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1. Introduction

Benford’s Law, or BL for short, is the observation that in many collections
of numbers, be they e.g. mathematical tables, real-life data, or combinations
thereof, the leading significant digits are not uniformly distributed, as might be
expected, but are heavily skewed toward the smaller digits. More specifically,
BL says that the significant digits in many datasets follow a very particular
logarithmic distribution. In its most common formulation, namely the special
case of first significant decimal (i.e. base-10) digits, BL is also known as the
First-Digit Phenomenon and reads

Prob (D1 = d1) = log10
(
1 + d−1

1

)
for all d1 = 1, 2, . . . , 9 ; (1.1)

here D1 denotes the first significant decimal digit, e.g.

D1(
√
2) = D1(1.414 . . .) = 1 ,

D1(π
−1) = D1(0.3183 . . .) = 3 ,

D1(e
π) = D1(23.14 . . .) = 2 .

Thus, for example, (1.1) asserts that

Prob (D1=1) = log10 2 = 0.3010 . . . , Prob (D1=2) = log10
3

2
= 0.1760 . . . ,

hence the two smallest digits occur with a combined probability close to 50
percent, whereas the two largest digits together have a probability of less than
10 percent,

Prob (D1=8) = log10
9

8
= 0.05115 . . . , Prob (D1=9) = log10

10

9
= 0.04575 . . . .
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A crucial part of the content of (1.1), of course, is an appropriate formulation or
interpretation of “Prob”. In practice, this can take several forms. For sequences
of real numbers (xn), for example, Prob usually refers to the proportion (or
relative frequency) of times n for which an event such as D1 = 1 occurs. Thus
Prob (D1=1) is the limiting proportion, asN → ∞, of times n ≤ N that the first
significant digit of xn equals 1. Implicit in this usage of Prob is the assumption
that all limiting proportions of interest actually exist. Similarly, for real-valued
functions f : [0,+∞) → R, Prob (D1 =1) refers to the limiting proportion, as
T → ∞, of the total length of time t < T for which the first significant digit of
f(t) is 1. For a random variable or probability distribution, on the other hand,
Prob simply denotes the underlying probability, e.g. if X a random variable
then Prob (D1(X) = 1) is the probability that the first significant digit of X
equals 1. Finite datasets of real numbers can also be dealt with this way, with
Prob being the empirical distribution of the dataset.

All of these approaches to (1.1) will be studied in detail in subsequent chap-
ters. Fig 1 illustrates several of the possible settings, including simple sequences
such as the Fibonacci numbers (Fn) = (1, 1, 2, 3, 5, 8, 13, . . .), and real-life data
from [Ben] as well as recent census statistics; in addition, it previews some of the
many scenarios, also to be discussed later, that lead to exact conformance with
BL. In Fig 1 and throughout, #A denotes the cardinality (number of elements)
of the finite set A.

In a form more complete than (1.1), BL is a statement about the joint dis-
tribution of all decimal digits: For every positive integer m,

Prob
(
(D1, D2, . . . , Dm) = (d1, d2, . . . , dm)

)
= log10

(
1 +
(∑m

j=1
10m−jdj

)−1
)

(1.2)
holds for all m-tuples (d1, d2, . . . , dm), where d1 is an integer in {1, 2, . . . , 9} and
for j ≥ 2, dj is an integer in {0, 1, . . . , 9}; here D2, D3, D4 etc. represent the
second, third, forth etc. significant decimal digit, e.g.

D2(
√
2) = 4 , D3(π

−1) = 8 , D4(e
π) = 4 .

Thus, for example, (1.2) implies that

Prob
(
(D1, D2, D3) = (3, 1, 4)

)
= log10

315

314
= 0.001380 . . . .

A perhaps surprising corollary of the general form of BL is that the significant
digits are dependent, and not independent as one might expect [Hi2]. Indeed,
from (1.2) it follows for instance that the (unconditional) probability that the
second digit equals 1 is

Prob (D2 = 1) =
∑9

j=1
log10

(
1 +

1

10j + 1

)
= log10

6029312

4638501
= 0.1138 . . . ,

whereas, given that the first digit equals 1, the (conditional) probability that
the second digit equals 1 as well is

Prob (D2 = 1|D1 = 1) =
log10 12− log10 11

log10 2
= 0.1255 . . . .
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Example: (xn) = (Fn) Fn+2 = Fn+1 + Fn (n ∈ N), F1 = F2 = 1

N = 10 N = 102

ρ(d) = log10(1 + d−1)

Finite dataset X ρ
X
(d) :=

#{x ∈ X : D1(x) = d}
#X

Random variable X ρX (d) := P(D1(X) = d)

Sequence (xn) ρN (d) :=
#{1 ≤ n ≤ N : D1(xn) = d}

N

Fig 1. Different interpretations of (1.1) for sequences, datasets, and random variables, re-
spectively, and scenarios that may lead to exact conformance with BL.

This dependence among significant digits decreases rapidly, in fact exponentially,
as the distance between the digits increases. For example, it follows easily from
(1.2) that

Prob (Dm = 1|D1 = 1) = Prob (Dm = 1) + O(10−m) as m→ ∞ .

(Here and throughout, the order symbol O is used as usual: If (an) and (bn)
are sequences of real numbers then an = O(bn) as n → ∞ simply means that
|an| ≤ c|bn| for all n, with some constant c > 0.)
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A related consequence of (1.2) is that the distribution of the m-th significant
digit approaches the uniform distribution on {0, 1, . . . , 9} exponentially fast also,
e.g.

Prob (Dm = 1) =
1

10
+

63

20 ln 10
10−m + O(10−2m) as m→ ∞ .

Apparently first discovered by polymath S. Newcomb [Ne] in the 1880’s, (1.1)
and (1.2) were rediscovered by physicist F. Benford [Ben] and, Newcomb’s ar-
ticle having been forgotten at the time, came to be known as Benford’s Law.
Today, BL appears in a broad spectrum of mathematics, ranging from differen-
tial equations to number theory to statistics. Simultaneously, the applications
of BL are mushrooming — from diagnostic tests for mathematical models in
biology and finance to fraud detection. For instance, the U.S. Internal Revenue
Service uses BL to ferret out suspicious tax returns, political scientists use it to
identify voter fraud, and engineers to detect altered digital images. As R. Raimi
already observed some 35 years ago [Ra1, p.512], “This particular logarithmic
distribution of the first digits, while not universal, is so common and yet so
surprising at first glance that it has given rise to a varied literature, among
the authors of which are mathematicians, statisticians, economists, engineers,
physicists, and amateurs.” At the time of writing, the online database [BH2]
contains more than 600 articles on the subject.

It is the purpose of this article to explain the basic terminology, mathematical
concepts and results concerning BL in an elementary and accessible manner.
Having read this survey, the reader will find it all the more enjoyable to browse
the multifarious literature where a wide range of extensions and refinements as
well as applications are discussed.

Note. Throughout this overview of the basic theory of BL, attention will more
or less exclusively be restricted to significant decimal (i.e. base-10) digits. From
now on, therefore, log x will always denote the logarithm base 10 of x, while lnx
is the natural logarithm of x. For convenience, the convention log 0 := 0 will be
adopted. All results stated here only with respect to base 10 carry over easily to
arbitrary integer bases b ≥ 2, and the interested reader may find some pertinent
details e.g. in [BBH]. The general form of (1.2) with respect to any such base b
is

Prob
((
D

(b)
1 , D

(b)
2 , . . . , D

(b)
m

)
= (d1, d2, . . . , dm)

)
= logb

(
1+
(∑m

j=1
bm−jdj

)−1
)
,

(1.3)

where logb denotes the base-b logarithm and D
(b)
1 , D

(b)
2 , D

(b)
3 etc. are, respec-

tively, the first, second, third etc. significant digits base b; in particular, there-
fore, d1 is an integer in {1, 2, . . . , b − 1}, and for j ≥ 2, dj is an integer in
{0, 1, . . . , b − 1}. Note that in the case m = 1 and b = 2, (1.3) reduces to

Prob
(
D

(2)
1 = 1

)
= 1, which trivially is true because the first significant digit

base 2 of every non-zero number equals 1. ♣
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2. Significant digits and the significand

Benford’s Law is a statement about the statistical distribution of significant
(decimal) digits or, equivalently, about significands viz. fraction parts in floating-
point arithmetic. Thus a natural starting point for any study of BL is the formal
definition of significant digits and the significand (function).

2.1. Significant digits

Definition 2.1. For every non-zero real number x, the first significant decimal
digit of x, denoted by D1(x), is the unique integer j ∈ {1, 2, . . . , 9} satisfying
10kj ≤ |x| < 10k(j + 1) for some (necessarily unique) k ∈ Z.

Similarly, for every m ≥ 2, m ∈ N, the m-th significant decimal digit of x,
denoted by Dm(x), is defined inductively as the unique integer j ∈ {0, 1, . . . , 9}
such that

10k
(∑m−1

i=1
Di(x)10

m−i + j

)
≤ |x| < 10k

(∑m−1

i=1
Di(x)10

m−i + j + 1

)

for some (necessarily unique) k ∈ Z; for convenience, Dm(0) := 0 for all m ∈ N.

Note that, by definition, the first significant digit D1(x) of x 6= 0 is never
zero, whereas the second, third, etc. significant digits may be any integers in
{0, 1, . . . , 9}.
Example 2.2.

D1(
√
2) = D1(−

√
2) = D1(10

√
2) = 1 , D2(

√
2) = 4 , D3(

√
2) = 1 ;

D1(π
−1) = D1(10π

−1) = 3 , D2(π
−1) = 1 , D3(π

−1) = 8 .

2.2. The significand

The significand of a real number is its coefficient when it is expressed in floating-
point (“scientific notation”) form, more precisely

Definition 2.3. The (decimal) significand function S : R → [1, 10) is defined
as follows: If x 6= 0 then S(x) = t, where t is the unique number in [1, 10) with
|x| = 10kt for some (necessarily unique) k ∈ Z; if x = 0 then, for convenience,
S(0) := 0.

Observe that, for all x ∈ R,

S(10kx) = S(x) for every k ∈ Z ,

and also S
(
S(x)

)
= S(x). Explicitly, S is given by

S(x) = 10log |x|−⌊log |x|⌋ for all x 6= 0 ;

here ⌊t⌋ denotes, for any real number t, the largest integer less than or equal to
t. (The function t 7→ ⌊t⌋ is often referred to as the “floor function”.)
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1

11 2 3

10

10 −1−1 −2−3−10

S(x) log S(x)

x log |x|

Fig 2. Graphing the (decimal) significand function S.

Note. The original word used in American English to describe the coefficient
of floating-point numbers in computer hardware seems to have been mantissa,
and this usage remains common in computing and among computer scientists.
However, this use of the word mantissa is discouraged by the IEEE floating-
point standard committee and by some professionals such as W. Kahan and
D. Knuth because it conflicts with the pre-existing usage of mantissa for the
fractional part of a logarithm. In accordance with the IEEE standard, only the
term significand will be used henceforth. (With the significand as in Definition
2.3, the (traditional) mantissa would simply be logS.) The reader should also
note that in some places in the literature, the significand is taken to have values
in [0.1, 1) rather than in [1, 10). ♣
Example 2.4.

S(
√
2) = S(10

√
2) =

√
2 = 1.414 . . . ,

S(π−1) = S(10π−1) = 10π−1 = 3.183 . . . .

The significand uniquely determines the significant digits, and vice versa.
This relationship is recorded in the following proposition which immediately
follows from Definitions 2.1 and 2.3.

Proposition 2.5. For every real number x:

(i) S(x) =
∑

m∈N
101−mDm(x);

(ii) Dm(x) = ⌊10m−1S(x)⌋ − 10⌊10m−2S(x)⌋ for every m ∈ N.

Thus, Proposition 2.5(i) expresses the significand of a number as an explicit
function of the significant digits of that number, and (ii) expresses the significant
digits as a function of the significand.

It is important to note that the definition of significand and significant digits
per se does not involve any decimal expansion of x. However, it is clear from
Proposition 2.5(i) that the significant digits provide a decimal expansion of S(x),
and that a sequence (dm) in {0, 1, . . . , 9} is the sequence of significant digits of
some positive real number if and only if d1 6= 0 and dm 6= 9 for infinitely manym.
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Example 2.6. It follows from Proposition 2.5, together with Examples 2.2 and
2.4, that

S(
√
2) = D1(

√
2) + 10−1D2(

√
2) + 10−2D3(

√
2) + . . . = 1.414 . . . =

√
2 ,

as well as
D1(

√
2) = ⌊

√
2⌋ = 1 ,

D2(
√
2) = ⌊10

√
2⌋ − 10⌊

√
2⌋ = 4 ,

D3(
√
2) = ⌊100

√
2⌋ − 10⌊10

√
2⌋ = 1 , etc .

As the significant digits determine the significand, and are in turn determined
by it, the informal version (1.2) of BL in the Introduction has an immediate and
very concise counterpart in terms of the significand function, namely

Prob (S ≤ t) = log t for all 1 ≤ t < 10 . (2.1)

(Recall that log denotes the base-10 logarithm throughout.) As noted earlier,
the formal versions of (1.2) and (2.1) will be developed in detail below.

2.3. The significand σ-algebra

The informal statements (1.1), (1.2) and (2.1) of BL involve probabilities. Hence
to formulate mathematically precise versions of these statements, it is necessary
to re-formulate them in the setting of rigorous probability theory.

The fundamental concept of standard modern probability theory is that of a
probability space (Ω,A,P); here Ω, A and P are, respectively, a non-empty set, a
σ-algebra on Ω, and a probability measure on (Ω,A). Recall that a σ-algebra A

on Ω is simply a family of subsets of Ω such that ∅ ∈ A, and A is closed under
taking complements and countable unions, that is,

A ∈ A =⇒ Ac := {ω ∈ Ω : ω 6∈ A} ∈ A ,

as well as

An ∈ A for all n ∈ N =⇒
⋃

n∈N
An ∈ A .

Given any collection E of subsets of Ω, there exists a (unique) smallest σ-algebra
on Ω containing E, referred to as the σ-algebra generated by E and denoted by
σ(E). Perhaps the most important example is the so-called Borel σ-algebra B

on R: By definition, B is the σ-algebra generated by all intervals. If C ⊂ R
then B(C) is understood to be the σ-algebra C ∩B := {C ∩B : B ∈ B} on C;
for brevity, write B[a, b) instead of B

(
[a, b)

)
and B+ instead of B(R+), where

R+ = {t ∈ R : t > 0}.
In general, given any function f : Ω → R, recall that, for every C ⊂ R, the

set f−1(C) ⊂ Ω, called the pre-image of C under f , is defined as

f−1(C) = {ω ∈ Ω : f(ω) ∈ C} .
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The σ-algebra on Ω generated by

E = {f−1(I) : I ⊂ R an interval}

is also referred to as the σ-algebra generated by f ; it will be denoted by σ(f).
Thus σ(f) is the smallest σ-algebra on Ω that contains all sets of the form
{ω ∈ Ω : a ≤ f(ω) ≤ b}, for every a, b ∈ R. It is easy to check that in fact
σ(f) = {f−1(B) : B ∈ B}. Similarly, a whole family F of functions f : Ω → R
may be considered, and

σ(F) := σ
(⋃

f∈F
σ(f)

)
= σ

(
f−1(I) : I ⊂ R an interval, f ∈ F

)

is then simply the smallest σ-algebra on Ω containing all sets {ω ∈ Ω : a ≤
f(ω) ≤ b} for all a, b ∈ R and all f ∈ F.

In probability theory, the elements of a σ-algebra A on Ω are often referred to
as events, and functions f : Ω → R with σ(f) ⊂ A are called random variables.
Probability textbooks typically use symbols X , Y etc., rather than f , g etc., to
denote random variables, and this practice will be adhered to here also. Thus,
for example, for a Bernoulli random variable X on (R,B) taking only the values
0 and 1, σ(X) is the sub-σ-algebra of B given by

σ(X) =
{
∅, {0}, {1}, {0, 1},R,R\{0},R\{1},R\{0, 1}

}
;

here, and throughout, A\B = A∩Bc is the set of all elements of A that are not
in B.

As the third ingredient in the concept of a probability space, a probability
measure on (Ω,A) is a function P : A → [0, 1] such that P(∅) = 0, P(Ω) = 1,
and

P
(⋃

n∈N
An

)
=
∑

n∈N
P(An)

holds whenever the sets An ∈ A are disjoint. The obvious probabilistic interpre-
tation of P is that, for every A ∈ A, the number P(A) ∈ [0, 1] is the probability
that the event {ω ∈ A} occurs. Two of the most important examples of proba-
bility measures are the discrete uniform distribution on a non-empty finite set
A, where the probability of any set B ⊂ A is simply

#(B ∩A)
#A

,

and its continuous counterpart the uniform distribution λa,b with a < b, more
technically referred to as (normalized) Lebesgue measure on [a, b), or more pre-
cisely on

(
[a, b),B[a, b)

)
, given by

λa,b
(
[c, d]

)
:=

d− c

b− a
for every [c, d] ⊂ [a, b) . (2.2)

In advanced analysis courses, it is shown that (2.2) does indeed entail a unique,
consistent definition of λa,b(B) for every B ∈ B[a, b); in particular λa,b

(
[a, b)

)
=
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1. Another example of a probability measure, on any (Ω,A), is the Dirac mea-
sure (or point mass) concentrated at some ω ∈ Ω, symbolized by δω. In this
case, δω(A) = 1 if ω ∈ A, and δω(A) = 0 otherwise. Throughout, unspecified
probability measures on (Ω,A) with Ω ⊂ R and A ⊂ B will typically be denoted
by capital Roman letters P , Q etc.

