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Abstract: In recent years, important progress has been made in the field
of two-dimensional statistical physics. One of the most striking achieve-
ments is the proof of the Cardy–Smirnov formula. This theorem, together
with the introduction of Schramm–Loewner Evolution and techniques de-
veloped over the years in percolation, allow precise descriptions of the crit-
ical and near-critical regimes of the model. This survey aims to describe
the different steps leading to the proof that the infinite-cluster density θ(p)
for site percolation on the triangular lattice behaves like (p − pc)5/36+o(1)

as p ց pc = 1/2.
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1. Introduction

Percolation as a physical model was introduced by Broadbent and Hammersley
in the fifties [BH57]. For p ∈ (0, 1), (site) percolation on the triangular lattice
T is a random configuration supported on the vertices (or sites), each one be-
ing open with probability p and closed otherwise, independently of the others.
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This can also be seen as a random coloring of the faces of the hexagonal lattice
H dual to T. Denote the measure on configurations by Pp. For general back-
ground on percolation, we refer the reader to the books of Grimmett [Gri99]
and Kesten [Kes82].

We will be interested in the connectivity properties of the model. Two sets
of sites A and B of the triangular lattice are connected (which will be denoted
by A ↔ B) if there exists an open path, i.e. a path of neighboring open sites,
starting at a ∈ A and ending at b ∈ B. If there exists a closed path, i.e. a path
of neighboring closed sites, starting at a ∈ A and ending at b ∈ B, we will write
A

∗↔ B. If A = {a} and B = {b}, we simply write a↔ b. We also write a↔ ∞
if a is on an infinite open simple path. A cluster is a connected component of
open sites.

It is classical that there exists pc ∈ (0, 1) such that for p < pc, there exists
almost surely no infinite cluster, while for p > pc, there exists almost surely a
unique such cluster. This parameter is called the critical point.

Theorem 1.1. The critical point of site-percolation on the triangular lattice
equals 1/2.

A similar theorem was first proved in the case of bond percolation on the
square lattice by Kesten in [Kes80].

Once the critical point has been determined, it is natural to study the phase
transition of the model, i.e. its behavior for p near pc. Physicists are interested
in the thermodynamical properties of the model, such as the infinite cluster
density

θ(p) := Pp(0 ↔ ∞) when p > pc,

the susceptibility (or mean cluster-size)

χ(p) :=
∑

x∈T

Pp(0 ↔ x) when p < pc,

and the correlation length Lp (see Definition 4.5). The behavior of these quan-
tities near pc is believed to be governed by power laws:

θ(p) = (p− pc)
β+o(1) as pց pc,

χ(p) = (p− pc)
−γ+o(1) as pր pc,

Lp = (p− pc)
−ν+o(1) as pր pc.

These critical exponents β, γ and ν (and others) are not independent of each
other but satisfy certain equations called scaling relations. Kesten’s scaling re-
lations relate β, γ and ν to the so-called monochromatic one-arm and polychro-
matic four-arm exponents at criticality. The important feature of these relations
is that they relate quantities defined away from criticality to fractal properties of
the critical regime. In other words, the behavior of percolation through its phase
transition (as p varies from slightly below to slightly above pc) is intimately re-
lated to its behavior at pc. The scaling relations enable mathematicians to focus
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on the critical phase. If the connectivity properties of the critical phase can be
understood, then critical exponents for θ, χ, L will follow.

We now turn to the study of planar percolation at p = pc and briefly re-
call the history of the subject. In the seminal papers [BPZ84a] and [BPZ84b],
Belavin, Polyakov and Zamolodchikov postulated conformal invariance (under
all conformal transformations of sub-regions) in the scaling limit of critical two-
dimensional statistical mechanics models, of which percolation at pc is one.
The renormalization group formalism suggests that the scaling limit of critical
models is a fixed point for the renormalization transformation. The fixed point
being unique, the scaling limit should be invariant under translation, rotation
and scaling, and since it can be described by local fields, it is natural to expect
that it will be invariant under all transformations which are locally composi-
tions of translations, rotations and scalings. These transformations are exactly
the conformal maps.

From a mathematical perspective, the notion of conformal invariance of an
entire model is ill-posed, since the meaning of scaling limit depends on the object
we wish to study (interfaces, size of clusters, crossings, etc). A mathematical
setting for studying scaling limits of interfaces has been developed, therefore we
will focus on this aspect in this document.

Let us start with the study of a single curve. Fix a simply connected planar
domain (Ω, a, b) with two points on the boundary and consider discretizations
(Ωδ, aδ, bδ) of (Ω, a, b) by a triangular lattice of mesh size δ. The clockwise
boundary arc of Ωδ from aδ to bδ is called aδbδ, and the one from bδ to aδ is
called bδaδ. Assume now that the sites of aδbδ are open and that those of bδaδ are
closed. There exists a unique interface consisting of bonds of the dual hexagonal
lattice, between the open cluster of aδbδ and the closed cluster of bδaδ (in order
to see this, the correspondence between face percolation on the hexagonal lattice
and site percolation on the triangular one is useful). We call this interface the
exploration path and denote it by γδ; see the figure on the first page.

Conformal field theory leads to the prediction that γδ converges as δ → 0
to a random, continuous, non-self-crossing curve from a to b staying in Ω, and
which is expected to be conformally invariant in the following sense.

Definition 1.2. A family of random non-self-crossing continuous curves γ(Ω,a,b),
going from a to b and contained in Ω, indexed by simply connected domains
with two marked points on the boundary (Ω, a, b) is conformally invariant if for
any (Ω, a, b) and any conformal map ψ : Ω → C,

ψ(γ(Ω,a,b)) has the same law as γ(ψ(Ω),ψ(a),ψ(b)).

In 1999, Schramm proposed a natural candidate for such conformally invari-
ant families of curves. He noticed that the interfaces of various models satisfy the
domain Markov property (see Section 2.4) which, together with the assumption
of conformal invariance, determines a one-parameter family of such curves. In
[Sch00], he introduced the Stochastic Loewner evolution (SLE for short) which
is now known as the Schramm–Loewner evolution. For κ > 0, a domain Ω and
two points a and b on its boundary, SLE(κ) is the random Loewner evolution
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in Ω from a to b with driving process
√
κBt, where (Bt) is a standard Brownian

motion. We refer to [Wer09a] for a formal definition of SLE. By construction,
this process is conformally invariant, random and fractal. The prediction of con-
formal field theory then translates into the following prediction for percolation:
the limit of (γδ)δ>0 in (Ω, a, b) is SLE(6).

For completeness, let us mention that when considering not only a single
curve but multiple interfaces, families of interfaces in a percolation model are
also expected to converge in the scaling limit to a conformally invariant family of
non-intersecting loops. Sheffield and Werner [SW12] introduced a one-parameter
family of probability measures on collections of non-intersecting loops which are
conformally invariant. These processes are called the Conformal Loop Ensem-
bles CLE(κ) for κ > 8/3. The CLE(κ) process is related to the SLE(κ) in the
following manner: the loops of CLE(κ) are locally similar to SLE(κ).

Even though we now have a mathematical framework for conformal invari-
ance, it remains an extremely hard task to prove convergence of the interfaces
in (Ωδ, aδ, bδ) to SLE. Nevertheless, in 1992, the observation that properties
of interfaces should also be conformally invariant led Langlands, Pouliot and
Saint-Aubin ([LPSA94]) to publish numerical values in agreement with the con-
formal invariance in the scaling limit of crossing probabilities in the percolation
model. More precisely, consider a Jordan domain Ω with four points A,B,C
and D on the boundary. The 5-tuple (Ω, A,B,C,D) is called a topological rect-
angle. The authors checked numerically that the probability Cδ(Ω, A,B,C,D)
of having a path of adjacent open sites between the boundary arcs AB and CD
converges as δ goes to 0 towards a limit which is the same for (Ω, A,B,C,D)
and (Ω′, A′, B′, C′, D′) if they are images of each other by a conformal map.
Notice that the existence of such a crossing property can be expressed in terms
of properties of a well-chosen interface, thus keeping this discussion in the frame
proposed earlier.

The paper [LPSA94], which first came out in 1992, while only numerical at-
tracted many mathematicians to the domain. The authors attribute the conjec-
ture on conformal invariance of the limit of crossing probabilities to Aizenman.
The same year, Cardy [Car92] proposed an explicit formula for the limit. In
2001, Smirnov proved Cardy’s formula rigorously for critical site percolation
on the triangular lattice, hence rigorously providing a concrete example of a
conformally invariant property of the model.

Theorem 1.3 (Smirnov [Smi01]). For any topological rectangle (Ω, A,B,C,D),
the probability of the event Cδ(Ω, A,B,C,D) has a limit f(Ω, A,B,C,D) as δ
goes to 0. Furthermore, the limit satisfies the following two properties:

• If Ω is an equilateral triangle with sides of length 1 and vertices A, C
and D, and it x is the length of the segment [AB], then f(Ω, A,B,C,D) = x;

• f is conformally invariant, in the following sense: if Φ is a conformal
map from Ω to another simply connected domain Φ(Ω), which extends
continuously to ∂Ω, then

f(Ω, A,B,C,D) = f(Φ(Ω),Φ(A),Φ(B),Φ(C),Φ(D)).
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The fact that Cardy’s formula takes such a simple form for equilateral trian-
gles was first observed by Carleson. Notice that the Riemann mapping theorem
along with the second property give the value of f for every conformal rectangle.

A remarkable consequence of this theorem is that, even though Cardy’s for-
mula provides information on crossing probabilities only, it can in fact be used
to prove much more. We will see that it implies convergence of interfaces to the
trace of SLE(6) (see Section 2.4). In other words, conformal invariance of one
well-chosen quantity can be sufficient to prove conformal invariance of interfaces.

Theorem 1.4 (Smirnov, see also [CN07]). Let Ω be a simply connected domain
with two marked points a and b on the boundary. Let γδ be the exploration path
of critical percolation as described in the previous paragraphs. Then the law of
γδ converges weakly, as δ → 0, to the law of the trace of SLE(6) in (Ω, a, b).

To make this statement precise, it is necessary to specify the space of curves
in which it holds. For a bounded, simply connected domain Ω with two marked
boundary points a and b, we will always be interested in continuous curves
Γ : R+ → Ω̄ satisfying Γ(0) = a and limt→∞ Γ(t) = b, considered up to time
parametrization; more precisely, the distance between two such curves Γ1 and
Γ2 is defined as

d(Γ1,Γ2) := inf
ϕ

sup
t≥0

|Γ1(t)− Γ2(ϕ(t))|,

where the infimum is taken over all continuous, strictly increasing functions
from R+ onto itself. If the domain Ω is unbounded, one can define a similar
metric on curves by first mapping it conformally to a bounded one Ω′ and then
pulling back the metric on curves in Ω′ — the distance obtained will depend on
the choice made, but the topology will not.

Similarly, one can consider the convergence of the whole family of discrete
interfaces between open and closed clusters. This family converges to CLE(6),
as was proved in [CN06], thus providing a proof of the full conformal invariance
of percolation interfaces.

Convergence to SLE(6) is important for many reasons. Since SLE itself is very
well understood (its fractal properties in particular), it enables the computation
of several critical exponents describing the critical phase. We will introduce
these exponents later in the survey. For now we state the result informally (see
Theorem 3.4 or [SW01]):

• the probability that there exists an open path from the origin to the
boundary of the box of radius n behaves as n−5/48+o(1) as n tends to
infinity;

• the probability that there exist four arms, two open and two closed, from
the origin to the boundary of the box of size n, behaves as n−5/4+o(1) as
n tends to infinity.

Together with Kesten’s scaling relations (Theorem 4.8 or [Kes87]), the pre-
vious asymptotics imply the following result, which is the main focus of this
survey:
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pc = 1/20 1

p

θ(p)

1

(p− 1/2)5/36+o(1)

Fig 1. Cluster density with respect to p. Non-trivial facts in this picture include pc = 1/2,
θ(pc) = 0 and the behavior of p → θ(p) near the critical point.

Theorem 1.5. For site percolation on the triangular lattice, pc = 1/2 and

θ(p) = (p− 1/2)5/36+o(1) as pց 1/2.

Organization of the survey

The next section is devoted to the geometry of percolation with p = 1/2. First,
we obtain uniform bounds for box crossing probabilities (via a RSW-type argu-
ment). Then, we prove the Cardy-Smirnov formula (Theorem 1.3). Finally, we
sketch the proof of convergence to SLE(6) (Theorem 1.4).

The second section deals with critical exponents at criticality. We present the
derivation of arm-exponents assuming some basic estimates on SLE processes.

The third section studies percolation away from p = 1/2. We prove that
pc =

1
2 and we introduce the notion of correlation length for general p. Then, we

study the properties of percolation at scales smaller than the correlation length.
Finally, we investigate Kesten’s scaling relations and prove Theorem 1.5.

The last section gathers a few open questions relevant to the topic.

Notation and standard correlation inequalities in percolation

Lattice, distance and balls Except if otherwise stated, T will denote the
triangular lattice with mesh size 1, embedded in the complex plane C, containing
a vertex at the origin and a vertex at 1. Complex coordinates will be used
frequently to specify the location of a point. Let dT(·, ·) be the graph distance
in T. Define the ball Λn := {x ∈ T : dT(x, 0) ≤ n} (balls have hexagonal shapes).
Let ∂Λn = Λn \ Λn−1 be the internal boundary of Λn.

