1Colegio de Postgraduados, Socio Economía Estadística e Informática, Estadística, Texcoco, México. Student. Email: salinas.victor@colpos.mx
2Colegio de Postgraduados, Socio Economía Estadística e Informática, Estadística, Texcoco, México. Professor. Email: perpdgo@colpos.mx
3Colegio de Postgraduados, Socio Economía Estadística e Informática, Estadística, Texcoco, México. Professor. Email: egonzalez@colpos.mx
4Colegio de Postgraduados, Socio Economía Estadística e Informática, Estadística, Texcoco, México. Professor. Email: hvaquera@colpos.mx
In this article goodness of fit tests for the Gumbel distribution with type II right censored data are proposed. One test is based in earlier works using the Kullback Leibler information modified for censored data. The other tests are based on the sample correlation coefficient and survival analysis concepts. The critical values of the tests were obtained by Monte Carlo simulation for different sample sizes and percentages of censored data. The powers of the proposed tests were compared under several alternatives. The simulation results show that the test based on the Kullback-Leibler information is superior in terms of power to the correlation tests.
Key words: Correlation coefficient, Entropy, Monte Carlo simulation, Power of a test.
En este artículo se proponen pruebas de bondad de ajuste para la distribución Gumbel para datos censurados por la derecha Tipo II. Una prueba se basa en trabajos previos en los que se modifica la información de Kullback-Leibler para datos censurados. Las otras pruebas se basan en el coeficiente de correlación muestral y en conceptos de análisis de supervivencia. Los valores críticos se obtuvieron mediante simulación Monte Carlo para diferentes tamaños de muestras y porcentajes de censura. La potencia de la pruebas se compararon bajo varias alternativas. Los resultados de la simulación muestran que la prueba basada en la Divergencia de Kullback-Leibler es superior a las pruebas de correlación en términos de potencia.
Palabras clave: coeficiente de correlación, entropía, potencia de una prueba, simulación Monte Carlo.
Texto completo disponible en PDF
References
1. Aalen, O. (1978), `Nonparametric inference for a family of counting processes´, Annals of Statistics 6(4), 701-726.
2. Balakrishnan, N. & Chen, W. (1999), Handbook of Tables for Order Statistics from Lognormal Distributions with Applications, Springer. *http://books.google.com/books?idx1862WoJL2EC
3. Castro-Kuriss, C. (2011), `On a goodness-of-fit test for censored data from a location-scale distribution with applications´, Chilean Journal of Statistics 2, 115-136.
4. Ebrahimi, N., Habibullah, M. & Soofi, E. (1992), `Testing exponentiality based on Kullback-Leibler information´, Journal of the Royal Statistical Society 54, 739-748.
5. Kaplan, E. L. & Meier, P. (1958), `Nonparametric estimation from incomplete observations´, Journal of the American Statistical Association 53(282), 457-481. *http://dx.doi.org/10.2307/2281868
6. Lim, J. & Park, S. (2007), `Censored Kullback-Leibler information and goodness-of-fit test with type II censored data´, Journal of Applied Statistics 34(9), 1051-1064.
7. Lin, Chien-Tai, Huang, Yen-Lung & Balakrishnan, N. (2008), `A new method for goodness-of-fit testing based on type-II right censored samples´, IEEE Transactions on Reliability 57, 633-642.
8. Nelder, J. A. & Mead, R. (1965), `A simplex algorithm for function minimization´, Computer Journal 7, 308-313.
9. Nelson, W. (1972), `Theory and applications of hazard plotting for censored failure data´, Technometrics 14, 945-965.
10. Park, S. & Park, D. (2003), `Correcting moments for goodness of fit tests based on two entropy estimates´, Journal of Statistical Computation and Simulation 73, 685-694.
11. Pérez-Rodríguez, P., Vaquera-Huerta, H. & Villaseñor-Alva, J. A. (2009), `A goodness-of-fit test for the Gumbel distribution based on Kullback-Leibler information´, Communications in Statistics: Theory and Methods 38, 842-855.
12. R Core Team, (2012), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org/
13. Saldaña-Zepeda, D., Vaquera-Huerta, H. & Arnold, B. C. (2010), `A goodness of fit test for the Pareto distribution in the presence of type II censoring, based on the cumulative hazard function´, Computational Statistics and Data Analysis 54(4), 833-842.
14. Sara\cco\uglu, Bu\ugra, Kinaci, I. & Kundu, D. (2012), `On estimation of RP(Y
15. Song, K. S. (2002), `Goodness-of-fit-tests based on Kullback-Leibler discrimination information´, IEEE Transactions On Information Theory 48, 1103-1117.
16. Stephens, M. A. (1986), Tests based on edf statistics, `Goodness-of-Fit Techniques´, New York.
17. Xia, Z. P., Yu, J. Y., Cheng, L. D., Liu, L. F. & Wang, W. M. (2009), `Study on the breaking strength of jute fibres using modified Weibull distribution´, Composites Part A: Applied Science and Manufacturing 40(1), 54 - 59. *http://www.sciencedirect.com/science/article/pii/S1359835X08002595
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv35n3a05,
AUTHOR = {Salinas, Víctor and Pérez, Paulino and González, Elizabeth and Vaquera, Humberto},
TITLE = {{Goodness of Fit Tests for the Gumbel Distribution with Type II right Censored data}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2012},
volume = {35},
number = {3},
pages = {407-422}
}