In view of the above, the key step in formulating BL precisely is identifying
the appropriate probability space, and hence in particular the correct σ-algebra.
As it turns out, in the significant digit framework there is only one natural
candidate which, although different from B, is nevertheless both intuitive and
easy to describe.

Definition 2.7. The significand σ-algebra S is the σ-algebra on R+ generated
by the significand function S, i.e. S = R+ ∩ σ(S).

The importance of the σ-algebra S comes from the fact that for every event
A ∈ S and every x > 0, knowing S(x) is enough to decide whether x ∈ A or
x 6∈ A. Worded slightly more formally, this observation reads as follows.

Lemma 2.8. For every function f : R+ → R the following statements are
equivalent:

(i) f can be described completely in terms of S, that is, f(x) = ϕ
(
S(x)

)
holds

for all x ∈ R+, with some function ϕ : [1, 10) → R satisfying σ(ϕ) ⊂
B[1, 10).

(ii) σ(f) ⊂ S.

Proof. First assume (i) and let I ⊂ R be any interval. Then B = ϕ−1(I) ∈ B

and f−1(I) = S−1
(
ϕ−1(I)

)
= S−1(B) ∈ S, showing that σ(f) ⊂ S.

Conversely, if σ(f) ⊂ S then f(10x) = f(x) holds for all x > 0. Indeed,
assuming by way of contradiction that, say, f(x0) < f(10x0) for some x0 > 0,
let

A := f−1

([
f(x0)− 1,

f(x0) + f(10x0)

2

])
∈ σ(f) ⊂ S

and note that x0 ∈ A while 10x0 6∈ A. Since A = S−1(B) for some B ∈ B, this
leads to the contradiction that S(x0) ∈ B and S(x0) = S(10x0) 6∈ B. Hence
f(10x) = f(x) for all x > 0, and by induction also f(10kx) = f(x) for all k ∈ Z.
Given x ∈ [1, 10), pick any y > 0 with S(y) = x and define ϕ(x) := f(y). Since
any two choices of y differ by a factor 10k for some k ∈ Z, ϕ : [1, 10) → R is well-
defined, and ϕ

(
S(y)

)
= f(y) holds for all y > 0. Moreover, for any interval I ⊂ R

and x > 0, ϕ(x) ∈ I holds if and only if x ∈ ⋃k∈Z
10kf−1(I). By assumption,

the latter set belongs to S, which in turn shows that σ(ϕ) ⊂ B[1, 10).

Informally put, Lemma 2.8 states that the significand σ-algebra S is the
family of all events A ⊂ R+ that can be described completely in terms of their
significands, or equivalently (by Theorem 2.9 below) in terms of their significant
digits. For example, the set A1 of positive numbers whose first significant digit
is 1 and whose third significant digit is not 7, i.e.

A1 = {x > 0 : D1(x) = 1, D3(x) 6= 7} ,
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belongs to S, as does the set A2 of all x > 0 whose significant digits are all 5 or
6, i.e.

A2 = {x > 0 : Dm(x) ∈ {5, 6} for all m ∈ N} ,

or the set A3 of numbers whose significand is rational,

A3 = {x > 0 : S(x) ∈ Q} .

On the other hand, the interval [1, 2], for instance, does not belong to S. This
follows from the next theorem which provides a useful characterization of the
significand sets, i.e. the members of the family S. For its formulation, for every
t ∈ R and every set C ⊂ R, let tC := {tc : c ∈ C}.

Theorem 2.9 ([Hi2]). For every A ∈ S,

A =
⋃

k∈Z
10kS(A) (2.3)

holds, where S(A) = {S(x) : x ∈ A} ⊂ [1, 10). Moreover,

S = R+ ∩ σ(D1, D2, D3, . . .) =
{⋃

k∈Z
10kB : B ∈ B[1, 10)

}
. (2.4)

Proof. By definition,

S = R+ ∩ σ(S) = R+ ∩ {S−1(B) : B ∈ B} = R+ ∩ {S−1(B) : B ∈ B[1, 10)} .

Thus, given any A ∈ S, there exists a set B ∈ B[1, 10) with A = R+∩S−1(B) =⋃
k∈Z

10kB. Since S(A) = B, it follows that (2.3) holds for all A ∈ S.
To prove (2.4), first observe that by Proposition 2.5(i) the significand func-

tion S is completely determined by the significant digits D1, D2, D3, . . . , so
σ(S) ⊂ σ(D1, D2, D3, . . .) and hence S ⊂ R+∩σ(D1, D2, D3, . . .). Conversely, ac-
cording to Proposition 2.5(ii), everyDm is determined by S, thus σ(Dm) ⊂ σ(S)
for all m ∈ N, showing that σ(D1, D2, D3, . . .) ⊂ σ(S) as well. To verify the re-
maining equality in (2.4), note that for every A ∈ S, S(A) ∈ B[1, 10) and hence
A =

⋃
k∈Z

10kB for B = S(A), by (2.3). Conversely, every set of the form⋃
k∈Z

10kB = R+ ∩ S−1(B) with B ∈ B[1, 10) obviously belongs to S.

Note that for every A ∈ S there is a unique B ∈ B[1, 10) such that A =⋃
k∈Z

10kB, and (2.3) shows that in fact B = S(A).

Example 2.10. The set A4 of positive numbers with

A4 = {10k : k ∈ Z} = {. . . , 0.01, 0.1, 1, 10, 100, . . .}

belongs to S. This can be seen either by observing that A4 is the set of positive
reals with significand exactly equal to 1, i.e. A4 = R+ ∩ S−1({1}), or by noting
that A4 = {x > 0 : D1(x) = 1, Dm(x) = 0 for all m ≥ 2}, or by using (2.4) and
the fact that A4 =

⋃
k∈Z

10k{1} and {1} ∈ B[1, 10).
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Example 2.11. The singleton set {1} and the interval [1, 2] do not belong to
S, since the number 1 cannot be distinguished from the number 10, for instance,
using only significant digits. Nor can the interval [1, 2] be distinguished from
[10, 20]. Formally, neither of these sets is of the form

⋃
k∈Z

10kB for any B ∈
B[1, 10).

Although the significand function and σ-algebra above were defined in the
setting of real numbers, the same concepts carry over immediately to the most
fundamental setting of all, the set of positive integers. In this case, the induced
σ-algebra is interesting in its own right.

Example 2.12. The restriction SN of S to subsets of N, i.e. SN = {N∩A : A ∈ S}
is a σ-algebra on N. A characterization of SN analogous to that of S given in
Theorem 2.9 is as follows: Denote by N

✚10
the set of all positive integers not

divisible by 10, i.e. N
✚10

= N\10N. Then

SN =
{
A ⊂ N : A =

⋃
l∈N0

10lB for some B ⊂ N
✚10

}
.

A typical member of SN is

{271, 2710, 3141, 27100, 31410, 271000, 314100, . . .} .

Note that for instance the set {31410, 314100, 3141000, . . .} does not belong to
SN since 31410 is indistinguishable from 3141 in terms of significant digits, so
if the former number were to belong to A ∈ SN then the latter would too. Note
also that the corresponding significand function on N still only takes values in
[1, 10), as before, but may never be an irrational number. In fact, the possible
values of S on N are even more restricted: S(n) = t for some n ∈ N if and only
if t ∈ [1, 10) and 10lt ∈ N for some integer l ≥ 0.

The next lemma establishes some basic closure properties of the significand
σ-algebra that will be essential later in studying characteristic aspects of BL
such as scale- and base-invariance. To concisely formulate these properties, for
every C ⊂ R+ and n ∈ N, let C1/n := {t > 0 : tn ∈ C}.

Lemma 2.13. The following properties hold for the significand σ-algebra S:

(i) S is self-similar with respect to multiplication by integer powers of 10, i.e.

10kA = A for every A ∈ S and k ∈ Z .

(ii) S is closed under multiplication by a scalar, i.e.

αA ∈ S for every A ∈ S and α > 0 .

(iii) S is closed under integral roots, i.e.

A1/n ∈ S for every A ∈ S and n ∈ N .
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Informally, property (i) says that every significand set remains unchanged when
multiplied by an integer power of 10 — reflecting the simple fact that shifting the
decimal point keeps all the significant digits, and hence the set itself, unchanged;
(ii) asserts that if every element of a set expressible solely in terms of significant
digits is multiplied by a positive constant, then the new set is also expressible by
significant digits; correspondingly, (iii) states that the collection of square (cubic,
fourth etc.) roots of the elements of every significand set is also expressible in
terms of its significant digits alone.

Proof. (i) This is obvious from (2.3) since S(10kA) = S(A) for every k.
(ii) Given A ∈ S, by (2.4) there exists B ∈ B[1, 10) such that A =

⋃
k∈Z

10kB.
In view of (i), assume without loss of generality that 1 < α < 10. Then

αA =
⋃

k∈Z
10kαB =

⋃
k∈Z

10k
((
αB∩[α, 10)

)
∪
( α
10
B∩[1, α)

))
=
⋃

k∈Z
10kC ,

with C =
(
αB ∩ [α, 10)

)
∪
(

α
10B ∩ [1, α)

)
∈ B[1, 10), showing that αA ∈ S.

(iii) Since intervals of the form [1, t] generate B[1, 10), i.e. since B[1, 10) =
σ
(
{[1, t] : 1 < t < 10}

)
, it is enough to verify the claim for the special case

A =
⋃

k∈Z
10k[1, 10s] for every 0 < s < 1. In this case

A1/n =
⋃

k∈Z
10k/n[1, 10s/n] =

⋃
k∈Z

10k
⋃n−1

j=0
[10j/n, 10(j+s)/n] =

⋃
k∈Z

10kC ,

with C =
⋃n−1

j=0 [10
j/n, 10(j+s)/n] ∈ B[1, 10). Hence A1/n ∈ S.

Remark. Note that S is not closed under taking integer powers: If A ∈ S and
n ∈ N, then An ∈ S if and only if

S(A)n = B ∪ 10B ∪ . . . ∪ 10n−1B for some B ∈ B[1, 10) .

For example, consider

A5 =
⋃

k∈Z
10k{1,

√
10} ∈ S ,

for which S(A5)
2 = {1, 10} = {1} ∪ 10{1} and hence A2

5 ∈ S, whereas choosing

A6 =
⋃

k∈Z
10k{2,

√
10}

leads to S(A6)
2 = {4, 10}, and correspondingly A2

6 6∈ S. ♣

Since, by Theorem 2.9, the significand σ-algebra S is the same as the sig-
nificant digit σ-algebra σ(D1, D2, D3, . . .), the closure properties established in
Lemma 2.13 carry over to sets determined by significant digits. The next exam-
ple illustrates closure under multiplication by a scalar and integral roots.

Example 2.14. Let A7 be the set of positive real numbers with first significant
digit 1, i.e.

A7 = {x > 0 : D1(x) = 1} = {x > 0 : 1 ≤ S(x) < 2} =
⋃

k∈Z
10k[1, 2) .
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Fig 3. The σ-algebra S is closed under multiplication by a scalar and integral roots but not
under integer powers (bottom), see Example 2.14.

Then

2A7 =
{
x > 0 : D1(x) ∈ {2, 3}

}
= {x > 0 : 2 ≤ S(x) < 3} =

⋃
k∈Z

10k[2, 4) ∈ S ,

and also

A
1/2
7 =

{
x > 0 : S(x)∈ [1,

√
2)∪[

√
10,

√
20)
}
=
⋃

k∈Z
10k
(
[1,

√
2)∪[

√
10, 2

√
5)
)
∈S ,

whereas on the other hand clearly

A2
7 =

⋃
k∈Z

102k[1, 4) 6∈ S ,

since e.g. [1, 4) ⊂ A2
7 but [10, 40) 6⊂ A2

7; see Fig 3.

Example 2.15. Recall the significand σ-algebra SN on the positive integers
defined in Example 2.12. Unlike its continuous counterpart S, the family SN is
not even closed under multiplication by a positive integer, since for example

A8 = N ∩ {x > 0 : S(x) = 2} = {2, 20, 200, . . .} ∈ SN ,
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but
5A8 = {10, 100, 1000, . . .} 6∈ SN .

Of course, this does not rule out that some events determined by significant
digits, i.e. some members of SN, still belong to SN after multiplication by an
integer. For example, if

A9 = {n ∈ N : D1(n) = 1} = {1, 10, 11, . . . , 19, 100, 101, . . .} ∈ SN

then
3A9 = {3, 30, 33, . . . , 57, 300, 303, . . .} ∈ SN .

It is easy to see that, more generally, SN is closed under multiplication by m ∈ N
precisely if gcd (m, 10) = 1, that is, whenever m and 10 have no non-trivial
common factor. Moreover, like S, the σ-algebra SN is closed under integral roots:
If A =

⋃
l∈N0

10lÂ with Â ⊂ N
✚10

then A1/n =
⋃

l∈N0
10lÂ1/n ∈ SN. With A9

from above, for instance,

A
1/2
9 =

{
n ∈ N : S(n) ∈ [1,

√
2) ∪ [

√
10,

√
20)
}

= {1, 4, 10, 11, 12, 13, 14, 32, 33, . . . , 44, 100, 101, . . .} ∈ SN .

Thus many of the conclusions drawn later for positive real numbers carry over
to positive integers in a straightforward way.

The next lemma provides a very convenient framework for studying probabil-
ities on the significand σ-algebra by translating them into probability measures
on the classical space of Borel subsets of [0, 1), that is, on

(
[0, 1),B[0, 1)

)
. For

a proper formulation, observe that for every function f : Ω → R with A ⊃ σ(f)
and every probability measure P on (Ω,A), f and P together induce a probability
measure f∗P on (R,B) in a natural way, namely by setting

f∗P(B) = P
(
f−1(B)

)
for all B ∈ B . (2.5)

Other symbols commonly used in textbooks to denote f∗P include P ◦ f−1 and
Pf . In the case of a linear function f , i.e. for f(t) ≡ αt with some α ∈ R,
instead of f∗P simply write α∗P. The special case of interest for significands is
(Ω,A) = (R+, S) and f = logS.

Lemma 2.16. The function ℓ : R+ → [0, 1) defined by ℓ(x) = logS(x) es-
tablishes a one-to-one and onto correspondence (measure isomorphism) between
probability measures on (R+, S) and on

(
[0, 1),B[0, 1)

)
, respectively.

Proof. From ℓ−1
(
[a, b]

)
= S−1

(
[10a, 10b]

)
for all 0 ≤ a < b < 1, it follows

that σ(ℓ) = R+ ∩ σ(S) = S, and hence ℓ∗P according to (2.5) is a well-defined
probability measure on

(
[0, 1),B[0, 1)

)
.

Conversely, given any probability measure P on
(
[0, 1),B[0, 1)

)
and any A

in S, let B ∈ B[0, 1) be the unique set for which A =
⋃

k∈Z
10k10B, where

10B = {10s : s ∈ B}, and define

PP (A) := P (B) .
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It is readily confirmed that ℓ(A) = B, ℓ−1(B) = A, and PP is a well-defined
probability measure on (R+, S). Moreover

ℓ∗PP (B) = PP

(
ℓ−1(B)

)
= PP (A) = P (B) for all B ∈ B[0, 1) ,

showing that ℓ∗PP = P , and hence every probability measure on
(
[0, 1),B[0, 1)

)

is of the form ℓ∗P with the appropriate P. On the other hand,

Pℓ∗P(A) = ℓ∗P(B) = P
(
ℓ−1(B)

)
= P(A) for all A ∈ S ,

and hence the correspondence P 7→ ℓ∗P is one-to-one as well. Overall P ↔ ℓ∗P
is bijective.

From the proof of Lemma 2.16 it is clear that a bijective correspondence
between probability measures on (R+, S) and on

(
[0, 1),B[0, 1)

)
, respectively,

could have been established in many other ways as well, e.g. by using the func-
tion ℓ̃(x) = 1

9 (S(x) − 1) instead of ℓ. The special role of ℓ according to that
lemma only becomes apparent through its relation to BL. To see this, denote
by B the (unique) probability measure on (R+, S) with

B
(
{x > 0 : S(x) ≤ t}

)
= B

(⋃
k∈Z

10k[1, t]
)
= log t for all 1 ≤ t < 10 .

In view of (2.1), the probability measure B on (R+, S) is the most natural for-
malization of BL. On the other hand, it will become clear in subsequent chapters
that on

(
[0, 1),B[0, 1)

)
the uniform distribution λ0,1 has many special properties

and hence plays a very distinguished role. The relevance of the specific choice for
ℓ in Lemma 2.16, therefore, is that ℓ∗B = λ0,1. The reader will learn shortly why,
for a deeper understanding of BL, the latter relation is very beneficial indeed.

3. The Benford property

In order to translate the informal versions (1.1), (1.2) and (2.1) of BL into more
precise statements about various types of mathematical objects, it is necessary to
specify exactly what the Benford property means for any one of these objects.
For the purpose of the present chapter, the objects of interest fall into three
categories: sequences of real numbers, real-valued functions defined on [0,+∞);
and probability distributions and random variables. (Recall also Fig 1.)

3.1. Benford sequences

A sequence (xn) = (x1, x2, x3, . . .) of real numbers is a (base-10) Benford se-
quence, or simply Benford, if, as N → ∞, the limiting proportion of indices
n ≤ N for which xn has first significant digit d1 exists and equals log(1 + d−1

1 )
for all d1 ∈ {1, 2, . . . , 9}, and similarly for the limiting proportions of the occur-
rences of all other finite blocks of initial significant digits. The formal definition
is as follows.
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Definition 3.1. A sequence (xn) of real numbers is a Benford sequence, or
Benford for short, if

limN→∞
#{1 ≤ n ≤ N : S(xn) ≤ t}

N
= log t for all t ∈ [1, 10) ,

or equivalently, if for all m ∈ N, all d1 ∈ {1, 2, . . . , 9} and all dj ∈ {0, 1, . . . , 9},
j ≥ 2,

limN→∞
#
{
1 ≤ n ≤ N : Dj(xn) = dj for j = 1, 2, . . . ,m

}

N

= log

(
1+
(∑m

j=1
10m−jdj

)−1
)
.