Increasing events The Harris inequality and the monotonicity of percolation
will be used a few times. We recall these two facts now. An event is called
increasing if it is preserved by the addition of open sites, see Section 2.2 of
[Gri99] (a typical example is the existence of an open path from one set to
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another). The inequality p < p′ implies that Pp(A) ≤ Pp′(A) for any increasing
event A. Moreover, for every p ∈ [0, 1] and A, B two increasing events,

Pp(A ∩B) ≥ Pp(A)Pp(B) (Harris inequality).

The Harris inequality is a precursor (and a particular case) of the Fortuin-
Kasteleyn-Ginibre inequality [FKG71].

The van den Berg-Kesten inequality [vdBK85] will also be used extensively.
For two increasing events A and B, let A ◦B be the event that A and B occur
disjointly, meaning that ω ∈ A ◦ B if and only if there exist a set of sites E
(possibly depending on ω) such that any configuration ω′ with ω′

|E = ω|E is in
A and any configuration ω′′ with ω′′

|T\E = ω|T\E is in B. In words, the state
of sites in E is sufficient to verify whether ω is in A or not, and similarly for
T \E for B. For instance, the event {a↔ b} ◦ {c↔ d}, for a, b, c, d four disjoint
sites is the event that there exist two disjoint paths connecting a to b and c to
d respectively. It is different from the event {a ↔ b} ∩ {c ↔ d} which requires
only that there exist two paths connecting a to b and c to d, but not necessarily
disjoint.

For every p ∈ [0, 1] and A, B two increasing events depending on a finite
number of sites,

Pp(A ◦B) ≤ Pp(A)Pp(B) (BK inequality).

This inequality was improved by Reimer [Rei00], who proved that the inequality
is true for any two (non-necessarily increasing) events A and B depending on a
finite number of sites.

References

For general background on percolation, we refer the reader to the books of
Grimmett [Gri99], Bollobás and Riordan [BR06b] and Kesten [Kes82]. The proof
of Cardy’s formula can be found in the original paper [Smi01]. Convergence
of interfaces to SLE is proved in [CN07]. Scaling relations can be found in
[Kes87, Nol08]. Lawler’s book [Law05] and Sun’s review [Sun11] are good places
to get a general account on SLE. We also refer to original research articles on
the subject. More generally, subjects treated in this review are very close to
those studied in Werner’s lecture notes [Wer09a].

2. Crossing probabilities and conformal invariance at the critical

point

2.1. Circuits in annuli

In this whole section, we let p = 1/2. Let En be the event that there exists a
circuit (meaning a sequence of neighboring sites x1, . . . , xn, x1) of open sites in
Λ3n \ Λn that surrounds the origin.
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ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

ℓ7

ℓ8

ℓ9

ℓ10

ℓ11

Γ = γ

0

Bn

RN

−2in + Bn

Fig 2. The dark gray area is the set of sites which are discovered after conditioning on
{Γ = γ}. The white area is Ωγ .

Theorem 2.1. There exists C > 0 such that for every n > 0, P1
2
(En) ≥ C.

This theorem was first proved in a corresponding form in the case of bond
percolation on the square lattice by Russo [Rus78] and by Seymour and Welsh
[SW78]. It has many applications, several of which will be discussed in this
survey.

Such a bound (and its proof) is not surprising since open and closed sites
play symmetric roles at p = 1

2 . It is natural to expect that the probability of En
goes to 0 (resp. 1) for p below (resp. above) 1/2.

Proof. We present one of the many proofs of Theorem 2.1, inspired by an argu-
ment due to Smirnov and presented in [Wer09b] (in French).

Step 1: Let n > 0 and index the sides of Λn as in Fig. 2. Consider the event
that ℓ1 is connected by an open path to ℓ3 ∪ ℓ4 in Λn. The triangular lattice
being a triangulation, the complement of this event is that ℓ2 is connected by a
closed path to ℓ5 ∪ ℓ6 in Λn. Using the symmetry between closed and open sites
and the invariance of the model under rotations of angle π/3 around the origin,
P1

2
(ℓ1 ↔ ℓ3 ∪ ℓ4 in Λn) is equal to 1/2. Let us emphasize that we used that T is

a triangulation invariant under rotations of angle π/3.
In fact, we also have that P1

2
(ℓ1 ↔ ℓ4 in Λn) ≥ 1/8. Indeed, either this is true

or, going to the complement, P1
2
(ℓ1 ↔ ℓ3 in Λn) ≥ 1/2− 1/8. But in this case,
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using the Harris inequality,

P1
2
(ℓ1 ↔ ℓ4 in Λn) ≥ P1

2
(ℓ1 ↔ ℓ3 in Λn)P1

2
(ℓ2 ↔ ℓ4 in Λn) ≥ (3/8)2 ≥ 1/8.

Step 2: Let i =
√
−1. Consider Rn = Λn ∪ (Λn −

√
3ni) and index the sides

of Rn as in Fig. 2. For a path γ from ℓ1 to ℓ4 in Λn, define the domain Ωγ to
consist of the sites of Rn strictly to the right of γ∪σ(γ), where σ is the reflection
with respect to ℓ1. Once again, the complement of {ℓ4 ∪ γ ↔ ℓ10 ∪ ℓ11 in Ωγ}
is {ℓ9 ∪ σ(γ) ∗↔ ℓ2 ∪ ℓ3 in Ωγ}. The switching of colors and the symmetry with
respect to ℓ1 imply that the probability of the former is at least 1/2 (it is not
equal to 1/2 since the site on ℓ1 is necessarily open).

If E := {ℓ1 ↔ ℓ4 in Λn} occurs, set Γ to be the left-most crossing between ℓ1
and ℓ4. For a given path γ from ℓ1 to ℓ4, the event {Γ = γ} is measurable only
in terms of sites to the left or in γ. In particular, conditioning on {Γ = γ}, the
configuration in Ωγ is a percolation configuration. Thus,

P1
2

(

(ℓ4 ∪ γ) ↔ (ℓ10 ∪ ℓ11) in Ωγ | Γ = γ
)

≥ 1/2.

Therefore,

P1
2

(

ℓ4 ↔ (ℓ10 ∪ ℓ11) in Rn
)

= P1
2

(

ℓ4 ↔ (ℓ10 ∪ ℓ11) in Rn , E
)

=
∑

γ

P1
2

(

ℓ4 ↔ (ℓ10 ∪ ℓ11) in Rn , Γ = γ
)

≥
∑

γ

P1
2

(

(ℓ4 ∪ γ) ↔ (ℓ10 ∪ ℓ11) in Ωγ , Γ = γ
)

≥
∑

γ

1

2
P1

2
(Γ = γ) =

1

2
P1

2
(E) ≥ 1

16
.

Step 3: Invoking the Harris inequality,

P1
2
(ℓ4 ↔ ℓ9) ≥ P1

2

(

ℓ4 ↔ (ℓ10 ∪ ℓ11)
)

P1
2

(

(ℓ2 ∪ ℓ3) ↔ ℓ9
)

≥ 1

162
.

Assuming that the six subdomains of the space (which correspond to transla-
tions and rotations of Rn) described in Fig. 3 are crossed (in the sense that
there are open paths between opposite short edges), the result follows from a
final use of the Harris inequality.

The first corollary of Theorem 2.1 is the following lower bound on pc. The
result can also be proved without Theorem 2.1 using an elegant argument by
Zhang which invokes the uniqueness of the infinite cluster when it exists (see
Section 11 of [Gri99]).

Corollary 2.2 (Harris [Har60]). For site percolation on the triangular lattice,
θ(1/2) = 0. In particular, pc ≥ 1/2.
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Fig 3. Six “rectangles” which, when crossed, ensure the existence of a circuit in the annulus.

Proof. Let us prove that when p = 1/2, 0 is almost surely not connected by a
closed path to infinity (it is the same probability for an open path). Let N > 0.
We consider the N concentric disjoint annuli Λ3n+1 \ Λ3n , for 0 ≤ n < N , and
we use that the behavior in each annulus is independent of the behavior in the
others. Formally, the origin being connected to ∂Λ3N by a closed path implies
that for every n < N , the complement, Ec3n , of E3n occurs. Therefore,

P1
2
(0

∗↔ ∂Λ3N ) ≤ P1
2

(

⋂

n<N

Ec3n
)

=
∏

n<N

P1
2
(Ec3n) ≤ (1− C)N , (1)

where C is the constant in Theorem 2.1. In the second inequality, the inde-
pendence between percolation in different annuli is crucial. In particular, the
left-hand term converges to 0 as N → ∞, so that θ(1/2) = 0. Hence, by the
definition of pc, pc ≥ 1/2.

2.2. Discretization of domains and crossing probabilities

In general, we are interested in crossing probabilities for general shapes. Consider
a topological rectangle (Ω, A,B,C,D), i.e. a simply connected domain Ω 6= C

delimited by a non-intersecting continuous curve and four distinct points A,
B, C and D on its boundary, indexed in counter-clockwise order. The eager
reader might want to check that the argument of this section still goes through
without the assumption that the boundary is a simple curve, when A, B, C and
D are prime ends of Ω — in fact, this extension is needed if one wants to prove
convergence to SLE6, because the boundary of a stopped SLE will typically not
be a simple curve.

For δ > 0, we will be interested in percolation on Ωδ := Ω ∩ δT given by
vertices of δT in Ω and edges entirely included in Ω. Note that the boundary
of Ωδ can be seen as a self-avoiding curve s on Ω∗

δ (which is a subgraph of
the hexagonal lattice). Once again, this may not be true if the domain is not
smooth, but we choose not to discuss this matter here. The graph Ωδ should be
seen as a discretization of Ω at scale δ. Let Aδ, Bδ, Cδ and Dδ be the dual sites
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in s that are closest to A, B, C and D respectively. They divide s into four arcs
denoted by AδBδ, BδCδ, etc.

In the percolation setting, let Cδ(Ω, A,B,C,D) be the event that there is a
path of open sites in Ωδ between the intervals AδBδ and CδDδ of its boundary
(more precisely connecting two sites of Ωδ adjacent to AδBδ and CδDδ respec-
tively). We call such a path an open crossing, and the event a crossing event ;
accordingly we will say that the rectangle is crossed if there exists an open
crossing.

With a slight abuse of notation, we will denote the percolation measure with
p = 1/2 on δT by P1

2
(even though the measure is the push-forward of P1

2
by

the scaling x 7→ δx). We first state a direct consequence of Theorem 2.1:

Corollary 2.3 (Rough bounds on crossing probabilities). Let (Ω, A,B,C,D)
be a topological rectangle. There exist 0 < c1, c2 < 1 such that for every δ > 0,

c1 ≤ P1
2

[

Cδ(Ω, A,B,C,D)
]

≤ c2.

Proof. It is sufficient to prove the lower bound, since the upper bound is a
consequence of the following fact: the complement of Cδ(Ω, A,B,C,D) is the
existence of a closed path from BδCδ to DδAδ, it has same probability as
Cδ(Ω, B, C,D,A). Therefore, if the latter probability is bounded from below,
the probability of Cδ(Ω, A,B,C,D) is bounded away from 1.

Fix ε ∈ δN positive. For a hexagon h of radius ε > 0, we set h̃ to be
the hexagon with the same center and radius 3ε. Now, consider a collection
h1, . . . , hk of hexagons “parallel” to the hexagonal lattice H (the dual lattice of
T) and of radius ε satisfying the following conditions:

• h1 intersects AB and hk intersects CD,
• h̃1, . . . , h̃k intersect neither BC nor DA,
• hi are adjacent and the union of hexagons hi connects AB to CD in Ω.

For any domain and any δ > 0 small enough, ε > 0 can be chosen small enough
so that the family (hi) exists.

Let Eδi be the event that there is an open circuit in Ωδ ∩ (h̃i \hi) surrounding
Ωδ ∩hi. By construction, if each Eδi occurs, there is a path from AB to CD, see
Fig. 4. Using Theorem 2.1, the probability of this is bounded from below by Ck,
where C does not depend on ε and δ. Now, there exists a constant K = K(Ω)
such that there is a choice of ε > 0, h1, . . . , hk, with k ≤ K working for any δ
small enough, a fact which implies the claim.

In particular, long rectangles are crossed in the long direction with probabil-
ity bounded away from 0 as δ → 0. This result is the classical formulation of
Theorem 2.1. We finish this section with a property of percolation with param-
eter 1/2:

Corollary 2.4. There exist α, β > 0 such that for every n > 0,

n−α ≤ P1
2
(0 ↔ ∂Λn) ≤ n−β .
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A

B

C

D

Ω

h1
h2

h3

h4

h5 h6

h̃6

h̃1

Fig 4. Circuits in annuli linking two arcs of a topological rectangle. If each of these annuli
contains an open circuit disconnecting the interior from the exterior boundary, we obtain an
open path connecting the two sides.

Proof. The existence of β > 0 is proved as in (1). For the lower bound, we use
the following construction. Define

Rn :=
{

k · 1 + ℓ · eiπ/3 : k ∈ [0, 2n] and ℓ ∈ [0, 2n+1]
}

if n is odd, and

Rn :=
{

k · 1 + ℓ · eiπ/3 : k ∈ [0, 2n+1] and ℓ ∈ [0, 2n]
}

if it is even. Set Fn to be the event that Rn is crossed in the “long” direction.
Corollary 2.3 implies the existence of C1 > 0 such that P1

2
(Fn) ≥ C1 for every

n > 0. By the Harris inequality

P1
2
(0 ↔ ∂Λ3N ) ≥ P1

2

(

N
⋂

n=0

Fn

)

≥
N
∏

n=0

P1
2
(Fn) ≥ CN+1

1 .

This yields the existence of α > 0.

