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I am grateful to Jim Pitman for pointing out several further relevant references.
The integral (5.6) yielding the density function fX(x) is known as an

H-function (provided each bj > 0, which we can assume by Theorem 4.1),
see Fox [6] and Mathai, Saxena and Haubold [10]; more precisely, fX(x) =
CD−1H(x/D), where H is an H-function with appropriate parameters deter-
mined by aj, bj , a

′

k, b
′

k. (The H-functions include many special functions. How-
ever, they are in general not positive, and thus usually not density functions.)

Hence, the class of distributions studied in this paper is essentially (ignor-
ing cases such as Example 3.13, when the integral (5.6) does not converge)
the same as the class of distributions with a density of the type kH(cx) for
an H-function H . Such distributions are called H-function distributions by
Carter and Springer [2] and H distributions by Kaluszka and Krysicki [7], see
also [10, Chapter 4]. Formulas (rather complicated) for the density of a sum of
several independent such variables are given by Mathai and Saxena [8].

Braaksma [1] developed asymptotic expansions of H-functions in great detail
and generality, including large parts of the results in our Section 6.

A special case of the H-function is the Meijer G-function [11], obtained when
all aj , a

′

k = ±1 in our notation. Distributions with moments of Gamma type
with all aj , a

′

k = ±1 (and D = 1) are thus essentially the same as distribu-
tions with a density that is a constant times a G function; such distributions
are called G distributions by Dufresne [4, 5]; see also Mathai and Saxena [9].
(Dufresne [4, 5] include the case when some of our bj , b

′

k are complex and give
an interesting example of this, cf. our Remark 11.3.) The special case when
all aj, a

′

k = 1 is studied further by, e.g., Chamayou and Letac [3] (there called
Dufresne laws).

The Meijer G-function is implemented in both Mathematica and Maple as
MeijerG. This allows the use of these programs to plot densities of random
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variables identified only by their moments if these are of Gamma type with all
aj , a

′

k = ±1.
See also Weisstein [12, 13] and the further references given there.
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