit is again a minimal control. To simplify notations, we
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suppose without losing generality that the sequenceuψm(0), m = 1, 2, . . . , is already convergent,
∃ limm→∞ uψm(0) = ū.

It follows from Proposition 1 thatψm(1)Duψm(0)
f = uψm(0). There are two possibilities:

either|ψm(1)| → ∞ (m → ∞) orψm(1), m = 1,2, . . . , contains a convergent subsequence.

In the first case we come to the equationλ̄Dū f = 0, whereλ̄ is a limiting point of the
sequence 1

|ψm(1)|
ψm(1), |λ̄| = 1. Lower semicontinuity of ind(q(·), λ, ν) implies the inequality

ind(q̄(·), λ̄,0) < 0, whereq̄(·) is the geodesic associated with the controlū. We come to a
contradiction with the assumption of the theorem.

In the second case letψml (1), l = 1,2, . . . , be a convergent subsequence. Thenψml (0),
l = 1, 2, . . . , is also convergent,∃ liml→∞ ψml (0) = ψ̄(0) ∈ H(r ). Then ū = u

ψ̄(0) and

ind(q̄(·), ψ̄(1), 1) < 0 because of lower semicontinuity of ind(q(·), λ, ν). Henceψ̄(0) ∈ Kr
and we are done.

COROLLARY 3. Let M and the sub-Riemannian structure be real-analytic. Suppose r0 < r
is such thatind(q(·), λ,0) ≥ 0 for any abnormal geodesic q(·) of the length r0 and associated
Lagrange multipliers(λ,0). Thenρ is subanalytic onρ−1 ((r0, r ]).

Proof. Let Kr0 be defined as in (7). ThenKr0 is compact and{uψ(0) : ψ(0) ∈ Kr0} is the
set of all minimal extremal controls of the lengthr0. The minimality of an extremal control
uψ(0) implies the minimality of the controlusψ(0) for s < 1, sinceusψ(0)(τ) = suψ(0)(τ)
and a reparametrized piece of a minimal geodesic is automatically minimal. HenceS(r1) ⊂
� (

r1
r0

Kr0

)

for r1 ≥ r0 and the required subanalyticity follows from Proposition 2.

Among 2 terms in expression (6) for ind(q(·), λ, ν) only the first one, the inertia index of the
second variation, is nontrivial to evaluate. Fortunately,there is an efficient way to compute this
index for both regular and singular (abnormal) geodesics, as well as a good supply of conditions
that garantee the finiteness or infinity of the index (see [2, 4, 6, 9]). The simplest one is theGoh
condition(see [6]):

If ind(q(·), ψ(1),0) < +∞, thenψ(t) annihilates12
q(t), ∀t ∈ [0,1].

Recall thatψ(t) annihilates1q(t), 0 ≤ t ≤ 1, for any Lagrange multiplier(ψ(1),0) associated
with q(·). We say thatq(·) is aGoh geodesicif there exist Lagrange multipliers(ψ(1),0) such
thatψ(t) annihilates12

q(t), ∀t ∈ [0, 1]. In particuar, strictly abnormal minimal geodesics must
be Goh geodesics. Besides that, the Goh condition and Corollary 3 imply

COROLLARY 4. Let M and the sub-Riemannian structure be real-analytic andr0 < r . If
there are no Goh geodesics of the length r0, thenρ is subanalytic onρ−1((r0, r ]).

I’ll finish the paper with a brief analysis of the Goh condition. Suppose thatq(·) is an
abnormal geodesic with Lagrange multipliers(ψ(1),0), andk = 2. Differentiating the iden-
tities h1( ψ(t) ) = h2( ψ(t) ) = 0 with respect tot , we obtain u2(t) { h2,h1 } ( ψ(t) ) =
u1(t){h1,h2}(ψ(t)) = 0, where{h1,h2}(ψ(t)) = 〈ψ(t), [X1, X2](q(t))〉 is the Poisson bracket.
In other words, the Goh condition is automatically satisfiedby any abnormal geodesic.

The situation changes dramatically ifk > 2. In order to understand why, we need some
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notation. Takeλ ∈ T∗M and set

b0(λ) =
(

{h1,h2}(λ), {h1,h3}(λ), . . . , {hk−1, hk}(λ)
)

,

a vector in
� k(k−1)

2 whose coordinates are numbers{hi , h j }(λ), 1 ≤ i < j ≤ k, with lexico-

graphically ordered indeces(i, j ). Set alsoβ0 = k(k−1)
2 . The Goh condition forq(·), ψ(1)

implies the identityb0(ψ(t)) = 0, ∀t ∈ [0, 1]. The differentiation of this identity with respect to
t in virtue of (4) gives the equality

k
∑

i=1

ui (t){hi ,b0}(ψ(t)) = 0 , 0 ≤ t ≤ 1 .(8)

Consider the space
∧k �β0 , thek-th exterior power of

�β0 . The standard lexicographic basis in

∧k �β0 gives the identification
∧k �β0 ∼= �

(

β0

k

)

. We setβ1 = β +
(

β0
k

)

and

b1(λ) = (b0(λ), {h1,b0}(λ) ∧ · · · ∧ {hk,b0}(λ)) ∈ �β1 .

Equality (8) implies:b1(ψ(t)) = 0, 0≤ t ≤ 1.

Now we set by inductionβi+1 = βi +
(

βi
k

)

, i = 0, 1, 2, . . . , and fix identifications

�βi × �

(

βi

k

)

∼= �βi+1 . Finaly, we define

bi+1(λ) = (bi (λ), {h1,bi }(λ) ∧ · · · ∧ {hk,bi }(λ)) ∈ �βi+1 , i = 1, 2, . . . .

Successive differentiations of the Goh condition give the equationsbi (ψ(t)) = 0, i = 1,2, . . . .
It is easy to check that the equationbi+1(λ) = 0 is not, in general, a consequence of the equation
bi (λ) = 0 and we indeed impose more and more restrictive conditions on the locus of Goh
geodesics.

A natural conjecture is that admitting Goh geodesics distributions of rankk > 2 form a set
of infinite codimension in the space of all rankk distributions, i.e. they do not appear in generic
smooth families of distributions parametrized by finite-dimensional manifolds. It may be not
technically easy, however, to turn this conjecture into thetheorem.

Anyway, Goh geodesics are very exclusive for the distributions of rank greater than 2. Yet
they may become typical under a priori restictions on the growth vector of the distribution (see
[6]).

Note in proof. An essential progress was made while the paper was waiting for the publication.
In particular, the conjecture on Goh geodesics has been proved as well as the conjecture stated
at the end of the Introduction. These and other results will be included in our joined paper with
Jean Paul Gauthier, now in preparation.
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