2.3. The Cardy–Smirnov formula

The subject of this section is the proof of Theorem 1.3. The proof of this theorem
is very well (and very shortly) exposed in the original paper [Smi01]. It has been
rewritten in a number of places including [BR06b, Gri10, Wer09a]. We provide
here a version of the proof which is mainly inspired by [Smi01] and [Bef07].

Proof. Fix (Ω, A,B,C) a topological triangle and z ∈ Ω (with the same caveat
as in the previous proof, we will silently assume the boundary of Ω to be smooth
and simple, for notation’s sake, but the same argument applies to the general
case of a simply connected domain). For δ > 0, Aδ, Bδ, Cδ, zδ are the closest
points of Ω∗

δ to A, B, C, z respectively, as before. Define EA,δ(z) to be the event
that there exists a non-self-intersecting path of open sites in Ωδ, separating Aδ
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A

B

C

Ω

z

e
∗

e

Fig 5. Picture of the event EA,δ(z). Also depicted is one oriented edge e with its associated
dual edge e∗. The graph Tδ is drawn with dotted lines while its dual Hδ is drawn with solid
lines.

and zδ from Bδ and Cδ. We define EB,δ(z), EC,δ(z) similarly, with obvious
circular permutations of the letters. Let HA,δ(z) (resp. HB,δ(z), HC,δ(z)) be
the probability of EA,δ(z) (resp. EB,δ(z), EC,δ(z)). The functions HA,δ, HB,δ

and HC,δ are extended to piecewise linear functions on Ω.
The proof consists of three steps, the second one being the most important:

(1) Prove that (HA,δ, HB,δ, HC,δ)δ>0 is a precompact family of functions (with
variable z).

(2) Let τ = e2iπ/3 and introduce the two sequences of functions defined by

Hδ(z) := HA,δ(z) + τHB,δ(z) + τ2HC,δ(z),

Sδ(z) := HA,δ(z) +HB,δ(z) +HC,δ(z).

Show that any sub-sequential limits h and s of (Hδ)δ>0 and (Sδ)δ>0 are
holomorphic. This statement is proved using Morera’s theorem, based on
the study of discrete integrals.

(3) Use boundary conditions to identify the possible sub-sequential limits h
and s. This guarantees the existence of limits for (HA,δ, HB,δ, HC,δ)δ>0.
A byproduct of the proof is the exact computation of these limits.

Then, sinceEC,δ(Dδ) is exactly the event Cδ(Ω, A,B,C,D), the limit ofHC,δ(Dδ)
as δ goes to 0 is also the limit of crossing probabilities.

Precompactness We only sketch this part of the proof. Let K be a compact
subset of Ω. If two points z, z′ ∈ K are surrounded by a common open (or closed)
circuit, then the events EA,δ(z

′) and EA,δ(z) are realized simultaneously. Hence,
the difference |HA,δ(z

′)−HA,δ(z)| is bounded above by

P1
2
[zδ and z′δ are not surrounded by a common open or a closed circuit].

Let η > 0 be the distance between K and Ωc. For z and z′, Theorem 2.1 can be
applied in roughly log(|z − z′|/η)/ log 3 concentric annuli, hence there exist two
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positive constants CK and εK depending only on K such that, for every δ > 0,

|HA,δ(z
′)−HA,δ(z)| 6 CK |z′ − z|εK (2)

and a similar bound for HB,δ and HC,δ. Furthermore, similar estimates can be
obtained along the boundary of Ω as long as we are away from A, B and C.

Since the functions are extended on the whole domain (see definition above),
we obtain a family of uniformly Hölder maps from any compact subset of
Ω \ {A,B,C} to [0, 1]. By the Arzelà-Ascoli theorem, the family is relatively
compact with respect to uniform convergence. It is hence possible to extract a
subsequence (HA,δn , HB,δn , HC,δn)n>0, with δn → 0, which converges uniformly
on every compact to a triple of Hölder maps (hA, hB, hC) from Ω \ {A,B,C} to
[0, 1]. From now on, we set h = hA + τhB + τ2hC and s = hA + hB + hC (they
are the limits of (Hδn)n>0 and (Sδn)n>0 respectively).

Holomorphicity of h and s We treat the case of h; the case of s follows the
same lines. To prove that h is holomorphic, one can apply Morera’s theorem
(see e.g. [Lan99]). Formally, one needs to prove that the integral of h along γ is
zero for any simple, closed, smooth curve γ contained Ω. In order to prove this
statement, we show that (Hδn)n is a sequence of (almost) discrete holomorphic
functions, where one needs to specify what is meant by discrete holomorphic.
In our case, we take it to mean that discrete contour integrals vanish. We refer
to [Smi10] for more details on discrete holomorphicity, including other definitions
of it and its connections to statistical physics.

Consider a simple, closed, smooth curve γ contained in Ω. For every δ > 0,
let γδ be a discretization of γ contained in Ωδ, i.e. a finite chain (γδ(k))06k6Nδ

of pairwise distinct sites of Ωδ, ordered in the counter-clockwise direction, such
that for every index k, γδ(k) and γδ(k + 1) are nearest neighbors, and chosen
in such a way that the Hausdorff distance between γδ and γ goes to 0 with δ.
Notice that Nδ can be taken of order δ−1, which we shall assume from now on.

For an edge e ∈ Hδ, define e
∗ to be the rotation by π/2 of e around its center

(it is an edge of the triangular lattice). For an edge e of the hexagonal lattice, let

Hδ(e) :=
Hδ(x) +Hδ(y)

2
,

where e = xy (x and y are the endpoints of the edge e).
An oriented edge e∗ of Tδ belongs to γδ if it is of the form γδ(k)γδ(k + 1).

In such a case, we set e∗ ∈ γδ. Define the discrete integral Iδγ(H) of Hδ (and

similarly Iδγ(S) for Sδ) along γδ by

Iδγ(H) :=
∑

e∗∈γ

e∗Hδ(e).

In the formula above, e∗ is considered as a vector in C of length δ.
Our goal is now to prove that Iδγ(H) and Iδγ(S) converge to 0 as δ goes to 0.

For every oriented edge e = xy ∈ Hδ, set

PA,δ(e) = P1
2

(

EA,δ(y) \ EA,δ(x)
)

,

and similarly PB,δ and PC,δ.
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Lemma 2.5. For any smooth γ, as δ goes to 0,

Iδγ(H) =
∑

e∗ surrounded by γδ

e∗
[

PA,δ(e) + τPB,δ(e) + τ2PC,δ(e)
]

+ o(1), (3)

Iδγ(S) =
∑

e∗ surrounded by γδ

e∗ [PA,δ(e) + PB,δ(e) + PC,δ(e)] + o(1), (4)

where the sum runs over oriented edges of Tδ surrounded by the closed curve γδ.

Proof. We treat the case of Hδ; that of Sδ is similar. For every oriented edge
e = xy in Hδ, define

∂eHδ := Hδ(y)−Hδ(x).

If f is a face of Tδ, let ∂f be its boundary oriented in counter-clockwise or-
der, seen as a set of oriented edges. With these notations, we get the following
identity:

Iδγ(H) =
∑

e∗∈γδ

e∗Hδ(e) =
∑

f surrounded by γδ

∑

e∗∈∂f

e∗Hδ(e), (5)

where the first sum on the right is over all faces of Tδ surrounded by the closed
curve γδ. Indeed, in the last equality, each boundary term is obtained exactly
once with the correct sign, and each interior term appears twice with opposite
signs. The sum of e∗Hδ(e) around f can be rewritten in the following fashion:

∑

e∗∈∂f

e∗Hδ(e) =
∑

e∗=uv∈∂f

i

(

u+ v

2
− f

)

∂eHδ,

where f denotes the complex coordinate of the center of the face f . Putting
this quantity in the sum (5), the term ∂eHδ = Hδ(y) − Hδ(x) appears twice
for x, y ∈ Hδ nearest neighbors bordered by two triangles in γδ, and the factors
i(u + v)/2 = i(x + y)/2 cancel between the two occurrences (here e∗ = uv),
leaving only i times the difference between the centers of the faces, i.e. the
complex coordinate of the edge e∗. Therefore,

Iδγ(H) =
1

2

∑

e∗⊂Int(γδ)

e∗∂eHδ + o(1). (6)

In the previous equality, we used the fact that the total contribution of the
boundary goes to 0 with δ. Indeed, e∗ is of order δ, and

∂eHδ = PA,δ(e)−PA,δ(−e) + τ(PB,δ(e)−PB,δ(−e)) + τ2(PC,δ(e)−PC,δ(−e)),
(7)

so that Theorem 2.1 gives a bound of δ1+ε for e∗∂eHδ (one may for instance
perform a computation similar to the one used for precompactness). Since there
are roughly δ−1 boundary terms, we obtain that the boundary accounts for at
most δε.

Replacing ∂Hδ by (7) in the equation (6), and re-indexing the sum to obtain
each oriented edge in exactly one term, we get the announced equality (3).
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A

B

C

a
b c

y
z

t

x

Fig 6. The dark gray and the white hexagons are the hexagons on Γ, Γ being in black.

Lemma 2.6 (Smirnov [Smi01]). For every three edges e1, e2, e3 of Ω
∗
δ emanating

from the same site, ordered counterclockwise, we have the following identities:

PA,δ(e1) = PB,δ(e2) = PC,δ(e3).

Even though we include the proof for completeness, we refer the reader
to [Smi01] for the (elementary, but very clever) first derivation of this result.
The lemma extends to site-percolation with parameter 1/2 on any planar trian-
gulation.

Proof. Index the three faces (of Hδ) around x by a, b and c, and the sites by y,
z and t as depicted in Fig. 6.

Let us prove that PA,δ(e1) = PB,δ(e2). The event EA,δ(y) \EA,δ(x) occurs if
and only if there are open paths from AB to a and from AC to c, and a closed
path from BC to b.

Consider the interface Γ between the open clusters connected to AC and the
closed clusters connected to BC, starting at C, up to the first time it hits x (it
will do it if and only if there exist an open path from AC to c and a closed path
from BC to b). Fix a deterministic self-avoiding path of Ω∗

δ , denoted γ, from C
to x. The event {Γ = γ} depends only on sites adjacent to γ (we denote the set
of such sites γ). Now, on {Γ = γ}, there exists a bijection between configurations
with an open path from a to AB and configurations with a closed path from a
to AB (by symmetry between open and closed sites in the domain Ωδ \ γ). This
is true for any γ (the fact that the path is required to be self-avoiding is crucial
here), hence there is a bijection between the event

EA,δ(y) \ EA,δ(x) =
⋃

γ

{Γ = γ} ∩ {a↔ AB in Ωδ \ γ}
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and
E :=

⋃

γ

{Γ = γ} ∩ {a ∗↔ AB in Ωδ \ γ}.

Note that EB,δ(z) \ EB,δ(x) is the image of E after switching the states of all
sites of Tδ (or equivalently faces of Hδ). Hence, the two events are in one-to-one
correspondence. Since P1

2
is uniform on the set of configurations,

PA,δ(e1) = P1
2
(EB,δ(z) \ EB,δ(x)) = P1

2
(E) = PB,δ(e2).

This argument is the key step of the lemma, and is sometimes called the color-

switching trick.

We are now in a position to prove that Iδγ(H) and Iδγ(S) converge to 0. From
Lemmas 2.5 and 2.6, we obtain by re-indexing the sum

Iδγ(H) =
∑

e∗⊂Int(γδ)

(e∗ + τ(τ.e)∗ + τ2(τ2.e)∗)PA(e) + o(1) = o(1),

since
e∗ + τ(τ.e)∗ + τ2(τ2.e)∗ = 0. (8)

Similarly, for s:

Iδγ(S) =
∑

e∗⊂Int(γδ)

(e∗ + (τ.e)∗ + (τ2.e)∗)PA(e) + o(1) = o(1).

Here, we have used
e∗ + (τ.e)∗ + (τ2.e)∗ = 0. (9)

This concludes the proof of the holomorphicity of h and s.

Identification of s and h Let us start with s. Since it is holomorphic and
real-valued, it is constant. It is easy to see from the boundary conditions (near
a corner for instance) that it is identically equal to 1. Now consider h. Since h is
holomorphic, it is enough to identify boundary conditions to specify it uniquely.

Let z ∈ Ω. Since hA(z) + hB(z) + hC(z) = 1, h(z) is a barycenter of 1, τ and
τ2 hence it is inside the triangle with vertices 1, τ and τ2. Furthermore, if z is
on the boundary of Ω∗

δ , lying between B and C, hA(z) = 0 (using Theorem 2.1),
thus hB(z)+hC(z) = 1 (since s = 1). Hence, h(z) lies on the interval [τ, τ2] of the
complex plane. Besides, h(B) = τ and h(C) = τ2, so h induces a continuous map
from the boundary interval [BC] of Ω onto [τ, τ2]. By Theorem 2.1 yet again
(more precisely Corollary 2.3), h is one-to-one on this boundary interval (we
leave it as an exercise). Similarly, h induces a bijection between the boundary
interval [AB] (resp. [CA]) of Ω and the complex interval [1, τ ] (resp. [τ2, 1]).
Putting the pieces together we see that h is a holomorphic map from Ω to the
triangle with vertices 1, τ and τ2, which extends continuously to Ω̄ and induces
a continuous bijection between ∂Ω and the boundary of the triangle.

From standard results of complex analysis (“principle of corresponding bound-
aries”, cf. for instance Theorem 4.3 in [Lan99]), this implies that h is actually a
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conformal map from Ω to the interior of the triangle. But we know that hmaps A
(resp. B, C) to 1 (resp. τ , τ2). This determines h uniquely and concludes the
proof of Theorem 1.3.

