Precisiones
en la teoría de los modelos logísticos
Humberto Jesús Llinás
Resumen
Se estudian los modelos logísticos, como una clase de modelos lineales generalizados (MLG). Se demuestra un teorema sobre la existencia y unicidad de las estimaciones de máxima verosimilitud (abreviadas por ML) de los parámetros logísticos y el método para calcularlas. Con base en una teoría asintótica para estas ML-estimaciones y el vector score, se encuentran aproximaciones para las diferentes desviaciones -2log L, siendo L la función de verosimilitud. A partir de ellas se obtienen estadísticas para distintas pruebas de hipótesis, con distribución asintótica chi-cuadrada. La teoría asintótica se desarrolla para el caso de variables independientes y no idénticamente distribuidas, haciendo las modificaciones necesarias para la conocida situación de variables idénticamente distribuidas. Se hace siempre la distinción entre datos agrupados y no agrupados.
Palabras clave: variable de respuesta binaria, modelo lineal generalizado, teoría asintótica.