1Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Estadística e Investigación Operativa, Madrid, España. Professor. Email: ealmarazluengo@mat.ucm.es
We consider the classical ruin problem due to Cramér and Lundberg and we generalize it. Ruin times of the considered models are studied and sufficient conditions to usual stochastic dominance between ruin times are established. In addition an algorithm to simulate processes verifying the conditions under consideration is proposed.
Key words: Coupling, Markov chains, Semi-Markov process, Simulation, Stochastic ordering.
Se considera el problema clásico de ruina de Cramér y Lundberg y se generaliza. Se estudian los tiempos hasta la ruina de los modelos conside-rados y se establecen condiciones suficientes para la dominancia estocástica en el sentido usual entre los tiempos de ruina. Por otro lado, se establecen algoritmos de simulación de los procesos bajo estudio y de obtención de estimadores para las probabilidades involucradas.
Palabras clave: cadenas de Markov, dominancia estocástica, emparejamiento, proceso semi-markovianos, simulación.
Texto completo disponible en PDF
References
1. Almaraz, E. (2009), Cuestiones notables de ordenación estocástica en optimación financiera, Tesis de Doctorado, Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas. Departamento de Estadística e Investigación Operativa, Madrid.
2. Asmussen, S. (1989), `Risk theory in a Markovian environment´, Scandinavian Actuarial Journal 2, 69-100.
3. Beard, R. E., Pentikäinen, T. & Pesonen, E. (1984), Risk Theory, Chapman and Hall, London..
4. Beekman, J. (1969), `A ruin function approximation´, Transactions of Society of Actuaries 21, 41-48.
5. Bowers, N. L., Gerber, H. U., Hickman, J. C., Jones, D. A. & Nesbitt, C. J. (1997), Actuarial Mathematics (2ª.Ed), The Society of Actuaries, USA.
6. Daykin, C. D. (1994), Risk Theory of Actuarie, Chapman & Hall, New York.
7. De Vylder, F. (1996), Advanced Risk Theory, Université de Bruxelles, Brussels..
8. Ferreira, F. & Pacheco, A. (2005), `Level crossing ordering of semi-Markov processes and Markov chains´, Journal of Applied Probability 42(4), 989-1002.
9. Ferreira, F. & Pacheco, A. (2007), `Comparision of level-crossing times for Markov and semi-Markov processes´, Statistics and Probability Letters 77(7), 151-157.
10. Frees, E. (1986), `Nonparametric Estimation of the Probability of Ruin´, ASTIN Bulletin 16, 81-90.
11. Gerber, H. (1995), Life Insurance Mathematics, Second edn, Springer, Heidelberg.
12. Goovaerts, M. (1990), Effective Actuarial Methods, Elsevier Science Publishers B.V., Amsterdam.
13. Latorre, L. (1992), Teoría del Riesgo y sus Aplicaciones a la Empresa Aseguradora, Editorial Mapfre, Madrid.
14. Müller, A. & Stoyan, D. (2002), Comparison Methods for Stochastic Models and Risks, John Wiley & Sons.
15. Ramsay, C. (1992), `A Practical Algorithm for Approximating the Probability of Ruin´, Transactions of the Society of Actuaries XLIV.
16. Reinhard, J. (1984), `On a class of semi-Markov risk models obtained as a classical risk models in a Markovian environment´, ASTIN Bulletin 14, 23-43.
17. Reinhard, J. & Snoussi, M. (2001), `On the distribution of the surplus prior to ruin in a discrete semi-Markov risk model´, ASTIN Bulletin 31, 255-273.
18. Reinhard, J. & Snoussi, M. (2002), `The severity of run in a discrete semi-Markov risk model´, Stochastic Models 18(1), 85-107.
19. Seal, H. (1969), Stochastic Theory of a Risk Business, John Wiley & Sons, New York.
20. Shaked, M. y. S. G. (2007), Stochastic Orders, Springer Series in Statistics.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv34n3a06,
AUTHOR = {Almaraz-Luengo, Elena},
TITLE = {{An Application of Semi-Markovian Models to the Ruin Problem}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2011},
volume = {34},
number = {3},
pages = {477-495}
}