As a corollary of the proof, we get a nice expression for hA: if ΦΩ,A,B,C is
the conformal map from Ω to the triangle mapping A, B and C as previously
(which means of course that ΦΩ,A,B,C = h) then

HA,δ(z) →
2ℜe(ΦΩ,A,B,C(z)) + 1

3
.

If Ω is the equilateral triangle itself, then h is the identity map and we obtain
Cardy’s formula in Carleson’s form: if D ∈ [CA] then

f(Ω, A,B,C,D) =
|CD|
|AB| .

It is also to be noted that (8) actually characterizes the triangular lattice (and
therefore its dual, the hexagonal one), which explains why this proof works only
for this lattice.

2.4. Scaling limit of interfaces

We now show how Theorem 1.3 can be used to show Theorem 1.4. We start by
recalling several properties of SLE processes.

2.4.1. A crash-course on Schramm–Loewner evolutions

In this paragraph, several non-trivial concepts about Loewner chains are used
and we refer to [Law05] and [Sun11] for details. We briefly recall several useful
facts in the next paragraph.We do not aim for completeness (see [Law05, Wer04,
Wer05] for details). We simply introduce notions needed in the next sections. Re-
call that a domain is a simply connected open set not equal to C. We first explain
how a curve between two points on the boundary of a domain can be encoded via
a real function, called the driving process. We then explain how the procedure
can be reversed. Finally, we describe the Schramm–Loewner Evolution.

From curves in domains to the driving process Set H to be the upper
half-plane. Fix a compact set K ⊂ H such that H = H \K is simply connected.
Riemann’s mapping theorem guarantees the existence of a conformal map from
H onto H. Moreover, there are a priori three real degrees of freedom in the
choice of the conformal map, so that it is possible to fix its asymptotic behavior
as z goes to ∞. Let gK be the unique conformal map from H onto H such that

gK(z) := z +
C

z
+O

(

1

z2

)

.
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The proof of the existence of this map is not completely obvious and requires
Schwarz’s reflection principle. The constant C is called the h-capacity of K. It
acts like a capacity: it is increasing in K and the h-capacity of λK is λ2 times
the h-capacity of K.

There is a natural way to parametrize certain continuous non-self-crossing
curves Γ : R+ → H with Γ(0) = 0 and with Γ(s) going to ∞ when s→ ∞. For
every s, let Hs be the connected component of H \ Γ[0, s] containing ∞. We
denote by Ks the hull created by Γ[0, s], i.e. the compact set H \Hs. By con-
struction,Ks has a certain h-capacity Cs. The continuity of the curve guarantees
that Cs grows continuously, so that it is possible to parametrize the curve via a
time-change s(t) in such a way that Cs(t) = 2t. This parametrization is called
the h-capacity parametrization; we will assume it to be chosen, and reflect this
by using the letter t for the time parameter from now on. Note that in general,
the previous operation is not a proper reparametrization, since any part of the
curve “hidden from ∞” will not make the h-capacity grow, and thus will be
mapped to the same point for the new curve; it might also be the case that t
does not go to infinity along the curve (e.g. if Γ “crawls” along the boundary
of the domain), but this is easily ruled out by crossing-type arguments when
working with curves coming from percolation configurations.

The curve can be encoded via the family of conformal maps gt from Ht to H,
in such a way that

gt(z) := z +
2t

z
+O

(

1

z2

)

.

Under mild conditions, the infinitesimal evolution of the family (gt) implies the
existence of a continuous real valued function Wt such that for every t and
z ∈ Ht,

∂tgt(z) =
2

gt(z)−Wt
. (10)

The function Wt is called the driving function of Γ. The typical required hy-
pothesis for W to be well-defined is the following Local Growth Condition:

For any t ≥ 0 and for any ε > 0, there exists δ > 0 such that for any 0 ≤ s ≤ t,
the diameter of gs(Ks+δ \Ks) is smaller than ε.

This condition is always satisfied in the case of curves (in general, Loewner
chains can be defined for families of growing hulls, see [Law05] for additional
details).

From a driving function to curves It is important to notice that the
procedure of obtaining W from γ is reversible under mild assumptions on the
driving function. We restrict our attention to the upper half-plane.

If a continuous function (Wt)t>0 is given, it is possible to reconstruct Ht as
the set of points z for which the differential equation (10) with initial condition
z admits a solution defined on [0, t]. We then set Kt = H \ Ht. The family of
hulls (Kt)t>0 is said to be the Loewner Evolution with driving function (Wt)t>0.
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So far, we did not refer to any curve in this construction. If there exists
a parametrized curve (Γt)t>0 such that for any t > 0, Ht is the connected
component of H \ Γ[0, t] containing ∞, the Loewner chain (Kt)t>0 is said to be
generated by a curve. Furthermore, (Γt)t>0 is called the trace of (Kt)t>0.

A general necessary and sufficient condition for a parametrized non-self-
crossing curve in a simply connected domain to be the time-change of the trace
of a Loewner chain is the following:

(C1) Its h-capacity is continuous;
(C2) Its h-capacity is strictly increasing;
(C3) The hull generated by the curve satisfies the Local Growth Condition.

The Schramm–Loewner evolution We are now in a position to define
Schramm–Loewner Evolutions:

Definition 2.7 (SLE in the upper half-plane). The chordal Schramm–Loewner
Evolution in H with parameter κ > 0 is the (random) Loewner chain with
driving process Wt :=

√
κBt, where Bt is a standard Brownian motion.

Loewner chains in other domains are easily defined via conformal maps:

Definition 2.8 (SLE in a general domain). Fix a domain Ω with two points
a and b on the boundary and assume it has a nice boundary (for instance a
Jordan curve). The chordal Schramm–Loewner evolution with parameter κ >
0 in (Ω, a, b) is the image of the Schramm–Loewner evolution in the upper
half-plane by a conformal map from H onto Ω tending to a at 0 and to b at
infinity.

The scaling properties of Brownian motion ensure that the definition does not
depend on the choice of the conformal map involved; equivalently, the definition
is consistent in the case Ω = H. Defined as such, SLE is a random family of
growing hulls, but it can be shown that the Loewner chain is generated by a
curve (see [RS05] for κ 6= 8 and [LSW04] for κ = 8).

Markov domain property and SLE To conclude this section, let us justify
the fact that SLE traces are natural scaling limits for interfaces of conformally
invariant models. In order to explain this fact, we need the notion of domain
Markov property for a family of random curves. Let (Γ(Ω,a,b)) be a family of
random curves from a to b in Ω, indexed by domains (Ω, a, b).

Definition 2.9 (Domain Markov property). A family of random continuous
curves Γ(Ω,a,b) in simply connected domains is said to satisfy the domain Markov
property if for every (Ω, a, b) and every t > 0, the law of the curve Γ(Ω,a,b)[t,∞)
conditionally on Γ(Ω,a,b)[0, t] is the same as the law of Γ(Ωt,Γt,b), where Ωt is the
connected component of Ω \ Γt having b on its boundary.

Discrete interfaces in many models of statistical physics naturally satisfy this
property (which can be seen as a variant of the Dobrushin-Lanford-Ruelle condi-
tions for Gibbs measures, [Geo88]), and therefore their scaling limits, provided
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that they exist, also should. Schramm proved the following result in [Sch00],
which in some way justifies SLE processes as the only natural candidates for
such scaling limits:

Theorem 2.10 (Schramm [Sch00]). Every family of random curves Γ(Ω,a,b)

which

• is conformally invariant,
• satisfies the domain Markov property, and
• satisfies that Γ(H,0,∞) is scale invariant (in the sense that for any posi-
tive λ, the image of it by the map z 7→ λz has the same distribution),

is the trace of a chordal Schramm–Loewner evolution with parameter κ ∈ [0,∞).

Remark 2.11. It is formally not necessary to assume scale invariance of the
curve in the case of the upper-half plane, because it can be seen as a particular
case of conformal invariance; we keep it nevertheless in the previous statement
because it is potentially easier, while still informative, to prove.

2.4.2. Strategy of the proof of Theorem 1.4

In the following paragraphs, we fix a simply-connected domain Ω with two points
a and b on its boundary. We consider percolation with parameter p = 1/2 on a
discretization Ωδ of Ω by the rescaled triangular lattice δT. Let aδ and bδ be two
boundary sites of Ω∗

δ near a and b respectively. As explained in the introduction,
the boundary of Ωδ can be divided into two arcs aδbδ and bδaδ. Assuming that
the first arc is composed of open sites, and the second of closed sites, we obtain a
unique interface defined on Ω∗

δ between the open cluster connected to aδbδ, and
the closed cluster connected to bδaδ. This path is denoted by γδ and is called
the exploration path.

The strategy to prove that (γδ) converges to the trace of SLE(6) follows three
steps:

• First, prove that the family (γδ) of curves is tight.
• Then, show that any sub-sequential limit can be reparametrized in such a
way that it becomes the trace of a Loewner evolution with a continuous
driving process.

• Finally, show that the only possible driving process for the sub-sequential
limits is

√
6Bt where Bt is a standard Brownian motion.

The main step is the third one. In order to identify Brownian motion as the only
possible driving process for the curve, we find computable quantities expressed
in terms of the limiting curve. In our case, these quantities will be the limits
of certain crossing probabilities. The fact that these (explicit) functions are
martingales implies martingale properties of the driving process. Lévy’s theorem
(which states that a continuous real-valued process X such that both Xt and
X2
t − 6t are martingales is necessarily of the form

√
6Bt) then gives that the

driving process must be
√
6Bt.
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2.4.3. Tightness of interfaces

Recall that the convergence of random parametrized curves (say with time-
parameter in R) is in the sense of the weak topology inherited from the fol-
lowing distance on curves:

d(Γ, Γ̃) = inf
φ

sup
u∈R

|Γ(u)− Γ̃(φ(u))|, (11)

where the infimum is taken over all reparametrizations (i.e. strictly increasing
continuous functions φ : R → R with φ(0) = 0 and φ tends to infinity as t tends
to infinity).

In this section, the following theorem is proved:

Theorem 2.12. Fix a domain (Ω, a, b). The family (γδ)δ>0 of exploration paths
for critical percolation in (Ω, a, b) is tight.

The question of tightness for curves in the plane has been studied in the
milestone paper [AB99]. In this paper, it is proved that a sufficient condition
for tightness is the absence, on every scale, of annuli crossed back and forth an
arbitrary large number of times.

For δ > 0, let µδ be the law of a random path Γδ on Ωδ from aδ to bδ. For
x ∈ Ω and r < R, let Λr(x) = x + Λr and Sr,R(x) = ΛR(x) \ Λr(x) and define
Ak(x; r, R) to be the event that there exist k disjoint sub-paths of the curve Γδ
crossing between the outer and inner boundaries of Sr,R(x).

Theorem 2.13 (Aizenman-Burchard [AB99]). Let Ω be a simply connected
domain and let a and b be two marked points on its boundary. For δ > 0, let Γδ
denote a random path on Ωδ from aδ to bδ with law µδ.

If there exist k ∈ N, Ck < ∞ and ∆k > 2 such that for all δ < r < R and
x ∈ Ω,

µδ(Ak(x; r, R)) ≤ Ck

( r

R

)∆k

,

then the family of curves (Γδ) is tight.

We now show how to exploit this theorem in order to prove Theorem 2.12.
The main tool is Theorem 2.1.

Proof of Theorem 2.12. Fix x ∈ Ω, δ < r < R and recall that the lattice has
mesh size δ. Let k be a positive integer to be fixed later. By the Reimer inequality
(recall that the Reimer inequality is simply the BK inequality for non-increasing
events),

Pp

(

Ak(x; r, 3r)
)

≤
[

Pp

(

A1(x; r, 3r)
)]k

.

Using Theorem 2.1, Pp
(

A1(x; r, 3r)) ≤ 1 − Pp(Er/δ) < 1 − C, where En is the
event that there exists a closed circuit surrounding the annulus in Λ3n \ Λn.
Let us fix k large enough so that (1 − C)k < 1/27. The annulus Sr,R(x) can
be decomposed into roughly ln3(R/r) annuli of the form S3ℓr,3ℓ+1r(x). For this
value of k,

Pp(Ak(x; r, R)) ≤ C
( r

R

)3

, (12)
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for some constant C > 0. Hence, Theorem 2.13 implies that the family (γδ) is
tight.

2.4.4. Sub-sequential limits are traces of Loewner chains

In the previous paragraph, exploration paths (and therefore their traces, since
they coincide) were shown to be tight. Let us consider a sub-sequential limit.
We would like to show that, properly reparametrized, the limiting curve is the
trace of a Loewner chain.

Theorem 2.14. Any sub-sequential limit of the family (γδ)δ>0 of exploration
paths is almost surely the time-change of the trace of a Loewner chain.

The discrete curves γδ are random Loewner chains, but this does not imply
that sub-sequential limits are. Indeed, not every continuous non-self-crossing
curve can be reparametrized as the trace of a Loewner chain, especially when
it is fractal-like and has many double points. We therefore need to provide an
additional ingredient.

Condition C1 of the previous section is easily seen to be automatically satis-
fied by continuous curves. Similarly, Condition C3 follows from the two others
when the curve is continuous, so that the only condition to check is Condi-
tion C2.

This condition can be understood as being the fact that the tip of the curve
is visible from b at every time. In other words, the family of hulls created by
the curve is strictly increasing. This is the case if the curve does not enter long
fjords created by its past at every scale, see Fig. 7.

