1Universidad de Antioquia, Facultad de Ciencias Económicas, Departamento de Economía, Medellín, Colombia. Profesor. Email: jbarr@economicas.udea.edu.co
2Georg August Universit\"{a}t G\"{o}ttingen, Institut f\"{u}r Statistik und \"{O}konometrie, G\"{o}ttingen, Germany. Professor. Email: stefan.sperlich@wiwi.uni-goettingen.de
In non- and semiparametric testing, the wild bootstrap is a standard method for determining the critical values of tests. If the null hypothesis is also semi- or nonparametric, then we know that at least asymptotically oversmoothing is necessary in the pre-estimation of the null model for generating the bootstrap samples. See \citename{Hardle-90} \citeyear{Hardle-90,Hardle-91}. However, in practice this knowledge is of little help. In this note we highlight that this bandwidth choice problem can become quite serious. As an alternative, we briegly discuss the possibility of subsampling.
Key words: Bandwidth choice, Bootstrap tests, Nonparametric specification tests.
En contrastes no- y semiparamétricos el wild-bootstrap es un método estándar para la determinación de los valores críticos de los estadísticos de contrastes. Si la hipótesis nula es no o semiparamétrica, sabemos que al menos asintóticamente es necesaria una sobre-suavización en la pre-estimación del modelo bajo la nula para generar las muestras bootstrap, ver por ejemplo \citename{Hardle-90} \citeyear{Hardle-90,Hardle-91}.
No obstante, en la práctica este conocimiento es de poca o ninguna ayuda. En este artículo, ponemos de manifiesto que el problema de la selección de la banda de suavidad para procedimientos de contraste puede ser muy serio. Como alternativa, discutimos brevemente la posibilidad de usar sub-muestras.
Palabras clave: ancho de banda, contrastes de especificación no-paramétricos, contrastes bootstrap.
Texto completo disponible en PDF
References
1. Barrientos, J. (2007), Some Practical Problems of Recent Nonparametric Procedures: Testing, Estimation and Application, Tesis Doctoral, Departamento de Fundamentos del Análisis Económico, Universidad de Alicante, España.
2. Delgado, M. A., Rodríguez, J. M. & Wolf, M. (2001), `Subsampling Cube Root Asymptotics with an Application to Manski's MSE´, Economics Letters 73, 241-250.
3. Dette, H., von Lieres, C., Wilkau, C. & Sperlich, S. (2005), `A Comparison of Different Nonparametric Method for Inference on Additive Models´, Journal of Nonparametric Statistics 17, 57-81.
4. Hardle, W. & Mammen, E. (1993), `Comparing Nonparametric Versus Parametric Regression Fits´, Annals of Statistics 21(1926-1947).
5. Hardle, W. & Marron, J. S. (1990), `Semiparametric Comparison of Regression Curves´, Annals of Statistics 18, 63-89.
6. Hardle, W. & Marron, J. S. (1991), `Bootstrap Simultaneous Bars For Nonparametric Regression´, Annals of Statistics 19, 778-796.
7. Horowitz, J. L. & Spokoiny, V. (2001), `An adaptive, rate-optimal test of parametric mean-regression model against a nonparametric alternative´, Econometrica 69, 599-631.
8. Neumeyer, N. & Sperlich, S. (2006), `Comparison of separable components in different samples´, Scandinavian Journal of Statistics 33, 477-501.
9. Politis, D. N., Romano, J. P. & Wolf, M. (1999), Subsampling, Springer Series in Statistics, Springer-verlag, New York.
10. Roca, J. & Sperlich, S. (2007), `Testing the Link when the Index is Semiparametric - A Comparison Study´, Computational Statistics and Data Analysis 12, 6565-6581.
11. Spokoiny, V. (1996), `Adaptive Hypothesis Testing using Wavelets´, Annals of Statistics 24, 2477-2498.
12. Spokoiny, V. (1998), `Adaptive and spatially adaptive testing of a nonparametric hypothesis´, Mathematical Methods of Statistics 7(245-273).
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv33n2a07,
AUTHOR = {Barrientos-Marín, Jorge and Sperlich, Stefan},
TITLE = {{The Size Problem of Bootstrap Tests when the Null isNon- or Semiparametric}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2010},
volume = {33},
number = {2},
pages = {307-319}
}