As will be shown below, the sequence of powers of 2, namely (2n)=(2, 4, 8, . . .)
is Benford. However, it is not Benford base 2 since the second significant digit
base 2 of 2n is 0 for every n, whereas the generalized version (1.3) of BL requires

that 0 < Prob
(
D

(2)
2 = 0

)
= 1 − Prob

(
D

(2)
2 = 1

)
= log2 3 − 1 < 1. Similarly,

(3n), the sequence of powers of 3 is Benford, and so is the sequence of factorials
(n!) as well as the sequence (Fn) of Fibonacci numbers. Simple examples of
sequences that are not Benford are the positive integers (n), the powers of 10
and the sequence of logarithms (logn).

The notion of Benford sequence according to Definition 3.1 offers a natural
interpretation of Prob in the informal expressions (1.1)–(1.3): A sequence (xn)
is Benford if, when one of the first N entries in (xn) is chosen (uniformly) at
random, the probability that this entry’s first significant digit is d approaches
the Benford probability log(1+ d−1) as N → ∞, for every d ∈ {1, 2, . . . , 9}, and
similarly for all other blocks of significant digits.

Example 3.2. Two specific sequences of positive integers will be used repeat-
edly to illustrate key concepts concerning BL: the Fibonacci numbers and the
prime numbers. Both sequences play prominent roles in many areas of mathe-
matics.

(i) As will be seen in Example 4.12, the sequences of Fibonacci numbers
(Fn) = (1, 1, 2, 3, 5, 8, 13, . . .), where every entry is simply the sum of its two
predecessors, and F1 = F2 = 1, is Benford. Already the first N = 102 elements
of the sequence conform very well to the first-digit version (1.1) of BL, with
Prob being interpreted as relative frequency, see Fig 4. The conformance gets
even better if the first N = 104 elements are considered, see Fig 5.

(ii) In Example 4.11(v), it will become apparent that the sequence of prime
numbers (pn) = (2, 3, 5, 7, 11, 13, 17, . . .) is not Benford. Fig 4 shows how, ac-
cordingly, the first hundred prime numbers do not conform well to (1.1). More-
over, the conformance gets even worse if the first ten thousand primes are con-
sidered (Fig 5).
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Fig 4. The first one-hundred Fibonacci numbers conform to the first digit law (1.1) quite
well (top and bottom), while the first one-hundred prime numbers clearly do not (center and
bottom).

Remark. Based on discrete density and summability definitions, many alterna-
tive notions of Benford sequences have been proposed, utilizing e.g. reiteration
of Cesàro averaging [Fl], and logarithmic density methods. The reader is referred
to [Ra1, Ra2] for an excellent summary of those approaches. Those methods,
however, do not offer as natural an interpretation of “Prob” as Definition 3.1.
On this, Raimi [Ra1, p.529] remarks that “[t]he discrete summability schemes
[. . . ] can also be tortured into probability interpretations, though none of the
authors [. . . ] (except Diaconis) does so”.
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Fig 5. Increasing the sample size from N = 102 to N = 104 entails an even better
conformance with (1.1) for the Fibonacci numbers, as measured by means of the quantity
R = max9d=1

∣

∣ρN (d) − log(1 + d−1)
∣

∣. For the primes, on the other hand, the rather poor con-
formance does not improve at all.

Only the notion according to Definition 3.1 will be used henceforth. How-
ever, to get an impression how alternative concepts may relate to Definition 3.1
analytically, denote, for any set C ⊂ R, by 1C the indicator function of C, i.e.
1C : R → {0, 1} with

1C(t) =

{
1 if t ∈ C ,
0 otherwise.

Given any sequence (xn) and any number t ∈ [1, 10), consider the sequence(
1[1,t)(S(xn))

)
. Clearly, since the latter contains only zeros and ones, it will

usually not converge. It may, however, converge in some averaged sense, to a
limit that may depend on t. Specifically, (xn) is Benford if and only if

limN→∞

∑N
n=1 1[1,t)

(
S(xn)

)

N
= log t for all t ∈ [1, 10) . (3.1)

Instead of (3.1), one could more generally consider the convergence of

∑N

n=1
an1[1,t)

(
S(xn)

)

∑N

n=1
an

, (3.2)

where the an can be virtually any non-negative numbers with
∑N

n=1 an → +∞
as N → ∞. With this, (3.1) corresponds to the special case an = 1 for all
n. Another popular choice in (3.2), related to the number-theoretic concept
of logarithmic (or analytic) density [Se], is an = n−1 for all n, in which case

(lnN)−1
∑N

n=1 an → 1. Utilizing the latter, a sequence (xn) of real numbers
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might be (and has been, see [Ra1]) called weakly Benford if

limN→∞
1

lnN

∑N

n=1

1[1,t)

(
S(xn)

)

n
= log t for all t ∈ [1, 10) .

It is easy to check that every Benford sequence is weakly Benford. To see that
the converse does not hold in general, take for instance (xn) = (n). A short
calculation confirms that, for every t ∈ [1, 10),

lim infN→∞

∑N
n=1 1[1,t)

(
S(n)

)

N
=
t− 1

9
,

whereas

lim supN→∞

∑N
n=1 1[1,t)

(
S(n)

)

N
=

10

9
· t− 1

t
,

showing that (n) is not Benford. (Recall that the limit inferior and limit superior
of a sequence (an), denoted by lim infn→∞ an and lim supn→∞ an, are defined,
respectively, as the smallest and largest accumulation value of (an).) On the
other hand, (n) turns out to be weakly Benford: Indeed, given N , let LN :=
⌊logN⌋. For any t ∈ [1, 10), it follows from the elementary estimate

1

ln 10LN+1

∑LN−1

i=0

∑⌊10it⌋

j=10i

1

j
≤ 1

lnN

∑N

n=1

1[1,t)

(
S(n)

)

n

≤ 1

ln⌊10LN t⌋
∑LN

i=0

∑⌊10it⌋

j=10i

1

j
,

together with

∑⌊10it⌋

j=10i

1

j
= 10−i

∑⌊10it⌋−10i

j=0

1

1 + 10−ij
→

∫ t−1

0

dτ

1 + τ
= ln t , as i→ ∞ ,

as well as

limL→∞
ln 10L+1

L
= limL→∞

ln⌊10Lt⌋
L

= ln 10

and the Cauchy Limit Theorem that

limN→∞
1

lnN

∑N

n=1

1[1,t)

(
S(n)

)

n
=

ln t

ln 10
= log t ,

i.e., (n) is weakly Benford. In a similar manner, the sequence (pn) can be shown
to be weakly Benford without being Benford, see [GG, Wh]. ♣

3.2. Benford functions

BL also appears frequently in real-valued functions such as e.g. those arising
as solutions of initial value problems for differential equations (see Section 5.3
below). Thus, the starting point is to define what it means for a function to
follow BL.
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Recall that a function f : R → R is (Borel) measurable if f−1(I) is a Borel
set, i.e. f−1(I) ∈ B, for every interval I ⊂ R. With the terminology introduced
in Section 2.3, this is equivalent to saying that σ(f) ⊂ B. Slightly more gener-
ally, for any set Ω and any σ-algebra A on Ω, a function f : Ω → R is (Borel)
measurable if σ(f) ⊂ A. The collection of Borel measurable functions f : R → R
contains all functions of practical interest. For example, every piecewise contin-
uous function (meaning that f has at most countably many discontinuities) is
measurable. Thus every polynomial, trigonometric and exponential function is
measurable, and so is every probability density function of any relevance. In
fact, it is a difficult exercise to produce a function that is not measurable, or
a set C ⊂ R that is not a member of B, and this can be done only in a non-
constructive way. For all practical purposes, therefore, the reader may simply
read “set” for “Borel set”, and “function” for “Borel measurable function”.

Recall that given a set Ω and a σ-algebra A on Ω, a measure µ on (Ω,A) is
a function µ : A → [0,+∞] that has all the properties of a probability measure,
except that µ(A) may also be bigger than 1, and even infinite. By far the most
important example is the so-called Lebesgue measure on (R,B), denoted by
λ here and throughout. The basic, and in fact defining property of λ is that
λ
(
[a, b]

)
= b− a for every interval [a, b] ⊂ R. The relation between the measure

λ and the probability measures λa,b considered earlier is such that, for instance,

λ(B) = limN→∞ 2Nλ−N,N

(
B ∩ [−N,N ]

)
for every B ∈ B .

It is customary to also use the symbol λ, often without a subscript etc., to
denote the restriction of Lebesgue measure to

(
C,B(C)

)
with the Borel set C

being clear from the context.
In analogy to the terminology for sequences, a function f is a (base-10) Ben-

ford function, or simply Benford, if the limiting proportion of the time τ < T
that the first digit of f(τ) equals d1 is exactly log(1 + d−1

1 ), and similarly for
the other significant digits, and in fact the significand. The formal definition is
as follows.

Definition 3.3. A (Borel measurable) function f : [0,+∞) → R is Benford if

limT→+∞
λ
({
τ ∈ [0, T ) : S

(
f(τ)

)
≤ t
})

T
= log t for all t ∈ [1, 10) ,

or equivalently, if for all m ∈ N, all d1 ∈ {1, 2, . . . , 9} and all dj ∈ {0, 1, . . . , 9},
j ≥ 2,

limT→+∞
λ
({
τ ∈ [0, T ) : Dj

(
f(τ)

)
= dj for j = 1, 2, . . . ,m

})

T

= log

(
1+
(∑m

j=1
10m−jdj

)−1
)
.

Directly analogous to the probabilistic interpretation of a Benford sequence,
the definition of a Benford function given in Definition 3.3 also offers a natural
probabilistic interpretation: A function f : [0,+∞) → R is Benford if, when a
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time τ is chosen (uniformly) at random in [0, T ), the probability that the first
digit of f(τ) is d approaches log(1+d−1) as T → +∞, for every d ∈ {1, 2, . . . , 9},
and similarly for all other blocks of significant digits.

As will be seen in Example 4.5 below, the function f(t) = eαt is Benford
whenever α 6= 0, but f(t) = t and f(t) = sin2 t, for instance, are not.

3.3. Benford distributions and random variables

BL appears prominently in a wide variety of statistics and probability settings,
such as e.g. in products of independent, identically distributed random variables,
mixtures of random samples, and stochastic models like geometric Brownian
motion that are of great importance for the stochastic modelling of real-world
processes. This section lays the foundations for analyzing the Benford prop-
erty for probability distributions and random variables. The term independent,
identically distributed will henceforth be abbreviated i.i.d., in accordance with
standard stochastic terminology.

Recall from Section 2.3 that a probability space is a triple (Ω,A,P) where Ω
is a set, often referred to as the set of outcomes, A is a σ-algebra (the family of
events), and P is a probability measure. A (real-valued) random variable X on
(Ω,A,P) is simply a Borel measurable function X : Ω → R, and its distribution
PX is the probability measure on (R,B) defined by

PX

(
(−∞, t]

)
= P(X ≤ t) for all t ∈ R .

Thus with the notation introduced in (2.5), simply PX = X∗P. The expectation,
or expected (or mean) value of X is

EX =

∫

Ω

X dP =

∫

R

t dPX(t) ,

provided that this integral exists. More generally, for every measurable function
g : R → R, the expectation of the random variable g(X) is

Eg(X) =

∫

Ω

g(X) dP =

∫

R

g(t) dPX(t) .

In particular, if EX exists, then varX := E(X − EX)2 is the variance of X .
Any probability measure on (R,B) will be referred to as a Borel probability

measure on R. Again, since all subsets of R of any practical interest are Borel
sets, the specifier “Borel” will be suppressed unless there is a potential for confu-
sion, i.e., the reader may read “probability measure on R” for “Borel probability
measure on R”. Any probability measure P on R is uniquely determined by its
distribution function FP , defined as

FP (t) = P
(
(−∞, t]

)
for all t ∈ R .

It is easy to check that the function FP is right-continuous and non-decreasing,
with limt→−∞ FP (t) = 0 and limt→+∞ FP (t) = 1. For the sake of notational
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simplicity, write FX instead of FPX
for every random variableX . The probability

measure P , or any random variable X with PX = P , is continuous (or atomless)
if P ({t}) = 0 for every t ∈ R, or equivalently if the function FP is continuous.
It is absolutely continuous (a.c.) if, for any B ∈ B, P (B) = 0 holds whenever
λ(B) = 0. By the Radon–Nikodym Theorem, this is equivalent to P having a
density, i.e. to the existence of a measurable function fP : R → [0,+∞) such
that

P
(
[a, b]

)
=

∫ b

a

fP (t) dt for all [a, b] ⊂ R . (3.3)

Again, for simplicity write fX instead of fPX
for every a.c. random variable X .

Note that (3.3) implies
∫ +∞
−∞ fP (t) dt = 1. Every a.c. probability measure on

(R,B) is continuous but not vice versa, see e.g. [CT]. Given any probability P
on (R,B), denote | · |∗P simply by |P |, that is,

|P |(B) = P
(
{t ∈ R : |t| ∈ B}

)
for all B ∈ B .

Clearly, |P | is concentrated on [0,+∞), i.e. |P |
(
[0,+∞)

)
= 1, and

F|P |(t) =

{
0 if t < 0 ,

FP (t)− FP (−t) + P ({−t}) if t ≥ 0 ;

in particular, therefore, if P is continuous or a.c. then so is |P |, its density in
the latter case being

(
fP (t) + fP (−t)

)
· 1[0,+∞), where fP is the density of P .

Definition 3.4. A Borel probability measure P on R is Benford if

P
(
{x ∈ R : S(x) ≤ t}

)
= S∗P

(
{0} ∪ [1, t]

)
= log t for all t ∈ [1, 10) .

A random variable X on a probability space (Ω,A,P) is Benford if PX is Ben-
ford, i.e. if

P
(
S(X) ≤ t

)
= PX

(
{x ∈ R : S(x) ≤ t}

)
= log t for all t ∈ [1, 10) ,

or equivalently, if for all m ∈ N, all d1 ∈ {1, 2, . . . , 9} and all dj ∈ {0, 1, . . . , 9},
j ≥ 2,

P
(
Dj(X) = dj for j = 1, 2, . . . ,m

)
= log

(
1 +

(∑m

j=1
10m−jdj

)−1
)
.

Example 3.5. If X is a Benford random variable on some probability space
(Ω,A,P), then from (1.1) and the numerical values given in Chapter 1,

P(D1(X) = 1) = P(1 ≤ S(X) < 2) = log 2 = 0.3010 . . . ,

P(D1(X) = 9) = log
10

9
= 0.04575 . . . ,

P
((
D1(X), D2(X), D3(X)

)
= (3, 1, 4)

)
= log

315

314
= 0.001380 . . . .
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Fig 6. The distribution functions (top) and densities of S(X) and logS(X), respectively, for
a Benford random variable X.

As the following example shows, there are many probability measures on the
positive real numbers, and correspondingly many positive random variables that
are Benford.

Example 3.6. For every integer k, the probability measure Pk with density
fk(x) =

1
x ln 10 on [10k, 10k+1) is Benford, and so is e.g. 1

2 (Pk+Pk+1). In fact, ev-
ery convex combination of the (Pk)k∈Z, i.e. every probability measure

∑
k∈Z

qkPk

with 0 ≤ qk ≤ 1 for all k and
∑

k∈Z
qk = 1, is Benford.

As will be seen in Example 6.4 below, if U is a random variable uniformly
distributed on [0, 1), then the random variable X = 10U is Benford, but the
random variable X log 2 = 2U is not.

Definition 3.7. The Benford distribution B is the unique probability measure
on (R+, S) with

B(S ≤ t) = B
(⋃

k∈Z
10k[1, t]

)
= log t for all t ∈ [1, 10) ,

or equivalently, for all m ∈ N, all d1 ∈ {1, 2, . . . , 9} and all dj ∈ {0, 1, . . . , 9},
j ≥ 2,

B
(
Dj = dj for j = 1, 2, . . . ,m

)
= log

(
1 +

(∑m

j=1
10m−jdj

)−1
)
.

The combination of Definitions 3.4 and 3.7 gives
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Proposition 3.8. A Borel probability measure P on R is Benford if and only
if

|P |(A) = B(A) for all A ∈ S .

In particular, if P (R+) = 1 then P is Benford precisely if P (A) = B(A) for all
A ∈ S.

Note that the Benford distribution B is a probability distribution on the
significant digits, or the significand, of the underlying data, and not on the raw
data themselves. That is, B is a probability measure on the family of sets defined
by the base-10 significand, i.e. on (R+, S), but not on the bigger (R+,B+) or the
still bigger (R,B). For example, the probability B({1}) is not defined, simply
because the set {1} cannot be defined in terms of significant digits or significands
alone, and hence does not belong to the domain of B.

Example 3.9. In the framework of the Examples 2.12 and 2.15, it is tempting
to call a probability P on (N, SN) a Benford distribution on N if

P
(
{n ∈ N : S(n) ≤ t}

)
= log t for all t ∈ [1, 10) .