Recently, Kemppainen and Smirnov proved a “structural theorem” charac-
terizing sequences of random discrete curves whose limit satisfies Condition C2
almost surely. This theorem generalizes Theorem 2.13, in the sense that the
condition is weaker and the conclusion stronger. Before stating the theorem,

b

Sr,R

a

b

a

b

Fig 7. Left: An example of a fjord. Seen from b, the h-capacity (roughly speaking, the size) of
the hull does not grow much while the curve is in the fjord. The event involves six alternating
open (in plain lines) and closed (in dotted lines) crossings of the annulus. Right: Condition-
ally on the beginning of the curve, the crossing of the annulus is unforced on the left, while
it is forced on the right.
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we need a definition. Fix Ω and two boundary points a and b and consider a
curve Γ. A sub-path Γ[t0, t1] of a continuous curve Γ is called a crossing of the
annulus Sr,R(x) if Γt0 ∈ ∂Λr(x) and Γt1 ∈ ∂ΛR(x), where t0 < t1 or t1 < t0 and
∂Λr is the boundary of Λr. A crossing is called unforced if there exists a path
Γ̃ from a to b not intersecting ΛR(x).

Theorem 2.15 (Kemppainen-Smirnov, [KS12]). Let (Ω, a, b) be a domain with
two points on the boundary. For δ > 0, Γδ is a random continuous curve on
(Ωδ, aδ, bδ) with law µδ.

If there exist C > 1 and ∆ > 0 such that for any 0 < δ < r < R/C and for
any stopping time τ ,

µδ(γδ[τ,∞] contains an unforced crossing in Ω \ γδ[0, τ ] of Sr,R(x)) ≤ C
( r

R

)∆

for any annulus Sr,R(x), then the family (Γδ)δ>0 is tight and any sub-sequential
limit can almost surely be reparametrized as the trace of a Loewner chain.

We do not prove this theorem and refer instead to the original article for a
complete account. Theorem 2.1 implies the hypothesis of the previous theorem
following the same lines as in the proof of Theorem 2.12. As a consequence,
Theorem 2.14 follows readily.

In order to show Theorem 2.14 in the case of percolation, one can run an
alternative argument based on Corollary 2.3 and the so-called 6-arm event. This
argument has already been described precisely in [Wer09a]. For this reason, we
do not repeat it here and refer to these lecture notes for details.

2.4.5. Convergence of exploration paths to SLE(6)

Fix a topological triangle (Ω, A,B,C), i.e. a domain Ω 6= C delimited by a
non-intersecting continuous curve and three distinct points A, B and C on its
boundary, indexed in counter-clockwise order. Let (Ωδ, Aδ, Bδ, Cδ) be a discrete
approximation of (Ω, A,B,C) and zδ ∈ Ω∗

δ . Recall the definition of EA,δ(zδ)
used in the proof of Theorem 1.3: it is the event that there exists a non-self-
intersecting path of open sites in Ωδ, separating Aδ and zδ from Bδ and Cδ.
For technical reasons, we keep the dependency on the domain in the notation
for the duration of this section, and we set EΩδ,Aδ,Bδ,Cδ

(zδ) := EA,δ(zδ). Also
define

Hn(Ωδ, Aδ, Bδ, Cδ, zδ) := P1
2
(EΩδ\γ[0,n],γn,Bδ,Cδ

(zδ) | γ[0, n]).

Lemma 2.16. For any (Ω, A,B,C), and for any z ∈ Ω and δ > 0, the function
(Hn(Ωδ, Aδ, Bδ, Cδ, zδ))n≥0 is a martingale with respect to (Fn)n≥0, where Fn
is the σ-algebra generated by the the first n steps of γδ.

Proof. The slit domain created by “removing” the first n steps of the explo-
ration path is again a topological triangle. Conditionally on the n first steps
of γδ, the law of the configuration in the new domain is exactly percolation
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in Ω \ γδ[0, n]. This observation implies that Hn(Ωδ, Aδ, Bδ, Cδ, zδ) is the ran-
dom variable 1EΩδ,Aδ,Bδ,Cδ

(zδ) conditionally on Fn, therefore it is automatically
a martingale.

Proposition 2.17. Any sub-sequential limit of (γδ)δ>0 which is the trace of a
Loewner chain is the trace of SLE(6).

Proof. Once again, we only sketch the proof in order to highlight the important
steps. Consider a sub-sequential limit γ in the domain (Ω, A,B) which is a
Loewner chain. Let φ be a map from (Ω, A,B) to (H, 0,∞). Our goal is to prove
that γ̃ := φ(γ) is a chordal SLE(6) in the upper half-plane.

Since γ is assumed to be a Loewner chain, γ̃ is a growing hull from 0 to ∞; we
can assume that it is parametrized by its h-capacity. Let Wt be its continuous
driving process. Also define gt to be the conformal map from H \ γ̃[0, t] to H

such that gt(z) = z + 2t/z +O(1/z2) when z goes to infinity.

Fix C ∈ ∂Ω and Z ∈ Ω. For δ > 0, recall that Hn(Ωδ, Aδ, Bδ, Cδ, Zδ) is a
martingale for γδ. Since the martingale is bounded, Hτt(Ωδ, Aδ, Bδ, Cδ, Zδ) is a
martingale with respect to Fτt , where τt is the first time at which φ(γδ) has a
h-capacity larger than t. Since the convergence of γδ to γ is uniform on every
compact subset of (Ω, A,B), one can see (with a little bit of work) that

Ht(Z) := lim
δ→0

Hτt(Ωδ, Aδ, Bδ, Cδ, Zδ)

is a martingale with respect to Gt, where Gt is the σ-algebra generated by the
curve γ̃ up to the first time its h-capacity exceeds t. By definition, this time
is t, and Gt is the σ-algebra generated by γ̃[0, t]. In other words, it is the natural
filtration associated with the driving process (Wt).

We borrow the definitions of hA and h from the proof of the Cardy–Smirnov
formula. By first mapping Ω to H and then applying the Cardy-Smirnov formula,
we find

Ht(Z) = hA

(

gt(z)−Wt

gt(c)−Wt

)

,

where we define z := φ(Z) and c := φ(C). This is a martingale for every choice
of z and c, so we get the family of identities

E

[

hA

(

gt(z)−Wt

gt(c)−Wt

)∣

∣

∣

∣

Gs
]

= hA

(

gs(z)−Ws

gs(c)−Ws

)

for all z ∈ H, c ∈ R and 0 < s < t such that z and c are both within the
domain of definition of gt. Now, we would like to express the previous equality
in terms of h instead of hA (recall that hA = 1

3 (2ℜe(h) + 1)). Noting that the
two functions below, as functions of z, are holomorphic and equal at c, we obtain

E

[

h

(

gt(z)−Wt

gt(c)−Wt

)∣

∣

∣

∣

Gs
]

= h

(

gs(z)−Ws

gs(c)−Ws

)

.
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We know the asymptotic expansion of gs and gt around infinity, so the above
becomes

E

[

h

(

z −Wt + 2t/z +O(1/c2)

c−Wt + 2t/c+O(1/z2)

)∣

∣

∣

∣

Gs
]

= h

(

z −Ws + 2s/z +O(1/z2)

c−Ws + 2s/c+O(1/c2)

)

.

(13)
Letting z and c go to infinity with fixed ratio z/c = λ ∈ H, we have

h

(

z −Ws + 2s/z +O(1/z2)

c−Ws + 2s/c+O(1/c2)

)

= h

(

λ−Ws/c+ 2s/λc2 +O(1/c2)

1−Ws/c+ 2s/c2 +O(1/c3)

)

= h

(

λ+
(λ− 1)Ws

c
+

(λ− 1)W 2
s + 2(1− λ2)s/λ

c2
+O(c−3)

)

.

= h(λ) +
(λ− 1)h′(λ)Ws

c

+
(λ− 1)W 2

s [h
′(λ) + (λ− 1)h′′(λ)/2] + 2(1− λ2)sh′(λ)/λ

c2
+O(c−3).

Using this expansion on both sides of (13) and matching the terms, we obtain
two identities for (Wt):

E[Wt|Gs] =Ws, E[W 2
t |Gs] =W 2

s +
4(1 + λ)h′(λ)/λ

2h′(λ) + (λ− 1)h′′(λ)
(t− s).

The function h is a conformal map from the upper-half plane to the equilateral
triangle, sending 0, 1 and ∞ to the vertices of the triangle; up to (explicit)
additive and multiplicative constants A and B, it can be written using the
Schwarz-Christoffel formula as

h(λ) = A

∫ λ

[z(1− z)]−2/3 dz +B.

From this, one obtains h′(λ) = A[λ(1 − λ)]−2/3 and

h′′(λ)

h′(λ)
= −2

3

(

1

λ
− 1

1− λ

)

=
2(2λ− 1)

3λ(1− λ)
.

Plugging this into the previous expression shows that the coefficient of (t − s)
is identically equal to 6, and since we know that (Wt) is a continuous process,
Lévy’s theorem implies that it is of the form (

√
6Bt) where (Bt) is a standard

real-valued Brownian motion. This implies that γ is the trace of the SLE(6)
process in (Ω, A,B).

Proof of Theorem 1.4. By Theorem 2.12, the family of exploration processes is
tight. Using Theorem 2.14, any sub-sequential limit is the time-change of the
trace of a Loewner chain. Consider such a sub-sequential limit and parametrize
it by its h-capacity. Proposition 2.17 then implies that it is the trace of SLE(6).
The possible limit being unique, we are done.
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3. Critical exponents

To quantify connectivity properties at p = 1/2, we introduce the notion of arm-
event. Fix a sequence σ ∈ {0, 1}j of j colors (open 1 or closed 0). For 1 ≤ n < N ,
define Aσ(n,N) to be the event that there are j disjoint paths from ∂Λn to ∂ΛN
with colors σ1, . . . , σj where the paths are indexed in counter-clockwise order.
We set Aσ(N) to be Aσ(k,N) where k is the smallest integer such that the
event is non-empty. For instance, A1(n,N) is the one-arm event corresponding
to the existence of an open crossing from the inner to the outer boundary of
ΛN \ Λn.

An adaptation of Corollary 2.4 implies that there exist α′
σ and β′

σ such that

(n/N)α
′

σ ≤ P1
2
[Aσ(n,N)] ≤ (n/N)β

′

σ .

It is therefore natural to predict that there exists a critical exponent ασ ∈ (0,∞)
such that

P1
2
[Aσ(n,N)] = (n/N)ασ+o(1),

where o(1) is a quantity converging to 0 as n/N goes to 0. The quantity ασ is
called an arm-exponent. We now explain how these exponents can be computed.

3.1. Quasi-multiplicativity of the probabilities of arm-events

Let us start by a few technical yet crucial statements on probabilities of arm-
events. These statements will be instrumental in all the following proofs.

Theorem 3.1 (Quasi-multiplicativity). Fix a color sequence σ. There exists
c ∈ (0,∞) such that

cP1
2

[

Aσ(n1, n2)
]

P1
2

[

Aσ(n2, n3)
]

≤ P1
2

[

Aσ(n1, n3)
]

≤ P1
2

[

Aσ(n1, n2)
]

P1
2

[

Aσ(n2, n3)
]

for every n1 < n2 < n3.

The inequality

P1
2

[

Aσ(n1, n3)
]

≤ P1
2

[

Aσ(n1, n2)
]

P1
2

[

Aσ(n2, n3)
]

.

is straightforward using independence. The other one is slightly more technical.
Let us mention that in the case of one arm (σ = 1), or more generally if all
the arms are to be of the same color, the proof is fairly easy (we recommend
it as an exercise; see Fig. 8 for a hint). For general σ, the proof requires the
notion of well-separated arms. We do not discuss this matter here and refer to
the well-documented literature [Kes87, Nol08].

Another important tool, which is also a consequence of the well-separation
of arms, is the following localization of arms. Let δ > 0; for a sequence σ of
length j, consider 2j + 1 points x1, x2, . . . , x2j , x2j+1 = x1 found in clockwise
order on the boundary of Λn, with the additional condition that |xk+1−xk| ≥ δn
for any k ≤ 2j. Similarly, consider 2j + 1 points y1, . . . , y2j , y2j+1 = y1 found
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n2

n3

n1

2n2

n2
2

Fig 8. The paths in the annuli Λn3 \ Λn2 and Λn2 \ Λn1 are in black. A combination of two
circuits connected by a path (in gray) connects the paths together. The combination of gray
paths in the middle occurs with probability bounded away from 0 thanks to crossing estimates
(Theorem 2.1 and Corollary 2.3).

in clockwise order on the boundary of ΛN , with the additional condition that
|yk+1−yk| ≥ δN for any k ≤ 2j. The sequence of intervals (Ik = [x2k−1, x2k])k≤j
and (Jk = [y2k−1, y2k])k≤j are called δ-well separated landing sequences. Let
AI,Jσ (n,N) be the event that for each k there exists an arm of color σk from Ik
to Jk in Λn \ΛN , these arms being pairwise disjoint. This event corresponds to
the event Aσ(n,N) where arms are forced to start and finish in some prescribed
areas of the boundary.

Proposition 3.2. Let σ be a sequence of colors; for any δ > 0 there exists
Cσ < ∞ such that, for any 2n ≤ N and any choice of δ-well separated landing
sequences I, J at radii n and N ,

P1
2

[

AI,Jσ (n,N)
]

≤ P1
2

[

Aσ(n,N)
]

≤ CσP1
2

[

AI,Jσ (n,N)
]

.

Once again, only the second inequality is non trivial. We refer to [Nol08] for
a comprehensive study.

