geofd: An R Package for Function-Valued Geostatistical Prediction

geofd: un paquete R para predicción geoestadística de datos funcionales

RAMÓN GIRALDO1, JORGE MATEU2, PEDRO DELICADO3

1Universidad Nacional de Colombia, Sciences Faculty, Department of Statistics, Bogotá, Colombia. Associate professor. Email: rgiraldoh@unal.edu.co
2Universitat Jaume I, Department of Mathematics, Castellón, Spain. Professor. Email: mateu@mat.uji.es
3Universitat Politècnica de Catalunya, Department of Statistics and Operations Research, Barcelona, Spain. Associate professor. Email: pedro.delicado@upc.edu


Abstract

Spatially correlated curves are present in a wide range of applied disciplines. In this paper we describe the R package geofd which implements ordinary kriging prediction for this type of data. Initially the curves are pre-processed by fitting a Fourier or B-splines basis functions. After that the spatial dependence among curves is estimated by means of the trace-variogram function. Finally the parameters for performing prediction by ordinary kriging at unsampled locations are by estimated solving a linear system based estimated trace-variogram. We illustrate the software analyzing real and simulated data.

Key words: Functional data, Smoothing, Spatial data, Variogram.


Resumen

Curvas espacialmente correlacionadas están presentes en un amplio rango de disciplinas aplicadas. En este trabajo se describe el paquete R geofd que implementa predicción por kriging ordinario para este tipo de datos. Inicialmente las curvas son suavizadas usando bases de funciones de Fourier o B-splines. Posteriormente la dependencia espacial entre las curvas es estimada por la función traza-variograma. Finalmente los parámetros del predictor kriging ordinario son estimados resolviendo un sistema de ecuaciones basado en la estimación de la función traza-variograma. Se ilustra el paquete analizando datos reales y simulados.

Palabras clave: datos funcionales, datos espaciales, suavizado, variograma.


Texto completo disponible en PDF


References

1. Baladandayuthapani, V., Mallick, B., Hong, M., Lupton, J., Turner, N. & Caroll, R. (2008), `Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinoginesis´, Biometrics 64, 64-73.

2. Box, G. & Jenkins, G. (1976), Time Series Analysis., Holden Day, New York.

3. Cressie, N. (1993), Statistics for Spatial Data, John Wiley & Sons, New York.

4. Cuevas, A., Febrero, M. & Fraiman, R. (2004), `An ANOVA test for functional data.´, Computational Statistics and Data Analysis 47, 111-122.

5. Delicado, P., Giraldo, R., Comas, C. & Mateu, J. (2010), `Statistics for spatial functional data: some recent contributions´, Environmetrics 21, 224-239.

6. Ferraty, F. & Vieu, P. (2006), Nonparametric Functional Data Analysis. Theory and Practice, Springer, New York.

7. Giraldo, R. (2009), Geostatistical Analysis of Functional Data, PhD thesis, Universitat Politècnica de Catalunya.

8. Giraldo, R., Delicado, P. & Mateu, J. (2010), `Continuous time-varying kriging for spatial prediction of functional data: an environmental application´, Journal of Agricultural, Biological, and Environmental Statistics 15(1), 66-82.

9. Giraldo, R., Delicado, P. & Mateu, J. (2011), `Ordinary kriging for function-valued spatial data´, Environmental and Ecological Statistics 18(3), 411-426.

10. Goulard, M. & Voltz, M. (1993), Geostatistical interpolation of curves: a case study in soil science, `Geostatistics Tróia 92´, Vol. 2, Kluwer Academc Press, p. 805-816.

11. Grosjean, P. (2010), SciViews-R: A GUI API for R, UMONS, Mons, Belgium. *http://www.sciviews.org/SciViews-R

12. MATLAB, (2010), version 7.10.0 (R2010a), The MathWorks Inc., Natick, Massachusetts.

13. Malfait, N. & Ramsay, J. (2003), `The historical functional linear model´, The Canadian Journal of Statistics 31(2), 115-128.

14. Myers, D. (1982), `Matrix formulation of co-kriging´, Mathematical Geology 14(3), 249-257.

15. Nerini, D., Monestiez, P. & Manté, C. (2010), `Cokriging for spatial functional data´, Journal of Multivariate Analysis 101(2), 409-418.

16. Ramsay, J., Hooker, G. & Graves, S. (2009), Functional Data Analysis with R and MATLAB, Springer, New York.

17. Ramsay, J. & Silverman, B. (2005), Functional Data Analysis. Second edition, Springer, New York.

18. Ramsay, J., Wickham, H., Graves, S. & Hooker, G. (2010), fda: Functional Data Analysis. R package version 2.2.6. *http://cran.r-project.org/web/packages/fda

19. Ribeiro, P. & Diggle, P. (2001), `GeoR: a package for geostatistical analysis´, R-NEWS 1(2), 15-18. *http://cran.R-project.org/doc/Rnews

20. R Development Core Team, (2011), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org.

21. Staicu, A., Crainiceanu, C. & Carroll, R. (2010), `Fast methods for spatially correlated multilevel functional data´, Biostatistics 11(2), 177-194.

22. Ver Hoef, J. & Cressie, N. (1993), `Multivariable spatial prediction´, Mathematical Geology 25(2), 219-240.

23. Wackernagel, H. (1995), Multivariate Geostatistics: An Introduction with Applications, Springer-Verlag, Berlin.

24. Yamanishi, Y. & Tanaka, Y. (2003), `Geographically weighted functional multiple regression analysis: a numerical investigation´, Journal of Japanese Society of Computational Statistics 15, 307-317.


[Recibido en octubre de 2011. Aceptado en agosto de 2012]

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCEv35n3a04,
    AUTHOR  = {Giraldo, Ramón and Mateu, Jorge and Delicado, Pedro},
    TITLE   = {{geofd: An R Package for Function-Valued Geostatistical Prediction}},
    JOURNAL = {Revista Colombiana de Estadística},
    YEAR    = {2012},
    volume  = {35},
    number  = {3},
    pages   = {383-405}
}