However, no such probability exists! To see this, for every n ∈ N
✚10

let An =⋃
l∈N0

10l{n} ∈ SN and note that N equals the disjoint union of the sets An, and

S(An) = {10〈logn〉}; here 〈logn〉 ∈ [0, 1) denotes the fractional part of logn,
that is, 〈logn〉 = logn − ⌊logn⌋. With qn := P (An) therefore

∑
n∈N

✚10
qn = 1

and S∗P =
∑

n∈N
✚10
qnδ10〈log n〉 . Since the set of discontinuities of t 7→ FS∗P (t)

is
{
10〈logn〉 : qn 6= 0

}
6= ∅, it is impossible to have FS∗P (t) = log t for all

t ∈ [1, 10). Note that, as a consequence, a Borel probability measure P on
R concentrated on N, i.e. with P (N) = 1, cannot be Benford.

On the other hand, given ε > 0 it is not hard to find a probability Pε on
(N, SN) with

∣∣Pε

(
{n ∈ N : S(n) ≤ t}

)
− log t

∣∣ < ε for all t ∈ [1, 10) . (3.4)

For a concrete example, for any N ∈ N consider the probability measure

QN := c−1
N

∑10N+1−1

j=10N
j−1δj ,

where cN =
∑10N+1−1

j=10N j−1. Note that QN may be thought of as a discrete
approximation of the Benford probability PN in Example 3.6. From

S∗QN = c−1
N

∑10N+1−1

j=10N
j−1δS(j) = c−1

N

∑10N+1−10N

j=1

1

10N + j − 1
δ1+10−N (j−1) ,

together with the elementary estimate ln M+1
L <

∑M
j=L j

−1 < ln M
L−1 , valid for

all L,M ∈ N with 2 ≤ L < M , it is straightforward to deduce that, for all
1 ≤ t < 10,

∣∣S∗QN

(
[1, t]

)
− log t

∣∣ < − log(1− 10−N) =
10−N

ln 10
+ O(10−2N) as N → ∞ .
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Thus (3.4) is guaranteed by taking Pε = QN with N sufficiently large. A short
calculation confirms that it suffices to choose N > 1 + | log ε|.

Example 3.10. (i) If X is distributed according to U(0, 1), the uniform dis-
tribution on [0, 1), i.e. PX = λ0,1, then for every 1 ≤ t < 10,

P
(
S(X) ≤ t

)
= λ0,1

(⋃
k∈Z

10k[1, t]
)
=
∑

n∈N
10−n(t− 1) =

t− 1

9
6≡ log t ,

showing that S(X) is uniform on [1, 10), and hence λ0,1 is not Benford.

(ii) If X is distributed according to exp(1), the exponential distribution with
mean 1, whose distribution function is given by Fexp(1)(t) = max(0, 1 − e−t),
then

P(D1(X) = 1) = P
(
X ∈

⋃
k∈Z

10k[1, 2)
)
=
∑

k∈Z

(
e−10k − e−2·10k

)

>
(
e−1/10 − e−2/10

)
+
(
e−1 − e−2

)
+
(
e−10 − e−20

)

= 0.3186 . . . > log 2 ,

and hence exp(1) is not Benford either. (See [EL, LSE, MN] for a detailed
analysis of the exponential distribution’s relation to BL.)

(iii) Let X be distributed according to the Beta
(
1
2 ,

1
2

)
- or arcsin-distribution,

meaning that P(X ≤ s) = 2
π arcsin

√
s for all 0 ≤ s < 1. It follows that, for every

1 ≤ t < 10,

FS(X)(t) = P(S(X) ≤ t) = P
(
X ∈

⋃
n∈N

10−n[1, t]
)

=
2

π

∑∞

n=1

(
arcsin(10−n/2

√
t)− arcsin(10−n/2)

)

=
2

π

∑∞

l=0

(2l)!

22l(l!)2(2l + 1)
· tl+1/2 − 1

10l+1/2 − 1
,

and hence in particular

FS(X)(
√
10) =

2

π

∑∞

l=0

(2l)!

22l(l!)2(2l+ 1)
· 1

10l/2+1/4 + 1

<
2

π

∑∞

l=0

(2l)!

22l(l!)2(2l+ 1)
10−(l/2+1/4)

=
2

π
arcsin(10−1/4) = 0.3801 . . . <

2

5
,

which in turn shows that X is not Benford, as FB(
√
10) = 1

2 . Alternatively,
FS(X) is easily seen to be strictly convex on [1, 10) and therefore FS(X)(t) ≡ log t
cannot possibly hold.
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4. Characterizations of Benford’s Law

The purpose of this chapter is to establish and illustrate four useful charac-
terizations of the Benford property in the context of sequences, functions, dis-
tributions and random variables, respectively. These characterizations will be
instrumental in demonstrating that certain datasets are, or are not, Benford,
and helpful for predicting which empirical data are likely to follow BL closely.

4.1. The uniform distribution characterization

The uniform distribution characterization is undoubtedly the most basic and
powerful of all characterizations, mainly because the mathematical theory of
uniform distribution mod 1 is very well developed, see e.g. [DT, KN] for author-
itative surveys of the theory.

Here and throughout, denote by 〈t〉 the fractional part of any real number t,
that is 〈t〉 = t−⌊t⌋. For example, 〈π〉 = 〈3.1415 . . .〉 = 0.1415 . . . = π− 3. Recall
that λ0,1 denotes Lebesgue measure on

(
[0, 1),B[0, 1)

)
.

Definition 4.1. A sequence (xn) of real numbers is uniformly distributed mod-
ulo 1, abbreviated henceforth as u.d. mod 1, if

limN→∞
#{1 ≤ n ≤ N : 〈xn〉 ≤ s}

N
= s for all s ∈ [0, 1) ;

a (Borel measurable) function f : [0,+∞) → R is u.d. mod 1 if

limT→+∞
λ{τ ∈ [0, T ) : 〈f(τ)〉 ≤ s}

T
= s for all s ∈ [0, 1) ;

a random variable X on a probability space (Ω,A,P) is u.d. mod 1 if

P(〈X〉 ≤ s) = s for all s ∈ [0, 1) ;

and a probability measure P on (R,B) is u.d. mod 1 if

P ({x : 〈x〉 ≤ s}) = P
(⋃

k∈Z
[k, k + s]

)
= s for all s ∈ [0, 1) .

The next simple theorem (cf. [Di]) is one of the main tools in the theory of
BL because it allows application of the powerful theory of uniform distribution
mod 1. (Recall the convention log 0 := 0.)

Theorem 4.2 (Uniform distribution characterization). A sequence of real num-
bers (respectively, a Borel measurable function, a random variable, a Borel prob-
ability measure) is Benford if and only if the decimal logarithm of its absolute
value is uniformly distributed modulo 1.
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Proof. Let X be a random variable and, without loss of generality, assume that
P(X = 0) = 0. Then, for all s ∈ [0, 1),

P(〈log |X |〉 ≤ s) = P
(
log |X | ∈

⋃
k∈Z

[k, k + s]
)
= P

(
|X | ∈

⋃
k∈Z

[10k, 10k+s]
)

= P(S(X) ≤ 10s) .

Hence, by Definitions 3.4 and 4.1, X is Benford if and only if P(S(X) ≤ 10s) =
log 10s = s for all s ∈ [0, 1), i.e., if and only if log |X | is u.d. mod 1.

The proofs for sequences, functions, and probability distributions are com-
pletely analogous.

Next, several tools from the basic theory of uniform distribution mod 1 will
be recorded that will be useful, via Theorem 4.2, in establishing the Benford
property for many sequences, functions, and random variables.

Lemma 4.3. (i) The sequence (xn) is u.d. mod 1 if and only if the sequence
(kxn+b) is u.d. mod 1 for every k ∈ Z\{0} and every b ∈ R. Also, (xn) is
u.d. mod 1 if and only if (yn) is u.d. mod 1 whenever limn→∞ |yn−xn| = 0.

(ii) The function f is u.d. mod 1 if and only if t 7→ kf(t) + b is u.d. mod 1
for every non-zero integer k and every b ∈ R.

(iii) The random variable X is u.d. mod 1 if and only if kX + b is u.d. mod 1
for every non-zero integer k and every b ∈ R.

Proof. (i) The “if” part is obvious with k = 1, b = 0. For the “only if” part,
assume that (xn) is u.d. mod 1. Note first that

limN→∞
#{1 ≤ n ≤ N : 〈xn〉 ∈ C}

N
= λ0,1(C)

holds whenever C is a finite union of intervals. Let k ∈ Z be non-zero and
observe that, for any 0 < s < 1,

{
x : 〈kx〉 ≤ s

}
=





{
x : 〈x〉 ∈

⋃k−1
j=0

[
j
k ,

j+s
k

]}
if k > 0 ,

{
x : 〈x〉 ∈ ⋃|k|−1

j=0

[
j+1−s

|k| , j+1
|k|

]}
if k < 0 .

Consequently,

limN→∞
#{1 ≤ n ≤ N : 〈kxn〉 ≤ s}

N
=





λ0,1

(⋃k−1
j=0

[
j
k ,

j+s
k

])
if k > 0 ,

λ0,1

(⋃|k|−1
j=0

[
j+1−s

|k| , j+1
|k|

])
if k < 0 ,

=

{
k · s

k if k > 0

|k| · s
|k| if k < 0

= s ,
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showing that (kxn) is u.d. mod 1. Similarly, note that, for any b, s ∈ (0, 1),

{
x : 〈x+ b〉 ≤ s

}
=

{
{x : 〈x〉 ∈ [0, s− b] ∪ [1− b, 1)} if s ≥ b ,

{x : 〈x〉 ∈ [1− b, 1 + s− b]} if s < b .

Thus, assuming without loss of generality that 0 < b < 1,

limN→∞
#{1 ≤ n ≤ N : 〈xn + b〉 ≤ s}

N
=

{
λ0,1

(
[0, s− b] ∪ [1− b, 1)

)
if s ≥ b

λ0,1
(
[1− b, 1 + s− b]

)
if s < b

= s ,

and hence (xn + b) is also u.d. mod 1. The second assertion is clear from the
definition.

The proofs of (ii) and (iii) are completely analogous.

Example 4.4. (i) The sequence (nπ) = (π, 2π, 3π, . . .) is u.d. mod 1, by Weyl’s
Equidistribution Theorem, see Proposition 4.8(i) below. Similarly, the sequence
(xn) = (n

√
2) is u.d. mod 1, whereas (xn

√
2) = (2n) = (2, 4, 6, . . .) clearly is

not, as 〈2n〉 = 0 for all n. Thus the requirement in Lemma 4.3(i) that k be an
integer cannot be dropped.

For an analogous example using random variables, let X be uniform on [0, 2),
that is PX = λ0,2. Then X is u.d. mod 1, but X

√
2 is not because

P
(
〈X

√
2〉 ≤ s

)
=





3
2
√
2
s if s ∈ [0, 2

√
2− 2) ,

1√
2
s+

√
2−1√
2

if s ∈ [2
√
2− 2, 1) .

(ii) The sequence (log n) is not u.d. mod 1. A straightforward calculation
shows that

(
N−1#{1 ≤ n ≤ N : 〈log n〉 ≤ s}

)
N∈N

has, for every s ∈ [0, 1),

1

9
(10s − 1) and

10

9
(1− 10−s)

as its limit inferior and limit superior, respectively.

Example 4.5. (i) The function f(t) = at+ b with real a, b is u.d. mod 1 if and
only if a 6= 0. Clearly, if a = 0 then f is constant and hence not u.d. mod 1. On
the other hand, if a > 0 then 〈aτ + b〉 ≤ s if and only if τ ∈

[
k−b
a , k−b+s

a

]
for

some k ∈ Z. Note that each of the intervals
[
k−b
a , k−b+s

a

]
has the same length

s
a . Thus, given T > 0 and s ∈ [0, 1),

s

a
(⌊aT ⌋ − 2) ≤ λ

(
{τ ∈ [0, T ) : 〈aτ + b〉 ≤ s}

)
≤ s

a
(⌊aT ⌋+ 2) ,

and since limT→+∞
s
aT (⌊aT ⌋ ± 2) = s, the function f is u.d. mod 1. The argu-

ment for the case a < 0 is similar.
As a consequence, although the function f(t) = αt is not Benford for any

α, the function f(t) = eαt is Benford whenever α 6= 0, via Theorem 4.2, since
log f(t) = αt/ ln 10 is u.d. mod 1, see Fig 7.
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(ii) The function f(t) = log |at+b| is not u.d. mod 1 for any a, b ∈ R. Indeed,
if a = 0 then f is constant and hence not u.d. mod 1. On the other hand, for
a 6= 0 essentially the same calculation as in Example 4.4(ii) above shows that,
for every s ∈ [0, 1),

lim infT→+∞
λ({τ ∈ [0, T ) : 〈log |aτ + b|〉 ≤ s})

T
=

1

9
(10s − 1) ,

and

lim supT→+∞
λ({τ ∈ [0, T ) : 〈log |aτ + b|〉 ≤ s})

T
=

10

9
(1 − 10−s) .

Again, this implies that f(t) = at+ b is not Benford for any a, b.
Similarly, f(t) = − log(1+ t2) is not u.d. mod 1, and hence f(t) = (1+ t2)−1

is not Benford, see Fig 7.

(iii) The function f(t) = et is u.d. mod 1. To see this, let T > 0 and N :=
⌊eT ⌋, and recall that t − 1

2 t
2 ≤ ln(1 + t) ≤ t for all t ≥ 0. Given 0 ≤ s < 1, it

follows from

λ ({τ ∈ [0, T ) : 〈eτ 〉 ≤ s}) =
∑N−1

n=1
ln
(
1 +

s

n

)
+ (T − lnN)

that

s
∑N−1

n=1 n
−1 − 1

2s
2
∑N−1

n=1 n
−2

ln(N + 1)
≤ λ ({τ ∈ [0, T ) : 〈eτ 〉 ≤ s})

T

≤ s
∑N−1

n=1 n
−1 + ln(1 +N−1)

lnN
,

and hence indeed limT→+∞ T−1λ ({τ ∈ [0, T ) : 〈eτ 〉 ≤ s}) = s.

As a consequence, the super-exponential function f(t) = ee
αt

is also Benford
if α 6= 0.

(iv) For the function f(t) = sin2 t, it is straightforward to check that, given
any 0 ≤ s < 1,

limT→+∞
λ({τ ∈ [0, T ) : 〈sin2 τ〉 ≤ s})

T
=

2

π
arcsin

√
s .

Thus, asymptotically 〈f〉 is not uniform on [0, 1) but rather arcsin-distributed,
see Example 3.10(iii).

(v) For the function f(t) = log(sin2 t), it follows from (iv) that the asymptotic
distribution of 〈f〉 has the density

d

ds

(
2

π

∑∞

n=1

(
arcsin 10(s−n)/2 − arcsin 10−n/2

))
=

ln 10

π

∑∞

n=1

1√
10n−s − 1

>
ln 10

π
· 10s/2

101/2 − 1
,
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1

1

1

0

0

0
0

0

0

10

10

10

10

10

10

t

t

t

f1(t) = e−t

S(f1)

f2(t) = (1 + t2)−1

S(f2)

f3(t) = sin2 t

S(f3)

Fig 7. While the function f1 is Benford, the functions f2, f3 are not, see Example 4.5.

for 0 ≤ s < 1. Thus clearly f is not u.d. mod 1, showing that t 7→ sin2 t is not
Benford, see Fig 7.

Example 4.6. (i) If the random variable X is uniformly distributed on [0, 2)
then it is clearly u.d. mod 1. However, if X is uniform on, say, [0, π) then X is
not u.d. mod 1.

(ii) No exponential random variable is u.d. mod 1. Specifically, let X be an
exponential random variable with mean σ, i.e.

FX(t) = max(0, 1− e−t/σ) , t ∈ R .

Hence varX = σ2. For every l ≥ 0,

P(l ≤ X < l + 1
2 ) = FX(l + 1

2 )− FX(l)

> FX(l + 1)− FX(l + 1
2 ) = P(l + 1

2 ≤ X < l + 1) ,

and since
∑∞

l=0 P(l ≤ X < l+ 1) = 1, this implies that

P(〈X〉 < 1
2 ) =

∑∞

l=0
P(l ≤ X < l + 1

2 ) >
1
2 ,

showing that X is not u.d. mod 1. To obtain more explicit information, observe
that, for every 0 ≤ s < 1,

F〈X〉(s) = P(〈X〉 ≤ s) =
∑∞

l=0

(
FX(l + s)− FX(l)

)
=

1− e−s/σ

1− e−1/σ
,
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from which it follows via a straightforward calculation that

max0≤s<1

∣∣F〈X〉(s)− s
∣∣ = 1

e1/σ − 1
− σ + σ ln(σe1/σ − σ) =: Rii(σ) .

Note that Rii(1) = ln(e − 1)− e−2
e−1 = 0.1233 . . . < 1

8 . Moreover,

Rii(σ) =
1

8σ
+ O(σ−2) as σ → +∞ ,

which shows that even though X is not u.d. mod 1, the deviation of 〈X〉 from
uniform is small for large σ. As a consequence, 10X resembles a Benford random
variable ever more closely as σ → +∞.

(iii) If X is a normal random variable then X is not u.d. mod 1, and neither
is |X | or max(0, X). While this is easily checked by a direct calculation as in (ii),
it is again illuminating to obtain more quantitative information. To this end,
assume that X is a normal variable with mean 0 and variance σ2. By means of
Fourier series [Pi], it can be shown that, for every 0 ≤ s < 1,

F〈X〉(s)− s =
∑∞

n=1

sin(2πns)

πn
e−2σ2π2n2

.