3.2. Universal arm exponents

Before dealing with the computation of arm-exponents using SLE techniques,
let us mention that several exponents can be computed without this elaborated
machinery. These exponents, called universal exponents, are expected to be the
same for a large class of models, including the so-called random-cluster models
with cluster weights q ≤ 4 (see [Gri06] for a review on the random-cluster
model). In order to state the result, we need to define arm events in the half-
plane. Let H+ be the set of vertices in H with positive second coordinate. For
a color sequence σ of j colors, define A+

σ (n,N) to be the existence of j disjoint
paths in (ΛN \Λn)∩H+ from ∂Λn∩H+ to ∂ΛN ∩H+, colored counterclockwise
according to σ.
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Fig 9. The landing sequences used to prove an upper bound on the probability of the 5-arm
event. At most one site with five such arms exists.

Theorem 3.3. For every 0 < n < N , there exist two constants c, C ∈ (0,∞)
such that

c
( n

N

)2

≤ P1
2

[

A01001(n,N)
]

≤ C
( n

N

)2

,

c
( n

N

)2

≤ P1
2

[

A+
010(n,N)

]

≤ C
( n

N

)2

,

c
n

N
≤ P1

2

[

A+
01(n,N)

]

≤ C
n

N
.

The three computations are based on the same type of ingredient, and we
refer to [Wer09a] for a complete derivation. An important observation is that the
proof of the above is based only on Theorem 3.1, Proposition 3.2 and crossing
estimates (Corollary 2.3). It does not require conformal invariance.

Proof. We only give a sketch of the proof of the first statement; the others are
derived from similar arguments.

Consider percolation in a large N ×N rectangle R, and mark five boundary
intervals according to Fig. 9. It is easy to check that there is at most one site
in the rectangle which is connected to these boundary arcs by disjoint arms of
the depicted colors; in other words, the expected number of such hexagons is at
most 1. On the other hand, by arm localization, the probability for each of the
hexagons in the middle (N/3) × (N/3) rectangle R′ to exhibit 5 such arms is
given up to multiplicative constants by the probability of 5 arms between radii 1
and N , leading to the upper bound

P1
2

[

A01001(1, N)
]

≤ C

(

1

N

)2

.

To get the corresponding lower bound, we need to show that such a hexagon
can be found with positive probability within R′, and this in turn is a conse-
quence of crossing estimates (Corollary 2.3). One way to proceed is as follows.
Let Γ be the highest horizontal, open crossing of R, provided such a crossing
exists (which occurs with positive probability by Corollary 2.3). Γ goes through
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R′ with positive probability, and by definition, any hexagon on Γ is connected to
the top side of R by a closed path. On the other hand, with positive probability,
Γ itself is connected to the bottom side of R by an open path; let Γ′ be the
right-most such path, and let X be the hexagon at which Γ and Γ′ intersect.
Still with positive probability from Corollary 2.3, X ∈ R′; and the absence of
an open path further to the right imposes the existence of a closed path be-
low Γ, connecting a neighbor of X to the right-hand edge of R. Collecting all
the information given by the construction, we see that from X start five macro-
scopic disjoint arms of the same colors as in Fig. 9, from which the lower bound
follows:

c

(

1

N

)2

≤ P1
2

[

A01001(1, N)
]

.

Similar bounds for P1
2

[

A01001(n,N)
]

may then be obtained invoking quasi-

multiplicativity (Theorem 3.1), thus ending the argument.

With the Reimer inequality (see the introduction), the first inequalities in
the previous result imply several interesting inequalities on arm-exponents. For
instance,

Pp

[

Aσ1(n,N)
]

≤ Pp

[

Aσ(n,N)
]

· Pp
[

A1(n,N)
]

.

Since Pp[A1(n,N)] ≥ (n/N)α for some constant α > 0, we deduce from the
previous theorem that

Pp

[

A1010(n,N)
]

≥ (n/N)2−α and Pp

[

A101010(n,N)
]

≤ (n/N)2+α. (14)

These bounds are crucial for the study of the dynamical percolation [Gar11],
the scaling relations, and for the alternative proof of convergence to SLE(6)
presented in [Wer09a].

3.3. Critical arm exponents

The fact that the driving process of SLE is a Brownian motion paves the way to
the use of techniques such as stochastic calculus in order to study the properties
of SLE curves. Consequently, SLEs are now fairly well understood. Path prop-
erties have been derived in [RS05], their Hausdorff dimension can be computed
[Bef04, Bef08a], etc. In addition to this, several critical exponents can be related
to properties of the interfaces, and thus be computed using SLE.

A color-switching argument very similar to the one harnessed in Lemma 2.6
shows that when one exponent ασ exists for some polychromatic sequence σ
(here polychromatic means that the sequence contains at least one 0 and one 1),
the exponents ασ′ exist for every polychromatic sequence σ′ of the same length
as σ, and furthermore ασ′ = ασ. From now on, we set αj to be the exponent for
polychromatic sequences of length j. By extension, we set α1 to be the exponent
of the one-arm event.
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Theorem 3.4 ([LSW02, SW01]). The exponents αj exist. Furthermore,

α1 =
5

48
and αj =

j2 − 1

12
for j > 1.

The proof of this is heavily based on the use of Schramm–Loewner Evolutions.
We sketch the proof and we refer the reader to existing literature on the topic for
details [LSW02, SW01]. The argument is two-fold. First, arm-exponents can be
related to the corresponding exponents for SLE. And second, these exponents
can be computed using stochastic and conformal invariance techniques. We will
not describe the second step, since the computation can be found in many
places in the literature already, and it would bring us far from our main subject
of interest in this review.

Lemma 3.5. Let σ be a polychromatic sequence of length j. For R > 1,
P1

2
[Aσ(m,Rm)] converges as m goes to ∞ to a quantity which will be denoted

by P [ASLE6
σ (1, R)] (see the proof for a description). Furthermore,

lim
R→∞

logP [ASLE6
σ (1, R)]

logR
= −

{

j2−1
12 if j > 1,
5
48 if j = 1.

Proof (sketch). Let us first deal with j = 1. Let Λ be the box centered at the
origin with hexagonal shape and edge-length 1. Consider a exploration process
in the discrete domain (RΛ)δ defined as follows:

• It starts from the corner R.
• Inside the domain, the exploration γ turns left when it faces an open
hexagon, and right otherwise.

• On the boundary of (RΛ)δ \ γ, γ carries on in the connected component
of (RΛ) \ γ containing the origin (it always bumps in such a way that it
can reach the origin eventually).

The existence of an open path from ∂Λ to ∂(RΛ) corresponds to the fact that
the exploration does not close any counterclockwise loop before reaching Λ.

It can be shown that the exploration γ converges to a so-called radial SLE6

[LSW02], so that the probability of P1
2
[A1(m,Rm)] converges to the probability

that such a SLE6 does not close counterclockwise loops before reaching Λ (de-
note this probability by P [ASLE6

1 (1, R)]). This quantity has been computed in
[LSW02] and has been proved to satisfy

logP [ASLE6

1 (1, R)]

logR
→ − 5

48
as R goes to ∞,

thus concluding the proof in this case.
Let us now deal with αj for j > 1 even. Let us consider the case of the

sequence of alternative colors σ with length j (we do not loose any general-
ity since all the polychromatic exponents with the same number of colors are
equal). In terms of the exploration path, the event Aσ(m,Rm) corresponds to
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the exploration process doing j inward crossings of the annulus (RΛ) \ Λ. The
probability of the event for SLE6, called ASLE6

σ (1, R), was also estimated in
[LSW01b, LSW01a] and has been proved to satisfy

logP [ASLE6
σ (1, R)]

logR
→ − j

2 − 1

12
as R goes to ∞,

thus concluding the proof in this case. The case of j odd can also be handled
similarly. Let us mention that the previous paragraphs constitute a sketch of
proof only, and the actual proof is fairly more complicated, we refer to [LSW02,
SW01] (or [Wer04, Wer09a]) and the references therein for a full proof.

We are now in a position to prove Theorem 3.4.

Proof of Theorem 3.4. Fix ε > 0. It is sufficient to study the convergence along
integers of the form Rn since Corollary 2.3 enables one to relate the probabilities
of Aσ(1, R

n) to the one of Aσ(1, N) for any Rn ≤ N < Rn+1. Using Theorem 3.1
iteratively, there exists a universal constant C > 1 independent of R such that
for any n,

∣

∣

∣

∣

∣

log P1
2
[Aσ(R

n)]−
n−1
∑

k=0

logP1
2
[Aσ(R

k, Rk+1)]

∣

∣

∣

∣

∣

≤ n logC. (15)

The previous lemma implies that P1
2
[Aσ(m,Rm)] converges as m goes to ∞.

Therefore,

1

n

n−1
∑

k=0

logP1
2
[Aσ(R

k, Rk+1)] −→ logP [ASLE6

σ (1, R)] as n goes to ∞.

Now, let R be large enough that logC/ logR ≤ ε/2. The statement follows
readily by dividing (15) by n logR and plugging the previous limit into it.

3.4. Fractal properties of critical percolation

Arm exponents can be used to measure the Hausdorff dimension of sets describ-
ing critical percolation clusters. A set S of vertices of the triangular lattice is
said to have dimension dS if the density of points in S within a box of size
n behaves as n−xS , with xS = 2 − dS . The codimension xS is related to arm
exponents in many cases:

• The 1-arm exponent is related to the existence of long connections, from
the center of a box to its boundary. It measures the Hausdorff dimension
of big clusters, like the incipient infinite cluster (IIC) as defined by Kesten
[Kes86]. For instance, the IIC has a Hausdorff dimension equal to 2 −
5/48 = 91/48.

• The monochromatic 2-arm exponent describes the size of the backbone of
a cluster. It can be shown using the BK inequality that this exponent
is strictly smaller than the one-arm exponent, hence implying that this
backbone is much thinner than the cluster itself. This fact was used by
Kesten [Kes86] to prove that the random walk on the IIC is sub-diffusive
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(while it has been proved to converge toward a Brownian Motion on a
supercritical infinite cluster, see [BB07, MP07] for instance).

• The polychromatic 2-arm exponent is related to the boundary points of
big clusters, which are thus of fractal dimension 7/4. This exponent can be
observed experimentally on interfaces (see [DSB04, SRG85] for instance).

• The 4-arm exponent with alternating colors counts the pivotal sites (see
the next section for more information). The dimension of the set of pivotal
sites is thus 3/4. This exponent is crucial in the study of noise-sensitivity
of percolation (see [SS10, GPS10] and references therein).

4. The critical point of percolation and the near-critical regime

We now move away from the critical regime and start to study site percolation
with arbitrary p (keeping in mind that we are mostly interested in the study of
p near pc = 1/2).

4.1. Proof of Theorem 1.1

We are arriving at a milestone of modern probability, Kesten’s “pc = 1/2”
theorem (Theorem 1.1). Originally, the statement was proved in the case of
bond percolation on the square lattice, but the same arguments apply to site
percolation on the triangular lattice. Besides, the method we present here is
not the historical one, and was introduced by Bollobás and Riordan [BR06c].
Observe that Corollary 2.2 implies that pc ≥ 1

2 ; therefore, we only need to prove
that pc ≤ 1

2 to show Theorem 1.1 and we focus on this assertion from now on.

From now on, [0, n]× [0,m] denotes the set of points of the form k ·1+ℓ ·eiπ/3,
with 0 ≤ k ≤ n and 0 ≤ ℓ ≤ m. Let us start by the following proposition
asserting that if some crossing probability is too small, then the probability of
the origin being connected to distance n decays exponentially fast in n.

Proposition 4.1. Fix p ∈ (0, 1) and assume there exists L ∈ N such that

Pp([0, L]× [0, 2L] is crossed horizontally) <
1

36e
.

Then for any n ≥ L, Pp(0 ↔ ∂Λn) ≤ 6 exp[−n/(2L)].
The previous proposition, in conjunction with the fact that, for p > 1/2, the

probability of having a closed crossing of [0, 2n]×[0, n] tends to zero as n tends to
infinity (this is non-trivial and will be proved later), implies that pc ≤ 1

2 . Indeed,
assume that these probabilities tend to 0 for p > 1/2, the probability that there
exists a closed circuit of length n surrounding the origin is thus smaller than
(2n)2 · 6e−n/(2L) using the previous proposition for closed sites instead of open
ones. The Borel-Cantelli Lemma implies that there exists almost surely only a
finite number of closed circuits surrounding the origin. As a consequence, there
exists an infinite open cluster almost surely. If this is true for any p > 1/2, it
means that pc ≤ 1

2 .
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Proof. Let m > 0 and consider the rectangles

R1 = [0,m]× [0, 2m], R2 = [0,m]× [m, 3m],
R3 = [0,m]× [2m, 4m], R4 = [m, 2m]× [0, 2m],
R5 = [m, 2m]× [m, 3m], R6 = [m, 2m]× [2m, 4m],
R7 = [0, 2m]× [m, 2m], R8 = [0, 2m]× [2m, 3m].

These rectangles have the property that whenever [0, 2m]× [0, 4m] is crossed
horizontally, two of the rectangles Ri (possibly the same) are crossed in the
short direction by disjoint paths. We deduce, using the BK inequality, that

Pp

(

[0, 2m]× [0, 4m] is crossed horizontally
)

≤ 36 Pp

(

[0,m]× [0, 2m] is crossed horizontally
)2
.

Iterating the construction, we easily obtain that for every k ≥ 0,

36Pp
(

[0, 2km]× [0,2k+1m] is crossed horizontally
)

≤
(

36Pp
(

[0,m]× [0, 2m] is crossed horizontally
))2k

.

