1Instituto Tecnológico Metropolitano Institución Universitaria (ITM), Facultad de Ciencias Básicas, Medellín, Colombia. Docente tiempo completo especial. Email: cjbarrer@unal.edu.co
2Universidad Nacional de Colombia, Facultad de Ciencias, Escuela de Estadística, Medellín, Colombia. Profesor asociado. Email: jccorrea@unalmed.edu.co
En el estudio de la confiabilidad es muy frecuente el desconocimiento de parámetros poblacionales; por tanto, es necesario recoger información muestral relevante para la estimación de estos a través de distribuciones de probabilidad, conocidas como distribución a priori. Los métodos bayesianos permiten incorporar opiniones subjetivas acerca de incertidumbres con respecto al parámetro o vector de parámetros de interés. La incertidumbre acerca del verdadero valor de un parámetro de interés θ en la población es modelada por la función de densidad a priori π(θ), (θ \in Θ). Para obtener las distribuciones predictivas bayesianas, se implementará la metodología MCMC, la cual exige calibración, diseño, implementación y validación de algoritmos apropiados.
Palabras clave: a priori, distribución predictiva, fiabilidad, MCMC.
In reliability studies it is common to not know the population parameters, therefore, it becomes necessary to collect a sample in order to estimate the parameters of the assumed probability distribution. Bayesian methods allow to incorporate subjective information about uncertainties regarding the parameter or parameters of interest. From the bayesian point of view, the uncertainty about the true value of a parameter of interest θ in the population, is modeled by the prior density function π(θ), (θ\inΘ). We will implement the methodology MCMC to obtain the predictive bayesian distributions, which requires the calibration, design, implementation, in addition to the validation of appropriate algorithms.
Key words: Prior, Predictive Distribution, Reliability, MCMC.
Texto completo disponible en PDF
Referencias
1. Casella, G. & George, (1992), `Explaining the Gibbs Sampler´, The American Statistician 46(3), 167-174.
2. Christensen, R. & Huffman, M. (1985), `Bayesian Point Estimation Using the Predictive Distribution´, The American Statistician 39(4), 319-321.
3. Dunsmore, I. (1974), `The Bayesian Predictive Distribution in Life Testing Models´, Technometrics 16(3), 455-460.
4. Hewett, J. (1968), `A Note on Prediction Intervals Based on Tartial Observations in Certain Life Test Experiments´, Technometrics 10, 850-853.
5. Hill, G. (2002), Bayesian Methods, Chapman and Hall.
6. Kalbfleisch, J. D. (1971), Likelihood Methods of Prediction, `Foundations of Statistical Inference´, p. 378-392.
7. Kao, E. (1997), An Introduction to Stochastic Processes, Duxbury Press.
8. Komaki, F. (2001), `A Shrinkage Predictive Distribution for Multivariate Normal Observables´, Biometrika 88(3), 859-864.
9. Kwiatkowski, D., Phillips, P. & Schmidt, P. (1992), `Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root´, Journal of Econometrics 54, 159-178.
10. R Development Core Team, (2007), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv31n2a01,
AUTHOR = {Barrera, Carlos Javier and Correa, Juan Carlos},
TITLE = {{Distribución predictiva bayesiana para modelos de pruebas de vida vía MCMC}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2008},
volume = {31},
number = {2},
pages = {145-155}
}