From this, it follows that

Riii(σ) := max0≤s<1

∣∣F〈X〉(s)− s
∣∣ ≤ 1

π

∑∞

n=1
n−1e−2σ2π2n2

,

and hence in particular

Riii(σ) =
e−2σ2π2

π
+ O(e−8σ2π2

) as σ → +∞ ,

showing that Riii(σ), the deviation of 〈X〉 from uniformity, goes to zero very
rapidly as σ → +∞. Already for σ = 1 one finds that Riii(1) < 8.516 · 10−10.
Thus even though a standard normal random variable X is not u.d. mod 1, the
distribution of 〈X〉 is extremely close to uniform. Consequently, a log-normal
random variable with large variance is practically indistinguishable from a Ben-
ford random variable.

Corollary 4.7. (i) A sequence (xn) is Benford if and only if, for all α ∈ R
and k ∈ Z with αk 6= 0, the sequence (αxkn) is also Benford.

(ii) A function f : [0,+∞) → R is Benford if and only if 1/f is Benford.

(iii) A random variable X is Benford if and only if 1/X is Benford.

The next two statements, recorded here for ease of reference, list several key
tools concerning uniform distribution mod 1, which via Theorem 4.2 will be used
to determine Benford properties of sequences, functions, and random variables.
Conclusion (i) in Proposition 4.8 is Weyl’s classical uniform distribution result
[KN, Thm.3.3], conclusion (ii) is an immediate consequence of Weyl’s criterion
[KN, Thm.2.1], conclusion (iii) is [Ber2, Lem.2.8], and conclusion (iv) is [BBH,
Lem.2.4.(i)].
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Proposition 4.8. Let (xn) be a sequence of real numbers.

(i) If limn→∞(xn+1 − xn) = θ for some irrational θ, then (xn) is u.d. mod 1.

(ii) If (xn) is periodic, i.e. xn+p = xn for some p ∈ N and all n, then (nθ+xn)
is u.d. mod 1 if and only if θ is irrational.

(iii) The sequence (xn) is u.d. mod 1 if and only if (xn + α logn) is u.d. mod
1 for all α ∈ R.

(iv) If (xn) is u.d. mod 1 and non-decreasing, then (xn/ logn) is unbounded.

The converse of (i) is not true in general: (xn) may be u.d. mod 1 even if
(xn+1 − xn) has a rational limit. Also, in (ii) the sequence (nθ) cannot be
replaced by an arbitrary uniformly distributed sequence (θn), i.e. (θn+xn) may
not be u.d. mod 1 even though (θn) is u.d. mod 1 and (xn) is periodic.

Another very useful result is Koksma’s metric theorem [KN, Thm.4.3]. For
its formulation, recall that a property of real numbers is said to hold for almost
every (a.e.) x ∈ [a, b) if there exists a set N ∈ B[a, b) with λa,b(N) = 0 such
that the property holds for every x 6∈ N . The probabilistic interpretation of a
given property of real numbers holding for a.e. x is that this property holds
almost surely (a.s.), i.e. with probability one, for every random variable that
has a density (i.e., is absolutely continuous).

Proposition 4.9. Let fn be continuously differentiable on [a, b] for all n ∈ N.
If f ′

m − f ′
n is monotone and |f ′

m(x) − f ′
n(x)| ≥ α > 0 for all m 6= n, where α

does not depend on x, m and n, then
(
fn(x)

)
is u.d. mod 1 for almost every

x ∈ [a, b].

Theorem 4.10 ([BHKR]). If a, b, α, β are real numbers with a 6= 0 and |α| > |β|
then (αna+ βnb) is Benford if and only if log |α| is irrational.

Proof. Since a 6= 0 and |α| > |β|, limn→∞
βnb
αna = 0, and therefore

log |αna+ βnb| − log |αna| = log

∣∣∣∣1 +
βnb

αna

∣∣∣∣→ 0 ,

showing that (log |αna+βnb|) is u.d. mod 1 if and only if (log |αna|) = (log |a|+
n log |α|) is. According to Proposition 4.8(i), this is the case whenever log |α| is
irrational. On the other hand, if log |α| is rational then 〈log |a|+n log |α|〉 attains
only finitely many values and hence (log |a| + n log |α|) is not u.d. mod 1. An
application of Theorem 4.2 therefore completes the proof.

Example 4.11. (i) By Theorem 4.10 the sequence (2n) is Benford since log 2
is irrational, but (10n) is not Benford since log 10 = 1 ∈ Q. Similarly, (0.2n),

(3n), (0.3n),
(
0.01 · 0.2n + 0.2 · 0.01n

)
are Benford, whereas (0.1n),

(√
10

n)
,(

0.1 · 0.02n + 0.02 · 0.1n
)
are not.

(ii) The sequence
(
0.2n + (−0.2)n

)
is not Benford, since all odd terms are

zero, but
(
0.2n + (−0.2)n + 0.03n

)
is Benford — although this does not follow

directly from Theorem 4.10.
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(iii) By Proposition 4.9, the sequence (x, 2x, 3x, . . .) = (nx) is u.d. mod 1 for
almost every real x, but clearly not for every x, as for example x = 1 shows.
Consequently, by Theorem 4.2, (10nx) is Benford for almost all real x, but not
e.g. for x = 1 or, more generally, whenever x is rational.

(iv) By Proposition 4.8(iv) or Example 4.4(ii), the sequence (logn) is not
u.d. mod 1, so the sequence (n) of positive integers is not Benford, and neither
is (αn) for any α ∈ R, see also Fig 8.

(v) Consider the sequence (pn) of prime numbers. By the Prime Number
Theorem, pn = O(n logn) as n → ∞. Hence it follows from Proposition 4.8(iv)
that (pn) is not Benford, see Fig 8

Example 4.12. Consider the sequence (Fn) = (1, 1, 2, 3, 5, 8, 13, . . .) of Fi-
bonacci numbers, defined inductively as Fn+2 = Fn+1 + Fn for all n ∈ N,
with F1 = F2 = 1. It is well known (and easy to check) that

Fn =
1√
5

((
1 +

√
5

2

)n
−
(
1−

√
5

2

)n)
=

1√
5

(
ϕn − (−ϕ−1)n

)
for all n ∈ N ,

where ϕ = 1
2 (1 +

√
5) ≈ 1.618. Since ϕ > 1 and logϕ is irrational, (Fn) is

Benford, by Theorem 4.10, see also Fig 8. Sequences such as (Fn) which are
generated by linear recurrence relations will be studied in detail in Section 5.2.

Theorem 4.13. Let X,Y be random variables. Then:

(i) If X is u.d. mod 1 and Y is independent of X, then X+Y is u.d. mod 1.

(ii) If 〈X〉 and 〈X +α〉 have the same distribution for some irrational α then
X is u.d. mod 1.

(iii) If (Xn) is an i.i.d. sequence of random variables and X1 is not purely
atomic (i.e. P(X1 ∈ C) < 1 for every countable set C ⊂ R), then

limn→∞ P
(〈∑n

j=1
Xj

〉
≤ s
)
= s for every 0 ≤ s < 1 , (4.1)

that is,
〈∑n

j=1Xj

〉
→ U(0, 1) in distribution as n→ ∞.

Proof. The proof is most transparently done by means of some elementary
Fourier analysis. To this end, for any random variable Z with values in [0, 1), or
equivalently for the associated probability measure PZ on

(
[0, 1),B[0, 1)

)
, let

P̂Z(k) = E(e2πıkZ ) =

∫ 1

0

e2πıksdPZ(s)

=

∫ 1

0

cos(2πks) dPZ(s) + ı

∫ 1

0

sin(2πks) dPZ(s) , k ∈ Z .

The bi-infinite sequence
(
P̂Z(k)

)
k∈Z

, referred to as the Fourier (or Fourier–

Stieltjes) coefficients of Z or PZ , is a bounded sequence of complex numbers,
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(Fn) = (1, 1, 2, 3, 5, 8, 13, . . . )
(

S(Fn)
)

= (1, 1, 2, 3, 5, 8, 1.3, . . . )

(2n) = (2, 4, 6, 8, 10, 12, 14, . . . )
(

S(2n)
)

= (2, 4, 6, 8, 1, 1.2, 1.4, . . . )

(xn) = (⌊10(n+2)/5⌋)
= (3, 6, 10, 15, 25, 39, 63, . . . )

(

S(xn)
)

= (3, 6, 1, 1.5, 2.5, 3.9, 6.3, . . . )

(pn) = (2, 3, 5, 7, 11, 13, 17, . . .)
(

S(pn)
)

= (2, 3, 5, 7, 1.1, 1.3, 1.7, . . .)

ρ
N
(1) =

#{1 ≤ n ≤ N : D1 = 1}
N

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.8

1.0

log10N

log10N

log10N

log10N

ρ
N
(1)

ρ
N
(1)

ρ
N
(1)

Fig 8. For a Benford sequence, limN→∞ ρN (1) = log 2. Thus if
(

ρN (1)
)

N∈N
does not con-

verge (center) or has a different limit (bottom), then the sequence in question is not Benford,
see also Example 4.11.

with |P̂Z(k)| ≤ 1 for all k ∈ Z, and P̂Z(0) = 1. The three single most important

properties of Fourier coefficients are that
(
P̂Z(k)

)
k∈Z

uniquely determines PZ ,

i.e. PZ1 = PZ2 whenever P̂Z1(k) = P̂Z2(k) for all k ∈ Z; that ̂P〈Z1+Z2〉(k) =

P̂Z1(k) · P̂Z2(k) for all k, provided that Z1 and Z2 are independent; and that

Zn → Z in distribution if and only if limn→∞ P̂Zn
(k) = P̂Z(k) for every k,

see e.g. [CT] for an authoritative discussion of this material. Also note that
the sequence of Fourier coefficients is extremely simple if Z is uniform, i.e. for
Z = U(0, 1), namely

P̂U(0,1)(k) = λ̂0,1(k) =

{
1 if k = 0 ,
0 otherwise.
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With these preparations, the proof of the theorem is very short indeed.

(i) Since P̂〈X〉(k) = 0 for all k 6= 0,

P̂〈X+Y 〉(k) = P̂X(k) · P̂Y (k) = 0 ,

which in turn shows that 〈X + Y 〉 = U(0, 1), i.e. X + Y is u.d. mod 1.

(ii) Note that if Z = α with probability one then P̂Z(k) = e2πıkα for every
k ∈ Z. Consequently, if 〈X〉 and 〈X + α〉 have the same distribution then

P̂〈X〉(k) = P̂〈X+α〉(k) = e2πıkαP̂〈X〉(k)

for every k ∈ Z. If α is irrational then e2πıkα 6= 1 for all k 6= 0, implying that

P̂〈X〉(k) = 0. Thus P̂〈X〉 = λ̂0,1 and hence P〈X〉 = λ0,1, i.e. 〈X〉 = U(0, 1).
(iii) Assume that X1, X2, . . . are independent and all have the same distribu-

tion. Then, for every k ∈ Z and n ∈ N,

̂P〈X1+...+Xn〉(k) =
(
P̂〈X1〉(k)

)n
.

Recall that |P̂〈X1〉(k)| ≤ 1. Thus ̂P〈X1+...+Xn〉(k) → 0 as n → ∞, and hence

〈X1 + . . .+Xn〉 → U(0, 1) in distribution, unless |P̂〈X1〉(k0)| = 1 for some non-

zero integer k0. In the latter case, let P̂〈X1〉(k0) = e2πıθ with the appropriate
θ ∈ [0, 1). It follows from

0 = 1− e−2πıθP̂〈X1〉(k0) = 1− ̂P〈X1−θ/k0〉(k0)

=

∫ 1

0

(
1− cos(2πk0s)

)
dP〈X1−θ/k0〉(s) ≥ 0 ,

that cos(2πk0〈X1− θ/k0〉) = cos
(
2π(k0X− θ)

)
= 1 with probability one. Hence

P(k0X1 ∈ θ + Z) = 1, and X1 is purely atomic. (In fact, X1 is concentrated on
a lattice {a+ k/|k0| : k ∈ Z} with the appropriate a > 0.)

Example 4.14. (i) Let (Xn) be an i.i.d. sequence of Cauchy random variables,
i.e.

fX1(t) =
1

π(1 + t2)
, t ∈ R .

It is well known, or readily checked by a direct calculation, that 1
n

∑n
j=1Xj is

again Cauchy. Thus

f〈
∑

n
j=1 Xj〉(s) =

1

π

∑
k∈Z

n

n2 + (s+ k)2
, 0 ≤ s < 1 ,

from which it follows that, uniformly in s,

f〈
∑

n
j=1 Xj〉(s) =

1

πn

∑
k∈Z

1

1 +
(
(s+ k)/n

)2 → 1

π

∫ +∞

−∞

dt

1 + t2
= 1 as n→ ∞ .
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As asserted by Theorem 4.13, therefore, for every 0 ≤ s < 1,

limn→∞ P
(〈∑n

j=1
Xj

〉
≤ s
)
= limn→∞

∫ s

0

f〈∑n
j=1 Xj〉(σ) dσ =

∫ s

0

1 dσ = s .

(ii) Consider an i.i.d. sequence (Xn) where P(X1 = 0) = P(X1 =
√
2) = 1

2 .
In this case

P̂X1(k) =
1
2

(
1 + e2πık

√
2
)
= eπık

√
2 cos(πk

√
2) , k ∈ Z .

Note that |P̂X1 (k)| = | cos(πk
√
2)| < 1 for all k 6= 0. Hence ̂P〈∑n

j=1 Xj〉(k) =

P̂〈X1〉(k)
n → 0 as n → ∞, which in turn shows that (4.1) holds, even though

X1 is purely atomic.
On the other hand, if P(X1 = 0) = P(X1 = 1

2 ) =
1
2 then X1 is also purely

atomic, but

P
(∑n

j=1
Xj =

1
2 l
)
= 2−n

(
n
l

)
for all n ∈ N, l = 0, 1, . . . , n ,

and consequently, for every n,

P
(〈∑n

j=1
Xj

〉
= 0
)
=
∑n

l=0, l even
2−n

(
n
l

)
=

1

2
,

showing that (4.1) does not hold in this case. Correspondingly, P̂X1 (k) =
1
2

(
1+

(−1)k
)
, and so P̂X1 (k) = 1 whenever k is even.

A careful inspection of the above proof shows that, in the setting of Theorem
4.13(iii), (4.1) holds if and only if P(X1 ∈ a + 1

mZ) < 1 for every a ∈ R and
m ∈ N. While the “if” part has been proved above, for the “only if” part
simply note that if P(X1 ∈ a + 1

mZ) = 1 for some a ∈ R and m ∈ N then
〈X1 + . . .+Xn〉 is, for every n ∈ N and possibly up to a rotation, concentrated
on the set {0, 1

m , . . . ,
m−1
m } = 〈 1

mZ〉 and hence does not converge in distribution
to U(0, 1).

None of the familiar classical probability distributions or random variables,
such as e.g. normal, uniform, exponential, beta, binomial, or gamma distribu-
tions are Benford. Specifically, no uniform distribution is even close to BL, no
matter how large its range or how it is centered. This statement can be quanti-
fied explicitly as follows.

Proposition 4.15 ([Ber5, BH3]). For every uniformly distributed random vari-
able X,

max0≤s<1

∣∣F〈logX〉(s)− s
∣∣ ≥ −9 + ln 10 + 9 ln 9− 9 ln ln 10

18 ln 10
= 0.1334 . . . ,

and this bound is sharp.
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Similarly, all exponential and normal random variables are uniformly bound-
ed away from BL, as is explained in detail in [BH3]. However, as the following
example shows, some distributions do come fairly close to being Benford.

Example 4.16. (i) Let X be exponential with mean 1, that is

FX(t) = max(0, 1− e−t) , t ∈ R .

An explicit calculation shows that, for every 1 ≤ t < 10,

P(S(X) ≤ t) =
∑

k∈Z

(
FX(10kt)− FX(10k)

)
=
∑

k∈Z

(
e−10k − e−10kt

)
.

Since P(S(X) ≤ t) 6≡ log t, the random variable X is not Benford. Numerically,
one finds max1≤t<10 |P(S(X) < t) − log t| < 3.054 · 10−2, see also Fig 9. Thus
even though X is not exactly Benford, it is close to being Benford in the sense
that |P(S(X) ≤ t)− log t| is small for all t ∈ [1, 10).

(ii) Let X be standard normal. Then, for every t ∈ [1, 10),

P(S(X) ≤ t) =
∑

k∈Z

(
Φ(10kt)− Φ(10k)

)
,

where Φ is the distribution function of X , that is

Φ(t) = FX(t) = P(X ≤ t) =
1√
2π

∫ t

−∞
e−

1
2 τ

2

dτ , t ∈ R .

Numerically, one finds max1≤t≤10 |P(S(X) < t)− log t| < 6.052 · 10−2. Though
larger than in the exponential case, the deviation of X from BL is still rather
small.

0.040.04

−0.04 −0.04

10 101 1

tt

X standard normalX exponential, EX = 1

FS(X)(t) − log tFS(X)(t) − log t

‖FS(X)(t)−log t‖∞≈6.052·10−2

‖FS(X)(t)−log t‖∞≈3.054·10−2

Fig 9. For standard exponential (left) and normal random variables X, the distribution of
S(X) deviates from BL only slightly. Note, however, that non-standard normal variables can
be far from BL, e.g., if EX = 75 and varX = 1 then D1(X) = 7 with very high probability.
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The next result says that every random variable X with a density is asymp-
totically uniformly distributed on lattices of intervals as the size of the intervals
goes to zero. Equivalently, 〈nX〉 is asymptotically uniform, as n → ∞. This
result has been the basis for several recent fallacious arguments claiming that if
a random variable X has a density with a very large “spread” then logX must
also have a density with large spread and thus, by the theorem, must be close to
u.d. mod 1, implying in turn that X must be close to Benford (cf. [Fel, Few]).
The error in those arguments is that, regardless of which notion of “spread” is
used, the variable X may have large spread and at the same time the variable
logX may have small spread; for details, the reader is referred to [BH3].