In particular, if m = L and 36Pp
(

[0, n]× [0, 2n] is cros. hor.
)

< 1/e, we deduce
for n = 2kL:

Pp(0 ↔ ∂Λn) ≤ 6Pp
(

[0, n]× [0, 2n] is cros. hor.
)

≤ 6e−n/L.

We used the fact that at least one out of six rectangles with dimensions n× 2n
must be crossed in order for the origin to be connected to distance n. The claim
follows for every n by monotonicity.

We now need to prove the following non-trivial lemma.

Lemma 4.2. Let p < 1/2, there exist ε = ε(p) > 0 and c = c(p) > 0 such that
for every n ≥ 1,

Pp

(

[0, n]× [0, 2n] is crossed horizontally
)

≤ cn−ε. (16)

In order to prove this lemma, we consider a more general question. We aim
at understanding the behavior of the function p 7→ Pp(A) for a non-trivial
increasing event A that depends on the states of a finite set of sites (think of
this event as being a crossing event). This increasing function is equal to 0 at
p = 0 and to 1 at p = 1. We are interested in the range of p for which its
value is between ε and 1 − ε for some predetermined positive ε (this range is
usually referred to as a window). Under certain conditions on A, the window
will become narrower when A depends on a larger number of sites. Its width
can be bounded above in terms of the size of the underlying graph. This kind
of result is known as sharp threshold behavior.

The study of p 7→ Pp(A) harnesses a differential equality known as Russo’s
formula:
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Proposition 4.3 (Russo [Rus78], Section 2.3 of [Gri99]). Let p ∈ (0, 1) and A
an increasing event depending on a finite set of sites V . We have

d

dp
Pp(A) =

∑

v∈V

Pp(v pivotal for A),

where v is pivotal for A if A occurs when v is open, and does not if v is closed.

If the typical number of pivotal sites is sufficiently large whenever the proba-
bility of A is away from 0 and 1, then the window is necessarily narrow. There-
fore, we aim to bound from below the expected number of pivotal sites. We
present one of the most striking results in that direction.

Theorem 4.4 (Bourgain, Kahn, Kalai, Katznelson, Linial [BKK+92], see also
[KKL88, Fri04, FK96, KS06]). Let p0 > 0. There exists a constant c = c(p0) ∈
(0,∞) such that the following holds. Consider a percolation model on a graph G
with |V | denoting the number of sites of G. For every p ∈ [p0, 1− p0] and every
increasing event A, there exists v ∈ V such that

Pp(v pivotal for A) ≥ cPp(A)
(

1− Pp(A)
) log |V |

|V | .

This theorem does not imply that there are always many pivotal sites, since
it deals only with the maximal probability over all sites. It could be that this
maximum is attained only at one site, for instance for the event that a particular
site is open. There is a particularly efficient way (see [BR06a, BR06c, BDC12]) to
avoid this problem. In the case of a translation-invariant event A on a torus with
n vertices, sites play a symmetric role, so that the probability to be pivotal is
the same for all of them. (Note that in the case of bond-percolation, two edges
are not necessarily the images of one another by a translation, because their
orientation needs to be the same for that to hold; but there are nevertheless only
finitely many classes of equivalence of edges, which is enough for the argument to
go through as well. The problem does not appear in the case of site-percolation
because tori are vertex-transitive.) Proposition 4.3 together with Theorem 4.4
thus imply that in this case, for p ∈ [p0, 1− p0],

d

dp
Pp(A) ≥ c

(

Pp(A)(1 − Pp(A)
)

logn.

Integrating the previous inequality between two parameters p0 < p1 < p2 <
1− p0, we obtain

Pp1(A)

1− Pp1(A)
≤ Pp2(A)

1− Pp2(A)
n−c(p2−p1).

If we further assume that Pp2(A) ≤ r < 1, there exist c, C > 0 depending on r
only such that

Pp1(A) ≤ Cn−c(p2−p1). (17)
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We are now in a position to prove Lemma 4.2. The proof uses Theorem 4.4.
We consider a carefully chosen translation-invariant event for which we can
prove sharp threshold. Then, we will bootstrap the result to our original event.
Let us mention that Kesten proved a sharp-threshold in [Kes80] using different
arguments. Several other approaches have been developed, see Theorem 3.3 and
Corollary 2.2 of [Gri10] for instance.

Proof. Consider the torus T4n of size 4n (meaning [0, 4n]2 with sites (0, k) iden-
tified with (4n, k), for all 0 ≤ k ≤ 4n and (ℓ, 0) identified with (ℓ, 4n), for all
0 ≤ ℓ ≤ 4n). Let B be the event that there exists a vertical closed path crossing
some rectangle with dimensions (n/2, 4n) in T4n. This event is invariant under
translations and satisfies

P1
2
(B) ≥ P1

2

(

[0, n/2]× [0, 4n] is crossed by a closed path vertically
)

≥ c > 0

uniformly in n. Since B is decreasing, we can apply (17) with Bc to deduce that
for p < 1/2, there exist ε, c > 0 such that

Pp(B) ≥ 1− cn−ε. (18)

If B holds, one of the 16 rectangles of the form [k n2 , (k+2)n2 ]× [ℓn, (ℓ+2)n] for
k ∈ {0, . . . , 7} and ℓ ∈ {0, 1} is crossed vertically by a closed path. We denote
these events by A1, . . . , A16 — they are translates of the event that [0, n]×[0, 2n]
is crossed vertically by a closed path. Using the Harris inequality in the second
line, we find

Pp(B) = 1− Pp(B
c) = 1− Pp

(

16
⋂

i=1

Aci

)

≤ 1−
16
∏

i=1

Pp(A
c
i )

= 1−
[

1− Pp

(

[0, n]× [0, 2n] is crossed vertically by a closed path
)]16

.

Plugging (18) into the previous inequality, we deduce

Pp ([0, n]× [0, 2n] is crossed vertically by a closed path) ≥ 1− (cn−ε)1/16.

Taking the complementary event, we obtain the claim. This application of the
Harris inequality is colloquially known as the square-root trick.

4.2. Definition of the correlation length

We have studied how probabilities of increasing events evolve as functions of p.
If p is fixed and we consider larger and larger rectangles (of size n), crossing
probabilities go to 1 whenever p > 1/2, or equivalently to 0 whenever p < 1/2.
But what happens if (p, n) → (1/2,∞) (this regime is called the near-critical
regime)?

If one looks at two percolation pictures in boxes of size N , one at p > 0.5, and
one at p < 0.5, it is only possible to identify which is supercritical and which is
subcritical when N is large enough. The scale at which one starts to see that p
is not critical is called the correlation length. Interestingly, it can naturally be
expressed in terms of crossing probabilities.
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Definition 4.5. For ε > 0 and p ≤ 1/2, define the correlation length as

Lp(ε) := inf
{

n > 0 : Pp
(

[0, n]2is crossed horizontally by an open path
)

≤ ε
}

.

Extend the definition of the correlation length to every p ≥ 1/2 by setting
Lp(ε) := L1−p(ε).

Note that the fact that Lp(ε) is finite for p 6= 1/2 comes from the fact that
crossing probabilities converge to 0 when p < 1/2.

Let us also mention that taking [0, n]2 in the definition of the correlation
length is not crucial. Indeed, the following result, called a Russo-Seymour-Welsh
result, implies that one could equivalently define the correlation length with
rectangles of other aspect ratios, and that it would only change the value of the
corresponding ε. We state the following theorem without proof.

Theorem 4.6 (see e.g. [Gri99, Kes82]). Let p0 > 0. There exists a strictly
increasing continuous function ρp0 : [0, 1] → [0, 1] such that ρp0(0) = 0 satisfying
the following property: for every p ∈ (p0, 1− p0) and every n > 0,

ρp0(δ) ≤ Pp([0, 2n]× [0, n] is crossed horizontally by an open path) ≤ 1−ρp0(δ),

where
δ := Pp([0, n]

2 is crossed horizontally by an open path).

From now on, fix p0 ∈ (0, 12 ). Let us mention that ε is chosen in the following
fashion. We want to argue that percolation in boxes of size n ≫ Lp(ε) looks
subcritical or supercritical depending on p < 1/2 or p > 1/2. To do so, we would
like to have that

Pp([0, 2n]× [0, n] crossed vertically) <
1
(

8
2

)

e

for n ≥ Lp(ε) and p < 1/2. Therefore, fix ε = ε(p0) small enough so that
ρ(ε) < 1/(

(

8
2

)

e). Keep in mind that all constants henceforth depend on p0 and
ε > 0.

Note that with this value of ε, the correlation length at criticality equals infin-
ity, since probabilities to be connected at distance n do not decay exponentially
for p = 1/2.

One very important feature of the correlation length is the following property.
Fix p0 > 0 and ε = ε(p0). For any topological rectangle (Ω, A,B,C,D), there
exists c > 0 such that for p ∈ (p0, 1− p0) and n < Lp(ε),

Pp

[

C1/n(Ω, A,B,C,D)
]

≥ c. (19)

In this sense, the configuration looks critical “uniformly in n < Lp(ε)”. We do
not prove this fact, which uses a variant of the RSW theory and can be found
in the literature. We will see in the next section that fractal properties below
the correlation length are also similar to fractal properties at criticality.

We conclude this section by mentioning that the correlation length is classi-
cally defined as the “inverse rate” of exponential decay of the two-point function.
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More precisely, since the quantity Pp(0 ↔ nx) is super-multiplicative, the quan-
tity limn→∞ − 1

n log Pp(0 ↔ nx) is well-defined. The correlation length is then
defined as the inverse of this quantity. It is possible to prove that Lp(ε) is, up
to universal constant depending only on p0 and ε, asymptotically equivalent to
limn→∞ − 1

n logPp(0 ↔ nx) when p < 1/2 (note that Proposition 4.1 gives one
inequality, see e.g. Theorem 3.1 of [Nol08] for the other bound).

4.3. Percolation below the correlation length

Proposition 4.1 together with the definition of the correlation length study per-
colation in boxes of size n ≫ Lp(ε). The goal of this section is to describe
percolation below the correlation length. In particular, we aim to prove that con-
nectivity properties are essentially the same as at criticality by proving that the
variation of Pp[Aσ(n,N)] as a function of p is not large provided thatN < Lp(ε).
As a direct consequence, Pp[Aσ(n,N)] remains basically the same when varying
p in the regime N < Lp(ε). This fact justifies the following motto: below Lp,
percolation looks critical.

Before stating the main result, recall that (19) easily implies the following
collection of results (they correspond to Theorems 3.1, 3.3 and Proposition 3.2),
since they are consequences of crossing estimates only.

Fix p0 ∈ (0, 1), ε > 0 small enough and δ > 0. Consider a sequence σ. There
exist c, C ∈ (0,∞) such that for any p ∈ (p0, 1−p0) and n1 < n2 < n3 ≤ Lp(ε),

cPp

[

Aσ(n1, n2)
]

Pp

[

Aσ(n2, n3)
]

≤ P1
2

[

Aσ(n1, n3)
]

≤ P1
2

[

Aσ(n1, n2)
]

Pp

[

Aσ(n2, n3)
]

.

(20)
Furthermore, for any choice of δ-well separated landing sequences I, J and for
any 2n ≤ N ≤ Lp(ε),

Pp

[

AI,Jσ (n,N)
]

≤ Pp

[

Aσ(n,N)
]

≤ CPp
[

AI,Jσ (n,N)
]

. (21)

Finally, for every 0 < n < N ≤ Lp(ε),

c
( n

N

)2

≤ Pp

[

A01001(n,N)
]

≤ C
( n

N

)2

, (22)

c
( n

N

)2

≤ Pp

[

A+
010(n,N)

]

≤ C
( n

N

)2

, (23)

c
n

N
≤ Pp

[

A+
01(n,N)

]

≤ C
n

N
, (24)

Pp

[

A1010(n,N)
]

≥
( n

N

)2−c

. (25)

The last inequality comes from (14). In words, the quasi-multiplicativity, the
fact that prescribing landing sequence affects the probability of an arm-event
by a multiplicative constant only, and the universal exponents are still valid for
p 6= 1

2 as long as we consider scales less than Lp(ε). Note that the universal
constants c and C depend on σ, δ, p0 et ε only (in particular it does not depend
on p ∈ [p0, 1− p0]).
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In fact, the description of percolation below the scale Lp(ε) is much more
precise: no arm-event varies in this regime and we get the following spectacular
result.

Theorem 4.7 (Kesten [Kes87]). Fix a sequence σ of colors, p0 ∈ (0, 1) and
ε > 0 small enough. There exist c, C ∈ (0,∞) such that

cP1
2
(Aσ(n)) ≤ Pp(Aσ(n)) ≤ CP1

2
(Aσ(n))

for every p ∈ (p0, 1− p0) and n ≤ Lp(ε).

The idea of the proof is to estimate the logarithmic derivative of arm-event
probabilities in terms of the derivative of crossing probabilities. In order to do
so, we relate the probability to be pivotal for arm-events with the probability
to be pivotal for crossing events.

Proof of Theorem 4.7. In the proof, C1, C2, . . . are constants in (0,∞) depend-
ing on p0 and ε only. We first treat the case of Pp[A1(n)] when p > 1/2.

Recall that n is assumed to be smaller than Lp(ε), so that (20), (21), (23)
and (25) are satisfied for any scale smaller than n.