Theorem 4.17. If X has a density then

limn→∞ P(〈nX〉 ≤ s) = s for all 0 ≤ s < 1 , (4.2)

that is, 〈nX〉 → U(0, 1) in distribution as n→ ∞.

Proof. Since 〈nX〉 =
〈
n〈X〉

〉
, it can be assumed that X only takes values in

[0, 1). Let f be the density of X , i.e. f : [0, 1] → R is a non-negative measurable
function with P(X ≤ s) =

∫ s

0
f(σ) dσ for all s ∈ [0, 1). From

P(〈nX〉 ≤ s) = P

(
X ∈

⋃n−1

l=0

[
l

n
,
l+ s

n

])
=
∑n−1

l=0

∫ (l+s)/n

l/n

f(σ) dσ

=

∫ s

0

1

n

∑n−1

l=0
f

(
l + σ

n

)
dσ ,

it follows that the density of 〈nX〉 is given by

f〈nX〉(s) =
1

n

∑n−1

l=0
f

(
l + s

n

)
, 0 ≤ s < 1 .

Note that if f is continuous, or merely Riemann integrable, then, as n→ ∞,

f〈nX〉(s) →
∫ 1

0

f(σ) dσ = 1 for all s ∈ [0, 1) .

In general, given any ε > 0 there exists a continuous density gε such that∫ 1

0 |f(σ)− gε(σ)| dσ < ε and hence

∫ 1

0

|f〈nX〉(σ)− 1| dσ ≤
∫ 1

0

∣∣∣∣
1

n

∑n−1

l=0
f

(
l + σ

n

)
− 1

n

∑n−1

l=0
gε

(
l + σ

n

)∣∣∣∣ dσ

+

∫ 1

0

∣∣∣∣
1

n

∑n−1

l=0
gε

(
l + σ

n

)
− 1

∣∣∣∣ dσ

≤
∫ 1

0

|f(σ)− gε(σ)| dσ +

∫ 1

0

∣∣∣∣
1

n

∑n−1

l=0
gε

(
l + σ

n

)
−
∫ 1

0

g(τ) dτ

∣∣∣∣ dσ ,

which in turn shows that

lim supn→∞

∫ 1

0

|f〈nX〉(σ) − 1| dσ ≤ ε ,
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and since ε > 0 was arbitrary,
∫ 1

0
|f〈nX〉(σ)− 1| dσ → 0 as n → ∞. From this,

the claim follows immediately because, for every 0 ≤ s < 1,

∣∣P(〈nX〉 ≤ s)− s
∣∣ =

∣∣∣∣
∫ s

0

(f〈nX〉(σ)− 1) dσ

∣∣∣∣ ≤
∫ 1

0

|f〈nX〉(σ) − 1| dσ → 0 .

Remark. If X does not have a density, then (4.2) may not hold. Trivially, if
X is an integer with probability one then P(〈nX〉 ≤ s) = 1 for every n and
0 ≤ s < 1. Hence (4.2) fails. For a simple continuous example, letX be uniformly
distributed on the classical Cantor middle thirds set. In more probabilistic terms,
X = 2

∑∞
j=1 3

−jXj where the Xj are i.i.d. with P(X1 = 0) = P(X1 = 1) = 1
2 .

Then PX 6= λ0,1 but 〈3X〉 has the same distribution as X , and so has 〈3nX〉
for every n ∈ N. Thus (4.2) fails again.

In fact, using the Fourier analysis tools introduced in the proof of Theorem
4.13, together with the observation that

P̂〈nX〉(k) = P̂〈X〉(nk) for all n ∈ N, k ∈ Z ,

it is clear that (4.2) holds if and only if X has the property that P̂〈X〉(k) → 0 as
|k| → ∞, i.e. precisely if P〈X〉 is a so-called Rajchman probability. As Theorem
4.17 shows, a probability on [0, 1) is Rajchman whenever it is a.c. (In advanced
calculus, this fact is usually referred to as the Riemann–Lebesgue Lemma.) The
converse is not true, i.e., there exist Rajchman probabilities on [0, 1) that are
not a.c., see [Ly]. ♣

4.2. The scale-invariance characterization

One popular hypothesis often related to BL is that of scale-invariance. Infor-
mally put, scale-invariance captures the intuitively attractive notion that any
universal law should be independent of units. For instance, if a sufficiently large
aggregation of data is converted from meters to feet, US$ to e etc., then while
the individual numbers change, the statements about the overall distribution
of significant digits should not be affected by this change. R. Pinkham [Pi]
credits R. Hamming with the idea of scale-invariance, and attempts to prove
that the Benford distribution is the only scale-invariant distribution. Pinkham’s
argument has subsequently been used by numerous authors to explain the ap-
pearance of BL in many real-life data, by arguing that the data in question
should be invariant under changes of scale and thus must be Benford.

Although this scale-invariance conclusion is correct in the proper setting,
see Theorem 4.20 below, Pinkham’s argument contains a fatal error. As Knuth
[Kn] observes, the error is Pinkham’s implicit assumption that there is a scale-
invariant Borel probability measure on R+, when in fact such a probability
measure does not exist, cf. [Ra1]. Indeed, the only real-valued random variable
X that is scale-invariant, i.e., X and αX have the same distribution for all
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scaling factors α > 0, is the random variable that is constant equal to zero,
that is P(X = 0) = 1. Clearly, any such random variable is scale-invariant
since X = αX with probability one. To see that this is the only scale-invariant
random variable, suppose that P(|X | > c) = δ > 0 for some c > 0. Then
P(|αX | > c) = P(|X | > c/α) ց 0 as α ց 0, so for sufficiently small positive α,
P(|αX | > c) < δ = P(|X | > c), contradicting scale-invariance. Thus no non-zero
random variable is scale-invariant. Note, however, that the measure on (R+,B+)
defined as

µ
(
[a, b]

)
:=

∫ b

a

dt

t
= log

b

a
for all [a, b] ⊂ R+ ,

is scale invariant because, for every α > 0,

α∗µ
(
[a, b]

)
=

∫ b/α

a/α

dt

t
= log

b

a
= µ

(
[a, b]

)
.

Obviously, µ is not finite, i.e. µ(R+) = +∞, but is still σ-finite. (Generally, a
measure µ on (Ω,A) is σ-finite if Ω =

⋃
n∈N

An for some sequence (An) in A,
and µ(An) < +∞ for all n.)

In a similar spirit, a sequence (xn) of real numbers may be called scale-
invariant if

limN→∞
#{1 ≤ n ≤ N : αxn ∈ [a, b]}

N
= limN→∞

#{1 ≤ n ≤ N : xn ∈ [a, b]}
N

holds for all α > 0 and [a, b] ⊂ R. For example, the sequence
(
2, 2−1, 2, 3, 2−1, 3−1, 2, 3, 4, 2−1, 3−1, 4−1, . . . , 2, 3, . . . , n, 2−1, 3−1, . . . , n−1, 2 . . .

)

is scale-invariant. As above, it is not hard to see that

limN→∞
#{1 ≤ n ≤ N : xn ∈ [a, b]}

N
= 0 for all [a, b] ⊂ R\{0} ,

holds whenever (xn) is scale-invariant. Most elements of a scale-invariant se-
quence of real numbers, therefore, are very close to either 0 or ±∞.

While a positive random variable X cannot be scale-invariant, as shown
above, it may nevertheless have scale-invariant significant digits. For this, how-
ever,X has to be Benford. In fact, Theorem 4.20 below shows that being Benford
is (not only necessary but) also sufficient forX to have scale-invariant significant
digits. The result will first be stated in terms of probability distributions.

Definition 4.18. Let A ⊃ S be a σ-algebra on R+. A probability measure P
on (R+,A) has scale-invariant significant digits if

P (αA) = P (A) for all α > 0 and A ∈ S ,

or equivalently if for all m ∈ N, all d1 ∈ {1, 2, . . . , 9} and all dj ∈ {0, 1, . . . , 9},
j ≥ 2,

P
({
x :Dj(αx) = dj for j = 1, 2, . . .m

})
=P

({
x :Dj(x) = dj for j = 1, 2, . . . ,m

})

holds for every α > 0.
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Example 4.19. (i) The Benford probability measure B on (R+, S) has scale-
invariant significant digits. This follows from Theorem 4.20 below but can also be
seen from a direct calculation. Indeed, if A =

⋃
k∈Z

10k[a, b] with 1 ≤ a < b < 10,
then, given any α > 0,

αA =
⋃

k∈Z
10k+logα[a, b] =

⋃
k∈Z

10k+〈logα〉[a, b] =
⋃

k∈Z
10kB ,

where the set B is given by

B =





[
10〈logα〉a, 10〈logα〉b

]
if 0 ≤ 〈logα〉 < 1− log b ,

[
1, 10〈logα〉−1b

]
∪
[
10〈logα〉a, 10

)
if 1− log b ≤ 〈logα〉 < 1− log a ,

[
10〈logα〉−1a, 10〈logα〉−1b

]
if 1− log a ≤ 〈logα〉 < 1 .

From this, it follows that

B(αA) =





log 10〈logα〉b− log 10〈logα〉a

log 10〈logα〉−1b+ 1− log 10〈logα〉a

log 10〈logα〉−1b− log 10〈logα〉−1a

= log b− log a = B(A) ,

showing that B has scale-invariant digits.

(ii) The Dirac probability measure δ1 concentrated at the constant 1 does
not have scale-invariant significant digits, since δ2 = 2∗δ1 yet δ1(D1 = 1) = 1 6=
0 = δ2(D1 = 1).

(iii) The uniform distribution on [0, 1) does not have scale-invariant digits,
since if X is distributed according to λ0,1 then, for example

P(D1(X) = 1) =
1

9
<

11

27
= P

(
D1

(
3

2
X

)
= 1

)
.

As mentioned earlier, the Benford distribution is the only probability measure
(on the significand σ-algebra) having scale-invariant significant digits.

Theorem 4.20 (Scale-invariance characterization [Hi1]). A probability measure
P on (R+,A) with A ⊃ S has scale-invariant significant digits if and only if
P (A) = B(A) for every A ∈ S, i.e., if and only if P is Benford.

Proof. Fix any probability measure P on (R+,A), denote by P0 its restriction
to (R+, S), and let Q := ℓ∗P0 with ℓ given by Lemma 2.16. According to Lemma
2.16, Q is a probability measure on

(
[0, 1),B[0, 1)

)
. Moreover, under the corre-

spondence established by ℓ,

P0(αA) = P0(A) for all α > 0, A ∈ S (4.3)
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A = {D1 = 2}

logA

= {2 ≤ S < 3}
3A

log 3A

S logS

B(3A) = B(A) λ0,1(log 3A) = λ0,1(logA)

1
2

3

4

56

7

8

9
0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

Fig 10. Visualizing the scale-invariant significant digits of BL.

is equivalent to

Q(〈t+B〉) = Q(B) for all t ∈ R, B ∈ B[0, 1) , (4.4)

where 〈t + B〉 = {〈t + x〉 : x ∈ B}. Pick a random variable X such that the
distribution of X is given by Q. With this, (4.4) simply means that, for every
t ∈ R, the distributions of 〈X〉 and 〈t+X〉 coincide. By Theorem 4.13(i) and (ii)
this is the case if and only if X is u.d. mod 1, i.e. Q = λ0,1. (For the “if” part,
note that a constant random variable is independent from every other random
variable.) Hence (4.3) is equivalent to P0 = (ℓ−1)∗λ0,1 = B.

Example 4.21. For every integer k, let qk > 0 and

fk(t) =





1

t ln 10
if 10k ≤ t < 10k+1 ,

0 otherwise.

If
∑

k∈Z
qk = 1 then, according to Example 3.6,

∑
k∈Z

qkfk is the density of
a Benford probability measure P on (R+,B+). By Theorem 4.20, P has scale-
invariant significant digits. Note that, in full agreement with earlier observations,
P is not scale-invariant, as for instance

qk = P
(
[10k, 10k+1)

)
= P

(
10k−l[10l, 10l+1)

)
= P

(
[10l, 10l+1)

)
= ql

cannot possibly hold for all pairs (k, l) of integers.

In analogy to Definition 4.18, a sequence (xn) of real numbers is said to have
scale-invariant significant digits if

limN→∞
#{1 ≤ n ≤ N : S(αxn) < t}

N
= limN→∞

#{1 ≤ n ≤ N : S(xn) < t}
N

for all α > 0, t ∈ [1, 10) . (4.5)
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Implicit in (4.5) is the assumption that the limits on either side exit for all t.
A similar definition can be considered for real-valued functions. To formulate
an analog of Theorem 4.20 using this terminology, recall that a set A ⊂ N has
density ρ ∈ [0, 1] if the limit limN→∞ #{1 ≤ n ≤ N : n ∈ A}/N exists and
equals ρ. For example, ρ({n : n even }) = 1

2 and ρ({n : n prime }) = 0, whereas
{n : D1(n) = 1} does not have a density.

Theorem 4.22. (i) For any sequence (xn) of real numbers, let {n : xn 6= 0}
= {n1 < n2 < . . .}. Then (xn) has scale-invariant significant digits if
and only if {n : xn 6= 0} has a density and either ρ({n : xn = 0}) = 1
or else (xnj

)j∈N is Benford. In particular, if ρ({n : xn = 0}) = 0 then
the sequence (xn) has scale-invariant significant digits if and only if it is
Benford.

(ii) A (Borel measurable) function f : [0,+∞) → R with λ
(
{t ≥ 0 : f(t) = 0}

)

< +∞ has scale-invariant significant digits if and only if it is Benford.
Moreover, f is Benford precisely if αf is Benford for every α 6= 0.

Proof. (i) Assume first that (xn) has scale-invariant significant digits. According
to (4.5),

G(s) := limN→∞
#{1 ≤ n ≤ N : S(xn) < 10s}

N

exists for every 0 ≤ s < 1. In particular, {n : xn = 0} has a density G(0). For
G(0) = 1 there is nothing else to show. Thus, assume G(0) < 1 from now on,
and define a non-decreasing function H : [0, 1) → R as

H(s) =
G(s)−G(0)

1−G(0)
, 0 ≤ s < 1 .

Note that

H(s) = limN→∞
#{1 ≤ n ≤ N : S(xn) < 10s, xn 6= 0}

#{1 ≤ n ≤ N : xn 6= 0}

= limN→∞
#{1 ≤ j ≤ N : S(xnj

) < 10s}
N

,

so H takes into account only the non-zero entries in (xn). Define h : R → R as

h(s) = H(〈s〉) − 〈s〉 for all s ∈ R .

Clearly, h is 1-periodic, with h(0) = 0 and |h(s)| ≤ 1 for all s ∈ R. In terms of
the function H , the invariance property (4.5) simply reads

H(s) =

{
H(1 + s− 〈logα〉) −H(1− 〈logα〉) if s < 〈logα〉 ,
1−H(1− 〈logα〉) +H(s− 〈logα〉) if s ≥ 〈logα〉 ,

provided that logα 6∈ Z. In terms of h, this is equivalent to

h(s) = h(1 + s− 〈logα〉)− h(1− 〈logα〉) for all s ∈ R, α > 0 . (4.6)
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As a consequence, s 7→ h(1 + s − 〈logα〉) − h(s) is constant for every α > 0.
Since the function h is bounded and 1-periodic, it can be represented (at least
in the L2-sense) by a Fourier series

h(s) =
∑

k∈Z
cke

2πıks ,

from which it follows that

h(1 + s− 〈logα〉)− h(s) =
∑

k∈Z
ck

(
e2πık(1+s−〈logα〉) − e2πıks

)

=
∑

k∈Z
ck

(
e−2πık〈logα〉 − 1

)
e2πıks .

Pick α > 0 such that 〈logα〉 is irrational, e.g. α = 2. Then e−2πık〈logα〉 6= 1
whenever k 6= 0, which in turn implies that ck = 0 for all k 6= 0, i.e. h is
constant almost everywhere. Thus H(s) = s+ c0 for a.e. s ∈ [0, 1), and in fact
H(s) ≡ s because H is non-decreasing with H(0) = 0. Overall, therefore,

limN→∞
#{1 ≤ j ≤ N : S(xnj

) < 10s}
N

= s for all s ∈ [0, 1) ,

showing that (xnj
) is Benford.

Conversely, if ρ({n : xn = 0}) = 1 then (4.5) holds with both sides being
equal to 1 for all t ∈ [1, 10). Assume, therefore, that ρ({n : xn = 0}) < 1 and
(xnj

) is Benford. By the above, h(s) ≡ 0, so (4.6) and hence also (4.5) hold, i.e.,
(xn) has scale-invariant significant digits.

The proof of (ii) is completely analogous, utilizing

G(s) := limT→+∞
λ
({
τ ∈ [0, T ) : S

(
f(τ)

)
< 10s

})

T
, 0 ≤ s < 1 .

Note that the assumption λ
(
{t ≥ 0 : f(t) = 0}

)
< +∞ implies G(0) = 0.

Example 4.23. Let (xn) equal either the sequence of Fibonacci or prime num-
bers. In both cases, xn 6= 0 for all n, and hence by Theorem 4.22(i) (xn) has
scale-invariant significant digits if and only if it is Benford. Thus (Fn) does
have scale-invariant significant digits, and (pn) does not. These facts are illus-
trated empirically in Fig 11 to 13 which show the relevant data for, respectively,
the first 102 (Fig 11 and 12) and 104 (Fig 13) entries of either sequence, and
compare them with the respective expected values for BL.

The next example is an elegant and entertaining application of the ideas
underlying Theorems 4.20 and 4.22 to the mathematical theory of games. The
game may be easily understood by a schoolchild, yet it has proven a challenge
for game theorists not familiar with BL.
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1

1

2

3

5

8

13

21

34

55

89

144

233

377

610

987

1597

2584

4181

6765

10946

17711

28657

46368

75025

121393

196418

317811

514229

832040

1346269

2178309

3524578

5702887

9227465

14930352

24157817

39088169

63245986

165580141

165580141

267914296

433494437

701408733

1134903170

1836311903

2971215073

4807526976

7778742049

12586269025

20365011074

32951280099

53316291173

86267571272

139583862445

225851433717

365435296162

591286729879

956722026041

1548008755920

2504730781961

4052739537881

6557470319842

10610209857723

17167680177565

27777890035288

44945570212853

72723460248141

117669030460994

190392490709135

308061521170129

498454011879264

806515533049393

1304969544928657

2111485077978050

3416454622906707

5527939700884757

8944394323791464

14472334024676221

23416728348467685

37889062373143906

61305790721611591

99194853094755497

160500643816367088

259695496911122585

420196140727489673

679891637638612258

1100087778366101931

1779979416004714189

2880067194370816120

4660046610375530309
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Fig 11. Illustrating the (approximate) scale-invariance of the first one-hundred Fibonacci
numbers, cf. Fig 5.



A basic theory of Benford’s Law 47

2

3

5

7

11

13

17

19

23

29

31

37

41

43

47

53

59

61

67

71

73

79

83

89

97

101

103

107

109

113

127

131

137

139

149

151

157

163

167

173

179

181

191

193

197

199

211

223

227

229

233

239

241

251

257

263

269

271

277

281

283

293

307

311

313

317

331

337

347

349

353

359

367

373

379

383

389

397

401

409

419

421

431

433

439

443

449

457

461

463

467

479

487

491

499

503

509

521

523

541

4

6

10

14

22

26

34

38

46

58

62

74

82

86

94

106

118

122

134

142

146

158

166

178

194

202

206

214

218

226

254

262

274

278

298

302

314

326

334

346

358

362

382

386

394

398

422

446

454

458

466

478

482

502

514

526

538

542

554

562

566

586

614

622

626

634

662

674

694

698

706

718

734

746

758

766

778

794

802

818

838

842

862

866

878

886

898

914

922

926

934

958

974

982

998

1006

1018

1042

1046

1082

14

21

35

49

77

91

119

133

161

203

217

259

287

301

329

371

413

427

469

497

511

553

581

623

679

707

721

749

763

791

889

917

959

973

1043

1057

1099

1141

1169

1211

1253

1267

1337

1351

1379

1393

1477

1561

1589

1603

1631

1673

1687

1757

1799

1841

1883

1897

1939

1967

1981

2051

2149

2177

2191

2219

2317

2359

2429

2443

2471

2513

2569

2611

2653

2681

2723

2779

2807

2863

2933

2947

3017

3031

3073

3101

3143

3199

3227

3241

3269

3353

3409

3437

3493

3521

3563

3647

3661

3787

1 2 3 4 5 6 7 8 9

25 19 19 20 8 2 4 2 1

17 12 13 9 10 10 9 11 9

31 26 22 5 3 2 6 1 4

30.10 17.60 12.49 9.691 7.918 6.694 5.799 5.115 4.575

o
r
ig
in

a
l
d
a
t
a

r
e
s
c
a
le
d

b
y

2
r
e
s
c
a
le
d

b
y

7

(pn)100n=1

(2pn)100n=1

(7pn)100n=1#
{D

1
=
d
}

103 ·R
103.0

131.0

95.06

102 ·log(1 + d−1)

d

Fig 12. Illustrating the lack of scale-invariance for the first one-hundred prime numbers.

Example 4.24 ([Mo]). Consider a two-person game where Player A and Player
B each independently choose a (real) number greater than or equal to 1, and
Player A wins if the product of their two numbers starts with a 1, 2, or 3;
otherwise, Player B wins. Using the tools presented in this section, it may easily
be seen that there is a strategy for Player A to choose her numbers so that she
wins with probability at least log 4 ∼= 60.2%, no matter what strategy Player B
uses. Conversely, there is a strategy for Player B so that Player A will win no
more than log 4 of the time, no matter what strategy Player A uses.

The idea is simple, using the scale-invariance property of BL discussed above.
If Player A chooses her number X randomly according to BL, then since BL is
scale-invariant, it follows from Theorem 4.13(i) and Example 4.19(i) that X · y
is still Benford no matter what number y Player B chooses, so Player A will win
with the probability that a Benford random variable has first significant digit
less than 4, i.e. with probability exactly log 4. Conversely, if Player B chooses his
number Y according to BL then, using scale-invariance again, x · Y is Benford,
so Player A will again win with the probability exactly log 4. In fact, as will now
be shown, BL is the only optimal strategy for each player.
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Fig 13. When the sample size is increased from N = 102 to N = 104 the Fibonacci numbers
are even closer to scale-invariance. For the primes, this is not the case at all, see also Fig 5.

To prepare for the formal argument, model the strategy of Player A, i.e. the
way this player chooses a number, by a probability measure P on (R+,B+).
For example, if Player A chooses the same number a all the time, then P = δa.
(Game theorists refer to this as a pure strategy.) Similarly, Q represents the
strategy of Player B. Denote by M+ the set of all probability measures on
(R+,B+) and, given P,Q ∈ M+, let p(P,Q) ∈ [0, 1] be the probability that
Player A wins, i.e., the product of the chosen numbers begins with 1, 2, or 3,
assuming Players A and B choose their numbers independently and according to
the strategies P and Q, respectively. It is natural for Player A to try to maximize
infQ∈M+ p(P,Q), whereas Player B aims at minimizing supP∈M+ p(P,Q). Which
strategies should the players choose, and what probabilities of winning/losing
are achievable/unavoidable?

In view of the informal discussion above, it may not come as a complete
surprise that these questions ultimately have very simple answers. A little pre-
paratory work is required though. To this end, for every 0 ≤ s < 1 and P ∈ M+,
let

GP (s) := P
(
{x > 0 : S(x) ≤ 10s}

)
,

and note that s 7→ GP (s) is non-decreasing, right-continuous, with GP (0) ≥ 0
as well as lims↑1GP (s) = 1. (With the terminology and notation introduced
in Sections 2.3 and 3.3 simply GP (s) = FS∗P (10

s).) Extend GP to a (non-
decreasing, right-continuous) function GP : R → R by setting

GP (s) := GP (〈s〉) + ⌊s⌋ for all s ∈ R ,
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and let gP (s) := GP (s)− s. Since

gP (s+ 1) = GP (s+ 1)− (s+ 1) = GP (〈s〉) − 〈s〉 = gP (s) ,

the function gP is 1-periodic with gP (0) = 0. Also, gP is Riemann integrable,
and |gP (s)| ≤ 1 for all s ∈ R. With these preliminary definitions, observe now
that, given any a > 0,

p(P, δa) =

{
GP (log 4− 〈log a〉) + 1−GP (1 − 〈log a〉) if 〈log a〉 < log 4

GP (1 + log 4− 〈log a〉)−GP (1 − 〈log a〉) if 〈log a〉 ≥ log 4

= gP (1 + log 4− 〈log a〉)− gP (1− 〈log a〉) + log 4

= log 4 + hP (〈log a〉) ,

where the 1-periodic, Riemann integrable function hP : R → R is given by

hP (s) = gP (1 + log 4− s)− gP (1− s) , s ∈ R .

From
∫ 1

0
hP (s) ds = 0, it follows that cP := infs∈R hP (s) ≤ 0. Consequently, if

cP < 0 then

infQ∈M+ p(P,Q) ≤ infa>0 p(P, δa) = log 4 + cP < log 4 .

On the other hand, if cP = 0 then necessarily hP (s) = 0 for a.e. s and hence,
as gP is right-continuous,

gP (−s+ log 4) = gP (−s) for all s ∈ R .

This in turn implies that gP (〈n log 4〉) = gP (0) for all n ∈ N. Recall now that gP
has at most countably many discontinuities and that (〈n log 4〉) is u.d. mod 1
and hence dense in the interval [0, 1). Thus, if 0 < s0 < 1 is a point of continuity
of gP , then choosing a sequence 1 ≤ n1 < n2 < . . . with limj→∞〈nj log 4〉 = s0
shows that

gP (s0) = limj→∞ gP (〈nj log 4〉) = gP (0) .

With the possible exception of at most countably many s therefore, GP (s) =
s + gP (0) whenever 0 ≤ s < 1. But since s 7→ GP (s) is non-decreasing with
GP (s) ≥ 0 and lims↑1GP (s) = 1, gP (0) = 0 and GP (s) = s must in fact hold
for all s, i.e.

P
(
{x > 0 : S(x) ≤ 10s}

)
≡ s .

In other words, P is Benford. Overall therefore

infQ∈M+ p(P,Q) ≤ log 4 = 0.6020 . . . ,

with equality holding if and only if P is Benford. Thus the unique optimal
strategy for Player A is to choose her numbers according to BL.

A completely analogous argument shows that

supP∈M+ p(P,Q) ≥ log 4 ,
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with equality holding if and only if Q is Benford. Hence the unique optimal
strategy for Player B to minimize the probability of loosing is also to choose
numbers obeying BL. Overall,

supP∈M+ infQ∈M+ p(P,Q) = log 4 = infQ∈M+ supP∈M+ p(P,Q)

holds, and the value (expected gain) of one game for Player A is given by
log 4− (1− log 4) = 0.2041 . . . > 1

5 .
If both players are required to choose positive integers then their strategies

are probabilities on (N,N ∩B). Denote by MN the set of all such probabilities.
Since {〈logn〉 : n ∈ N} is dense in [0, 1), the above argument shows that

infQ∈MN
p(P,Q) < log 4

for every P ∈ MN, and similarly

supP∈MN
p(P,Q) > log 4

for every Q ∈ MN. On the other hand, given ε > 0, it is not hard to find
Pε, Qε ∈ MN such that

log 4− ε < infQ∈MN
p(Pε, Q) < log 4 < supP∈MN

p(P,Qε) < log 4 + ε .

Indeed, it is enough to choose Pε, Qε such that these probabilities approximate
BL sufficiently well. (Recall Example 3.9 which also showed that no P ∈ MN is
Benford.) When played with positive integers only, therefore, the game has no
optimal strategy for either player, but there are ε-optimal strategies for every
ε > 0, and

supP∈MN
infQ∈MN

p(P,Q) = log 4 = infQ∈MN
supP∈MN

p(P,Q)

still holds.

Theorem 4.20 showed that for a probability measure P on (R+,B+) to have
scale-invariant significant digits it is necessary (and sufficient) that P be Ben-
ford. In fact, as noted in [Sm], this conclusion already follows from a much weaker
assumption: It is enough to require that the probability of a single significant
digit remain unchanged under scaling.

Theorem 4.25. For every random variable X with P(X = 0) = 0 the following
statements are equivalent:

(i) X is Benford.

(ii) There exists a number d ∈ {1, 2, . . . , 9} such that

P(D1(αX) = d) = P(D1(X) = d) for all α > 0 .

In particular, (ii) implies that P(D1(X) = d) = log(1 + d−1).



A basic theory of Benford’s Law 51

Proof. Assume first that X is Benford. By Theorem 4.20, X has scale-invariant
significant digits. Thus for every α > 0,

P(D1(αX) = d) = log(1 + d−1) = P(D1(X) = d) for all d = 1, 2, . . . , 9 .

Conversely, assume that (ii) holds. Similarly as in the proof of Theorem 4.22(i),
for every 0 ≤ s < 1 let

GX(s) := P(S(X) < 10s) .

Hence GX is non-decreasing and left-continuous, with GX(0) = 0, and

P(D1(X) = d) = GX

(
log(1 + d)

)
−GX(log d) .

Extend GX to a (non-decreasing, left-continuous) function GX : R → R by
setting GX(s) := GX(〈s〉) + ⌊s⌋, and let gX(s) := GX(s) − s. Hence gX is
1-periodic, Riemann-integrable, with gX(0) = 0 and |gX(s)| ≤ 1. Specifically,

P(D1(X) = d) = gX
(
log(1 + d)

)
− gX(log d) + log(1 + d−1) ,

and essentially the same calculation as in Example 4.24 shows that

P(D1(αX) = d) = gX(log(1 + d)− 〈logα〉)− gX(log d−〈logα〉) + log(1+ d−1) .

With the 1-periodic, Riemann-integrable hX : R → R given by

hX(s) = gX(log(1 + d)− s)− gX(log d− s) ,

the assumption that P(D1(αX) = d) = P(D1(X) = d) for all α > 0 simply
means that hX(s) ≡ hX(0), i.e., hX is constant, and so is the function s 7→
gX(log(1 + d)− s)− gX(log d− s). The same Fourier series argument as in the
proof of Theorem 4.22 now applies: From

gX(s) =
∑

k∈Z
cke

2πıks ,

it follows that

gX(log(1 + d)− s)− gX(log d− s) =
∑

k∈Z
ck

(
e2πık log(1+d)− e2πık log d

)
e2πıks

=
∑

k∈Z
cke

2πık log d
(
e2πık log(1+d−1)− 1

)
e2πıks ,

and since log(1 + d−1) is irrational for every d ∈ N, necessarily ck = 0 for all
k 6= 0, i.e., gX is constant almost everywhere, and GX(s) = s + c0 for a.e.
s ∈ [0, 1). As GX is non-decreasing with GX(0) = 0, overall, GX(s) ≡ s, which
in turn shows that X is Benford.

Remark. A close inspection of the above proof shows that Theorem 4.25 can still
be strengthened in different ways. On the one hand, other significant digits can
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be considered. For example, the theorem (and its proof also) remain virtually
unchanged if in (ii) it is assumed that, for somem ≥ 2 and some d ∈ {0, 1, . . . , 9},

P(Dm(αX) = d) = P(Dm(X) = d) for all α > 0 .

On the other hand, it is enough to assume in (ii) that, for some d ∈ {1, 2, . . . , 9},

P(D1(αnX) = d) = P(D1(X) = d) for all n ∈ N ,

with the sequence (αn) of positive numbers being such that {〈logαn〉 : n ∈ N}
is dense in [0, 1). Possible choices for such a sequence include (2n), (n2), and the
sequence of prime numbers. For example, therefore, X is Benford if and only if

P(D1(2
nX) = 1) = P(D1(X) = 1) for all n ∈ N . ♣

Example 4.26 ([Sm]). (“Ones-scaling-test”) In view of the last remark, to in-
formally test whether a sample of data comes from a Benford distribution, sim-
ply compare the proportion of the sample that has first significant digit 1 with
the proportion after the data has been re-scaled, i.e. multiplied by α, α2, α3, . . .,
where logα is irrational, e.g. α = 2. In fact, it is enough to consider only re-
scalings by αn2

, n = 1, 2, 3, . . .. On the other hand, note that merely assuming

P(D1(2X) = d) = P(D1(X) = d) for all d = 1, 2, . . . , 9 , (4.7)

is not sufficient to guarantee that X is Benford. Indeed, (4.7) holds for instance
if X attains each of the four values 1, 2, 4, 8 with equal probability 1

4 .

4.3. The base-invariance characterization

One possible drawback to the hypothesis of scale-invariance in some tables is
the special role played by the constant 1. For example, consider two physical
laws, namely Newton’s lex secunda F = ma and Einstein’s famous E = mc2.
Both laws involve universal constants. In Newton’s law, the constant is usually
made equal to 1 by the choice of units of measurement, and this 1 is then not
recorded in most tables of universal constants. On the other hand, the speed of
light c in Einstein’s equation is typically recorded as a fundamental constant. If
a “complete” list of universal physical constants also included the 1s, it seems
plausible that this special constant might occur with strictly positive frequency.
But that would clearly violate scale-invariance, since then the constant 2, and in
fact every other constant as well would occur with this same positive probability,
which is impossible.

Instead, suppose it is assumed that any reasonable universal significant-digit
law should have base-invariant significant digits, that is, the law should be
equally valid when rewritten in terms of bases other than 10. In fact, all of the
classical arguments supporting BL carry over mutatis mutandis [Ra1] to other
bases. As will be seen shortly, a hypothesis of base-invariant significant digits
characterizes mixtures of BL and a Dirac probability measure concentrated on
the special constant 1 which may occur with positive probability.
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Just as the only scale-invariant real-valued random variable is 0 with prob-
ability one, the only positive random variable X that is base-invariant, i.e.
X = 10Y with some random variable Y for which Y, 2Y, 3Y, . . . all have the
same distribution, is the random variable which almost surely equals 1, that is,
P(X = 1) = 1. This follows from the fact that all nY have the same distribution
for n = 1, 2, 3 . . ., and hence P(Y = 0) = 1, as shown in the previous section.

On the other hand, a positive random variable (or sequence, function, dis-
tribution) can have base-invariant significant digits. The idea behind base-
invariance of significant digits is simply this: A base-10 significand event A
corresponds to the base-100 event A1/2, since the new base b = 100 is the
square of the original base b = 10. As a concrete example, denote by A the set
of positive reals with first significant digit 1, i.e.

A = {x > 0 : D1(x) = 1} = {x > 0 : S(x) ∈ [1, 2)} .

It is easy to see that A1/2 is the set

A1/2 = {x > 0 : S(x) ∈ [1,
√
2) ∪ [

√
10,

√
20)} .