Russo’s formula implies

d

dp
Pp

[

A1(n)
]

=
∑

v∈Λn

Pp

[

v pivotal for A1(n)
]

. (26)

The site v is pivotal for A1(n) if and only if there are four arms of alternating
colors emanating from it, one of the open arms going to the origin, the other
to the boundary of the box, and the two closed arms together with the site v
forming a circuit around the origin (see Fig 10). Let us treat two cases:

• If |v| ≤ n/2, where |v| is the graph distance to the origin, the pivotality
of the site v implies that the following events hold: A1(|v|/2), A1(2|v|, n)
and the translation of A1010(|v|/2) by v (see Fig 10 again). We deduce,
using independence, that

Pp

[

v pivotal for A1(n)
]

≤ Pp

[

A1(|v|/2)
]

Pp

[

A1(2|v|, n)
]

Pp

[

A1010(|v|/2)
]

≤ C1Pp

[

A1(n)
]

Pp

[

A1010(|v|/2)
]

,

where in the second line we used (20) twice together with the fact that
Pp

[

A1(|v|/2, 2|v|)
]

≥ C0 (the latter comes from the crossing estimates (19)).
Equations (20) and (25) give

Pp

[

A1010(|v|/2)
]

≤ C2

(

2n

|v|

)2−c

Pp

[

A1010(n)
]

,

which, when tuned into the previous displayed inequality, leads to

Pp

[

v pivotal for A1(n)
]

≤ C3

(

2n

|v|

)2−c

Pp

[

A1(n)
]

Pp

[

A1010(n)
]

. (27)
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Λn

Λ2|v|
Λ|v|/2

v

Λ
+
n−|v′|

Λ
+
n/2

v′ + Λ|v′|/2v′

Fig 10. The event that v and v′ are pivotal for A1(n). The dotted line corresponds to a closed
circuit.

• If |v| ≥ n/2, the site v is pivotal if the following events hold: A1(n/2), the
translation of A1010(n− |v|) by v and the translation of A+

010(n− |v|, n/2)
by v (see Fig 10 again). We deduce, using independence, that

Pp

[

v pivotal for A1(n)
]

≤ Pp

[

A1(n/2)
]

Pp

[

A1010(n− |v|)
]

Pp

[

A+
010(n− |v|, n/2)

]

≤ C4Pp

[

A1(n)
]

(n− |v|)2−c Pp
[

A1010(n)
]

(

2(n− |v|)
n

)2

, (28)

where an argument similar to the previous case was used once again to
relate Pp[A1(n/2)] to Pp

[

A1(n)] and Pp[A1010(n − |v|)] to Pp[A1010(n)].

The bound (23) was used to bound Pp[A
+
010(n− |v|, n/2)].

Plugging the bounds (27) and (28) into (26), we easily find that for n ≤ Lp(ε),

d

dp
Pp

[

A1(n)
]

≤ C5Pp

[

A1(n)
]

· n2
Pp

[

A1010(n)
]

. (29)

We now relate n2Pp

[

A1010(n)
]

to the derivative of the probability of the event
that [0, n]2 is crossed horizontally by an open path. Denote this event by E(n).
We have

d

dp
Pp

[

E(n)
]

=
∑

v∈Λn

Pp

[

v pivotal for E(n)
]

.

The site v is pivotal for E(n) if and only if there are four arms of alternating
colors emanating from it, the open arms going to the left and the right of
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the box, and the closed ones to the top and the bottom. Using (21), we find
that the probability of v ∈ [n3 ,

2n
3 ]2 being pivotal for E(n) is larger than a

universal constant times the probability of having four arms of alternating colors
going from v to the boundary of [0, n]2. Since [0, n]2 ⊂ (v + Λ2n), this implies
immediately that

Pp

[

v pivotal for E(n)
]

≥ 1

C6
Pp

[

A1010(2n)
]

≥ 1

C7
Pp

[

A1010(n)
]

.

Once again, quasi-multiplicativity was used in a crucial way in order to obtain
the last inequality. By summing on vertices v in [n3 ,

2n
3 ]2, we get

d

dp
Pp

[

E(n)
]

≥ 1

9C7
n2

Pp

[

A1010(n)
]

. (30)

Altogether, we find that for n ≤ Lp(ε),

d

dp
Pp

[

A1(n)
]

≤ C5Pp

[

A1(n)
]

· n2
Pp

[

A1010(n)
]

≤ 9C5C7Pp

[

A1(n)
] d

dp
Pp

[

E(n)
]

.

Since for p′ ∈ (12 , p), Lp′(ε) ≥ Lp(ε), we deduce that

logPp
[

A1(n)
]

− logP1
2

[

A1(n)
]

≤ C8

∫ p

1/2

d

dp′
Pp′
[

E(n)
]

dp′

= C8(Pp[E(n)]− P1
2
[E(n)]) ≤ C8,

which is the claim.
The same reasoning can be applied when p < 1

2 and for any sequence σ.
The main step is to get (29) with 1 replaced by σ, the end of the proof being
the same. In order to obtain this inequality, one harnesses a generalization of
Russo’s formula; we refer to [Nol08, Theorem 26] for a complete exposition.

4.4. Near-critical exponents

It is now time to relate arm-exponents to near-critical ones. The goal of this
section is to prove the following:

Theorem 4.8 (Kesten [Kes87]). Let p0 ∈ (0, 1) and ε > 0 small enough. There
exist c, C ∈ (0,∞) such that for every p ∈ (12 , p0),

c ≤ (p− 1/2)Lp(ε)
2
P1

2

[

A1010(Lp(ε))
]

≤ C,

cP1
2

[

A1(Lp(ε))
]

≤ θ(p) ≤ CP1
2

[

A1(Lp(ε))
]

.

Note that we reached our original goal since Theorem 1.5 follows readily from
Theorems 3.4 and 4.8. Indeed, Theorem 3.4 gives that P1

2
[A1010(n)] = n−5/4+o(1)

and P1
2
[A1(n)] = n−5/48+o(1). Theorem 4.8 implies that θ(p) = (p−1/2)5/36+o(1),

which is exactly the claim of Theorem 1.5.
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More generally, if we only assume the existence of α1 and α4 such that
P1

2
[A1010(n)] = n−α4+o(1) and P1

2
[A1(n)] = n−α1+o(1), the previous statement

implies the existence of ν and β such that Lp(ε) = (p − 1/2)−ν+o(1) and
θ(p) = (p−1/2)β+o(1). Furthermore, (2−α4)ν = 1 and β = α1ν. This connection
between different critical exponents is called a scaling relation.

Proof of Theorem 4.8. In the proof, C1, C2, . . . are constants in (0,∞) depend-
ing on p0 and ε only. Let us deal with the second displayed equation first. Let
Lp = Lp(ε). On the one hand, it is straightforward that θ(p) = Pp(0 ↔ ∞) ≤
Pp[A1(Lp)] ≤ C1P1

2
[A1(Lp)] thanks to Theorem 4.7.

Since a circuit surrounding ΛLp
has length at least Lp = L1−p, Proposition 4.1

implies that Pp[A1(Lp, n)] ≥ C2 for any n ≥ Lp. Quasi-multiplicativity and
Theorem 4.7 imply

Pp[A1(n)] ≥ Pp[A1(Lp)]Pp[A1(Lp, n)] ≥ C3Pp[A1(Lp)] ≥ C4P1
2
[A1(Lp)].

The claim follows by letting n go to infinity.

We now turn to the first displayed equation. The right-hand inequality is a
fairly straightforward consequence of (30) and Theorem 4.7. Indeed, set E(Lp)
be the event that [0, Lp]

2 is crossed horizontally by an open path. Since Lp′ ≥ Lp
for 1

2 < p′ ≤ p, we find that

1 ≥ Pp[E(Lp)]− P1
2
[E(Lp)] =

∫ p

1
2

d

dp′
Pp′ [E(Lp)]dp

′

≥ C5

∫ p

1
2

L2
pPp′ [A1010(Lp)]dp

′ ≥ C6

∫ p

1
2

L2
pP1

2
[A1010(Lp)]dp

′

= C7(p− 1
2 )L

2
pP1

2
[A1010(Lp)].

The first equality is due to Russo’s formula. The next two steps are due to (30)
followed by Theorem 4.7.

Let us turn to the second inequality of the first displayed equation. Consider
the torus Tn of size n, which can be seen as R2 quotiented by the following
equivalence relation: (x, y) ∼ (x′, y′) iff n divides x − x′ and y − y′. The first
homology group of Tn is isomorphic to Z2. Let [γ] ∈ Z2 be the homology class
of a circuit γ.

Let Tn be the image of T by the canonical projection. A circuit of vertices in
T can be identified to the circuit in Tn created by joining neighboring vertices
by a segment of length 1. Let F (n) be the event that there exists a circuit of
open vertices on Tn whose homology class in Z

2 has non-zero first coordinate,
or in other words, which is winding around Tn “in the vertical direction”.

If v is pivotal for F (Lp), there are necessarily four paths of alternating colors
going to distance Lp/2 from v. Hence,

d

dp′
Pp′ [F (Lp)] ≤ L2

pPp′ [A1010(Lp/2)] ≤ C8L
2
pP1

2
[A1010(Lp)]
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by quasi-multiplicativity and Theorem 4.7. By duality, one easily obtain that
P1

2
[F (Lp)] ≤ 1/2. Now, the definition of Lp together with a RSW-type argument

implies that Pp[F (Lp)] is larger than
3
4 if ε is chosen small enough. Indeed, one

can use a construction involving crossings in long rectangles. As a consequence,

1
4 ≤ Pp(F (Lp))−P1

2
(F (Lp)) =

∫ p

1
2

d

dp′
Pp′ [F (Lp)]dp

′ ≤ C9(p− 1
2 )L

2
pP1

2
[A1010(Lp)]

hence finishing the proof.

5. A few open questions

Percolation on the triangular lattice Site percolation on the triangular
lattice is now very well understood, yet several questions remain open. We select
three of them.

We know the behavior of most thermodynamical quantities (the cluster den-
sity θ, the truncated mean-cluster size χ(p) = (p − 1/2)−γ+o(1) as p → pc, the
two-point functions P1

2
(0 ↔ x) = |x|−η+o(1) as x → ∞ and many others). Nev-

ertheless, the behavior of the following fundamental quantity remains unproved:

Question 1. Prove that the mean number of clusters per site κ(p) = Ep(|C|−1)
behaves like |1/2−p|2+α+o(1), where C is the cluster at the origin and α = −2/3.

Interestingly, the critical exponent for j 6= 1 disjoint arms of the same color is
not equal to the polychromatic arms exponent [BN11]. A natural open question
is to compute these exponents:

Question 2. Compute the monochromatic exponents.

Even the existence of the exponents in the discrete model is not completely
understood, because we miss estimates up to constants:

Question 3. Refine the error term in the arm probabilities from (n/N)αj+o(1)

to (n/N)αjΘ(1).

A result in this direction was obtained in [MNW12] for a half-plane arm-event
as a byproduct of a quantitative Cardy’s formula (see also [BCL12] for another
quantitative version of Cardy’s formula).

Percolation on other graphs Conformal invariance has been proved only
for site percolation on the triangular lattice. In physics, it is conjectured that
the scaling limit of percolation should be universal, meaning that it should not
depend on the lattice. For instance, interfaces of bond-percolation on the square
lattice at criticality (when the bond-parameter is 1/2) should also converge to
SLE(6).

Question 4. Prove conformal invariance for critical percolation on another
planar lattice.

Some progress has been made in [BCL10]. For general graphs, the question of
embedding the graph becomes crucial. Indeed, if one embeds the square lattice
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by gluing long rectangles, then the model will not be rotationally invariant. We
refer to [Bef08b] for further details on the subject.

Question 5. For a general lattice, how may one construct a natural embedding
on which percolation is conformally invariant in the scaling limit?

In order to understand universality, a natural class of lattices consists in those
for which box crossings probabilities can be studied. Note that proofs of crossing
estimates (Corollary 2.3) often invoke some symmetry (rotational invariance for
instance) as well as strict planarity, but neither of these seem to be absolutely
needed. A proof valid for lattices without one of these properties would be of
great significance:

Question 6. Prove crossing estimates for critical percolation on all planar (and
possibly quasi-isometric to planar) lattices.

Let us mention that an important step towards the case of general lattices was
accomplished in [GM11a, GM11b, GM12], where critical anisotropic percolation
models on the hexagonal, triangular, square and more generally isoradial lattices
are studied.

Percolation in high dimension is well understood (see e.g. [HS94] and ref-
erences therein), thanks to the so-called triangle condition and the associated
lace-expansion techniques. In particular, several critical exponents have been de-
rived (including recently the arm exponents [KN09]) and θ(pc) has been proved
to be equal to 0. In intermediate dimensions, the critical phase is not under-
stood. For instance, one of the main conjectures in probability is to prove that
θ(pc) = 0 for bond percolation on Z3. Even weakening of this conjecture seems
to be very hard. For instance, the same question on the graph Z2 × {0, . . . , k}
has only been solved very recently (see [DNS12] for site percolation in the case
k = 1, and [DCST13] for the general case).

Other two-dimensional models of statistical physics Conformal invari-
ance (for instance of crossing probabilities) is not restricted to percolation (see
[Smi06, Smi10] and references therein). It should hold for a wide class of two-
dimensional lattice models at criticality. Among natural generalizations of perco-
lation, we mention the class of random-cluster models and of loop O(n)-models
(including the Ising model and the self-avoiding walk). The only three mod-
els in this family for which conformal invariance has been proved are the Ising
model (the O(n)-model with n = 1), the q=2 random cluster model (which is
a geometric representation of the Ising model), and the uniform spanning tree.

Question 7. Prove conformal invariance of another two-dimensional critical
lattice model of percolation type.
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