Consider now the base-100 significand function S100, i.e., for any x 6= 0, S100(x)
is the unique number in [1, 100) such that |x| = 100kS100(x) for some, necessarily
unique k ∈ Z. (To emphasize that the usual significand function S is taken
relative to base 10, it will be denoted S10 throughout this section.) Clearly,

A = {x > 0 : S100(x) ∈ [1, 2) ∪ [10, 20)} .

Hence, letting a = log 2,

{
x > 0 : Sb(x) ∈ [1, ba/2) ∪ [b1/2, b(1+a)/2)

}
=

{
A1/2 if b = 10 ,

A if b = 100 .

Thus, if a distribution P on the significand σ-algebra S has base-invariant sig-
nificant digits, then P (A) and P (A1/2) should be the same, and similarly for
other integral roots (corresponding to other integral powers of the original base
b = 10). Thus P (A) = P (A1/n) should hold for all n. (Recall from Lemma
2.13(iii) that A1/n ∈ S for all A ∈ S and n ∈ N, so those probabilities are
well-defined.) This motivates the following definition.

Definition 4.27. Let A ⊃ S be a σ-algebra on R+. A probability measure P
on (R+,A) has base-invariant significant digits if P (A) = P (A1/n) holds for all
A ∈ S and n ∈ N.

Example 4.28. (i) Recall that δa denotes the Dirac measure concentrated at
the point a, that is, δa(A) = 1 if a ∈ A, and δa(A) = 0 if a 6∈ A. The probability
measure δ1 clearly has base-invariant significant digits since 1 ∈ A if and only
if 1 ∈ A1/n. Similarly, δ10k has base-invariant significant digits for every k ∈ Z.
On the other hand, δ2 does not have base-invariant significant digits since, with
A = {x > 0 : S10(x) ∈ [1, 3)}, δ2(A) = 1 yet δ2(A

1/2) = 0.
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A = {D1 = 2}

logA

= {2 ≤ S < 3}
√
A log

√
A

S logS

B(
√
A) = B(A) λ0,1(log

√
A) = λ0,1(logA)

1

2

3

4

56

7

8

9
0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

Fig 14. Visualizing the base-invariant significant digits of BL.

(ii) It is easy to see that the Benford distribution B has base-invariant sig-
nificant digits. Indeed, for any 0 ≤ s < 1, let

A = {x > 0 : S10(x) ∈ [1, 10s)} =
⋃

k∈Z
10k[1, 10s) ∈ S .

Then, as seen in the proof of Lemma 2.13(iii),

A1/n =
⋃

k∈Z
10k

⋃n−1

j=0
[10j/n, 10(j+s)/n)

and therefore

B(A1/n) =
∑n−1

j=0

(
log 10(j+s)/n − log 10j/n

)
=
∑n−1

j=0

(
j + s

n
− j

n

)

= s = B(A) .

(iii) The uniform distribution λ0,1 on [0, 1) does not have base-invariant
significant digits. For instance, again taking A = {x > 0 : D1(x) = 1} leads to

λ0,1(A
1/2) =

∑
n∈N

10−n(
√
2− 1 +

√
20−

√
10) =

1

9
+

(
√
5− 1)(2−

√
2)

9

>
1

9
= λ0,1(A) .

(iv) The probability measure 1
2δ1 +

1
2B has base-invariant significant digits

since both δ1 and B do.

Example 4.29. Completely analogously to the case of scale-invariance, it is
possible to introduce a notion of a sequence or function having base-invariant
significant digits and to formulate an analoge of Theorem 4.22 in the context of
Theorem 4.30 below. With this, the sequence (Fn) has base-invariant significant
digits, whereas the sequence (pn) does not. As in Example 4.23, this is illustrated
empirically in Fig 15 to 17.
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1

1

2

3

5

8

13

21

34

55

89

144

233

377

610

987

1597

2584

4181

6765

10946

17711

28657

46368

75025

121393

196418

317811

514229

832040

1346269

2178309

3524578

5702887

9227465

14930352

24157817

39088169

63245986

165580141

165580141

267914296

433494437

701408733

1134903170

1836311903

2971215073

4807526976

7778742049

12586269025

20365011074

32951280099

53316291173

86267571272

139583862445

225851433717

365435296162

591286729879

956722026041

1548008755920

2504730781961

4052739537881

6557470319842

10610209857723

17167680177565

27777890035288

44945570212853

72723460248141

117669030460994

190392490709135

308061521170129

498454011879264

806515533049393

1304969544928657

2111485077978050

3416454622906707

5527939700884757

8944394323791464

14472334024676221

23416728348467685

37889062373143906

61305790721611591

99194853094755497

160500643816367088

259695496911122585

420196140727489673

679891637638612258

1100087778366101931

1779979416004714189

2880067194370816120

4660046610375530309

7540113804746346429

12200160415121876738

19740274219868223167

31940434634990099905

51680708854858323072

83621143489848422977

135301852344706746049

218922995834555169026

354224848179261915075

1.000

1.000

4.000

9.000

2.500

6.400

1.690

4.410

1.156

3.025

7.921

2.073

5.428

1.421

3.721

9.741

2.550

6.677

1.748

4.576

1.198

3.136

8.212

2.149

5.628

1.473

3.858

1.010

2.644

6.922

1.812

4.745

1.242

3.252

8.514

2.229

5.836

1.527

4.000

1.047

2.741

7.177

1.879

4.919

1.288

3.372

8.828

2.311

6.050

1.584

4.147

1.085

2.842

7.442

1.948

5.100

1.335

3.496

9.153

2.396

6.273

1.642

4.300

1.125

2.947

7.716

2.020

5.288

1.384

3.624

9.490

2.484

6.504

1.702

4.458

1.167

3.055

8.000

2.094

5.483

1.435

3.758

9.839

2.576

6.744

1.765

4.622

1.210

3.168

8.294

2.171

5.685

1.488

3.896

1.020

2.670

6.992

1.830

4.792

1.254

1.000

1.000

1.280

2.187

7.812

2.097

6.274

1.801

5.252

1.522

4.423

1.283

3.728

1.082

3.142

9.124

2.649

7.692

2.233

6.484

1.882

5.466

1.587

4.608

1.337

3.884

1.127

3.274

9.508

2.760

8.015

2.327

6.756

1.961

5.696

1.653

4.801

1.394

4.047

1.175

3.412

9.907

2.876

8.352

2.424

7.040

2.044

5.935

1.723

5.003

1.452

4.217

1.224

3.555

1.032

2.997

8.703

2.526

7.336

2.130

6.184

1.795

5.213

1.513

4.395

1.276

3.705

1.075

3.123

9.068

2.633

7.644

2.219

6.444

1.871

5.432

1.577

4.579

1.329

3.860

1.120

3.254

9.449

2.743

7.966

2.312

6.715

1.949

5.661

1.643

4.772

1.385

4.023

1.168

3.391

9.846

2.858

8.300

2.410

6.997

1 2 3 4 5 6 7 8 9

30 18 13 9 8 6 5 7 4

31 17 12 11 7 8 4 5 5

31 18 11 9 8 7 6 4 6

30.10 17.60 12.49 9.691 7.918 6.694 5.799 5.115 4.575

o
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ig
in

a
l
d
a
t
a

b
a
s
e
7→

b
a
s
e
2

b
a
s
e
7→

b
a
s
e
7

(Fn)100n=1

(F 2
n)

100
n=1

(F 7
n)

100
n=1

103 ·R
18.84

17.99

14.93

102 ·log(1 + d−1)

d

#
{D

1
=
d
}

Fig 15. Illustrating the (approximate) base-invariance of the first one-hundred Fibonacci num-
bers. (In the two middle tables, the values of S(F 2

n) and S(F 7
n), respectively, are shown to

four correct digits.)
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2

3

5

7

11

13

17

19

23

29

31

37

41

43

47

53

59

61

67

71

73

79

83

89

97

101

103

107

109

113

127

131

137

139

149

151

157

163

167

173

179

181

191

193

197

199

211

223

227

229

233

239

241

251

257

263

269

271

277

281

283

293

307

311

313

317

331

337

347

349

353

359

367

373

379

383

389

397

401

409

419

421

431

433

439

443

449

457

461

463

467

479

487

491

499

503

509

521

523

541

4.000

9.000

2.500

4.900

1.210

1.690

2.890

3.610

5.290

8.410

9.610

1.369

1.681

1.849

2.209

2.809

3.481

3.721

4.489

5.041

5.329

6.241

6.889

7.921

9.409

1.020

1.060

1.144

1.188

1.276

1.612

1.716

1.876

1.932

2.220

2.280

2.464

2.656

2.788

2.992

3.204

3.276

3.648

3.724

3.880

3.960

4.452

4.972

5.152

5.244

5.428

5.712

5.808

6.300

6.604

6.916

7.236

7.344

7.672

7.896

8.008

8.584

9.424

9.672

9.796

1.004

1.095

1.135

1.204

1.218

1.246

1.288

1.346

1.391

1.436

1.466

1.513

1.576

1.608

1.672

1.755

1.772

1.857

1.874

1.927

1.962

2.016

2.088

2.125

2.143

2.180

2.294

2.371

2.410

2.490

2.530

2.590

2.714

2.735

2.926

1.280

2.187

7.812

8.235

1.948

6.274

4.103

8.938

3.404

1.724

2.751

9.493

1.947

2.718

5.066

1.174

2.488

3.142

6.060

9.095

1.104

1.920

2.713

4.423

8.079

1.072

1.229

1.605

1.828

2.352

5.328

6.620

9.058

1.002

1.630

1.789

2.351

3.057

3.622

4.637

5.888

6.364

9.273

9.974

1.151

1.235

1.861

2.742

3.105

3.302

3.728

4.454

4.721

6.276

7.405

8.703

1.019

1.073

1.251

1.383

1.453

1.853

2.570

2.813

2.943

3.216

4.353

4.936

6.057

6.306

6.830

7.685

8.967

1.004

1.123

1.208

1.347

1.554

1.667

1.914

2.267

2.344

2.762

2.853

3.142

3.348

3.678

4.163

4.424

4.561

4.844

5.785

6.496

6.879

7.703

8.146

8.851

1.041

1.070

1.356

1 2 3 4 5 6 7 8 9

25 19 19 20 8 2 4 2 1

35 24 9 5 8 5 5 3 6

d

33 15 11 11 4 10 4 7 5

30.10 17.60 12.49 9.691 7.918 6.694 5.799 5.115 4.575

o
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a
l
d
a
t
a

b
a
s
e
7→

b
a
s
e
2

b
a
s
e
7→

b
a
s
e
7

(pn)100n=1

(p2n)
100
n=1

(p7n)
100
n=1#

{D
1
=
d
}

103 ·R
103.0

63.90

39.18

102 ·log(1 + d−1)

Fig 16. Illustrating the lack of base-invariance for the first one-hundred prime numbers. (In
the two middle tables, the values of S(p2n) and S(p7n), respectively, are shown to four correct
digits.)

The next theorem is the main result for base-invariant significant digits. It
shows that convex combinations as in Example 4.28(iv) are the only probability
distributions with base-invariant significant digits. To put the argument in per-
spective, recall that the proof of the scale-invariance theorem (Theorem 4.20)
ultimately depended on Theorem 4.13(i,ii) which in turn was proved analyti-
cally using Fourier analysis. The situation here is similar: An analytical result
(Lemma 4.32 below) identifies all probability measures on

(
[0, 1),B[0, 1)

)
that

are invariant under every map x 7→ 〈nx〉 on [0, 1). Once this tool is available, it
is straightforward to prove

Theorem 4.30 (Base-invariance characterization [Hi1]). A probability measure
P on (R+,A) with A ⊃ S has base-invariant significant digits if and only if, for
some q ∈ [0, 1],

P (A) = qδ1(A) + (1− q)B(A) for every A ∈ S . (4.8)
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1 2 3 4 5 6 7 8 9

104·log(1+d−1) 3010. 1760. 1249. 969.1 791.8 669.4 579.9 511.5 457.5

3011 1762 1250 968 792 668 580 513 456

3012 1760 1248 971 791 672 577 513 456

3011 1762 1248 969 791 671 579 511 458

1601 1129 1097 1069 1055 1013 1027 1003 1006

3012 1626 1200 987 798 716 609 536 516

2340 1437 1195 1036 944 844 775 745 684

103 ·R

0.1574

0.2919

0.1532

140.9

67.02

36.85

F
ib

o
n
a
c
c
i

P
r
im

e

d

original

original

b 7→ b2

b 7→ b2

b 7→ b7

b 7→ b7

Fig 17. Increasing the sample size from N = 102 to N = 104 makes the Fibonacci numbers’
leading digits even more closely base-invariant. As in the case of scale-invariance, this is not
at all true for the primes, cf. Fig 13.

Corollary 4.31. A continuous probability measure P on R+ has base-invariant
significant digits if and only if P (A) = B(A) for all A ∈ S, i.e., if and only if P
is Benford.

Recall that λ0,1 denotes Lebesgue measure on
(
[0, 1),B[0, 1)

)
. For each n ∈ N,

denote the map x 7→ 〈nx〉 of [0, 1) into itself by Tn. Generally, if T : [0, 1) → R
is measurable, and T

(
[0, 1)

)
⊂ [0, 1), a probability measure P on

(
[0, 1),B[0, 1)

)

is said to be T -invariant, or T is P -preserving, if T∗P = P . Which probability
measures are Tn-invariant for all n ∈ N? A complete answer to this question is
provided by

Lemma 4.32. A probability measure P on
(
[0, 1),B[0, 1)

)
is Tn-invariant for

all n ∈ N if and only if P = qδ0 + (1 − q)λ0,1 for some q ∈ [0, 1].

Proof. From the proof of Theorem 4.13 recall the definition of the Fourier coef-
ficients of P ,

P̂ (k) =

∫ 1

0

e2πıksdP (s) , k ∈ Z ,

and observe that

T̂nP (k) = P̂ (nk) for all k ∈ Z, n ∈ N .

Assume first that P = qδ0 + (1− q)λ0,1 for some q ∈ [0, 1]. From δ̂0(k) ≡ 1 and
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λ̂0,1(k) = 0 for all k 6= 0, it follows that

P̂ (k) =

{
1 if k = 0 ,
q if k 6= 0 .

For every n ∈ N and k ∈ Z\{0}, therefore, T̂nP (k) = q, and clearly T̂nP (0) = 1.

Thus T̂nP = P̂ and since the Fourier coefficients of P determine P uniquely,
Tn∗P = P for all n ∈ N.

Conversely, assume that P is Tn-invariant for all n ∈ N. In this case, P̂ (n) =

T̂nP (1) = P̂ (1), and similarly P̂ (−n) = T̂nP (−1) = P̂ (−1). Since generally

P̂ (−k) = P̂ (k), there exists q ∈ C such that

P̂ (k) =





q if k > 0 ,

1 if k = 0 ,

q if k < 0 .

Also, observe that for every t ∈ R

limn→∞
1

n

∑n

j=1
e2πıtj =

{
1 if t ∈ Z ,

0 if t 6∈ Z .

Using this and the Dominated Convergence Theorem, it follows from

P ({0}) =
∫ 1

0

limn→∞
1

n

∑n

j=1
e2πısjdP (s) = limn→∞

1

n

∑n

j=1
P̂ (j) = q ,

that q is real, and in fact q ∈ [0, 1]. Hence the Fourier coefficients of P are
exactly the same as those of qδ0 + (1 − q)λ0,1. By uniqueness, therefore, P =
qδ0 + (1− q)λ0,1.

Remark. Note that P is Tmn-invariant if it is both Tm- and Tn-invariant. Thus,
in Lemma 4.32 it is enough to require that P be Tn-invariant whenever n is a
prime number.

It is natural to ask how small the setM of natural numbers n can be chosen for
which Tn-invariance really has to be required in Lemma 4.32. By the observation
just made, it can be assumed that M is closed under multiplication, hence a
(multiplicative) semi-group. If M is lacunary, i.e. M ⊂ {pm : m ∈ N} for some
p ∈ N, then probability measures P satisfying Tn∗P = P for all n ∈ M exist in
abundance, and hence an analogue of Lemma 4.32 cannot hold. If, on the other
hand, M is not lacunary, then it is not known in general whether an appropriate
analogue of Lemma 4.32 may hold. For example, ifM = {2m13m2 : m1,m2 ∈ N0}
then the probability measure P = 1

4

∑4
j=1 δj/5 is Tn-invariant for every n ∈ M,

but it is a famous open question of H. Furstenberg [Ei] whether any continuous
probability measure with this property exists — except, of course, for P = λ0,1.

♣
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Proof of Theorem 4.30. As in the proof of Theorem 4.20, fix a probability mea-
sure P on (R+,A), denote by P0 its restriction to (R+, S), and let Q = ℓ∗P0.
Observe that P0 has base-invariant significant digits if and only if Q is Tn-
invariant for all n ∈ N. Indeed, with 0 ≤ s < 1 and A = {x > 0 : S10(x) < 10s},

Tn∗Q
(
[0, s)

)
= Q

(⋃n−1

j=0

[ j
n
,
j + s

n

))

= P0

(⋃
k∈Z

10k
⋃n−1

j=0
[10j/n, 10(j+s)/n)

)
= P0(A

1/n)

and hence Tn∗Q = Q for all n precisely if P0 has base-invariant significant digits.
In this case, by Lemma 4.32, Q = qδ0 + (1− q)λ0,1 for some q ∈ [0, 1], which in
turn implies that P0(A) = qδ1(A) + (1− q)B(A) for every A ∈ S.

Corollary 4.33. If a probability measure on R+ has scale-invariant significant
digits then it also has base-invariant significant digits.

4.4. The sum-invariance characterization

No finite data set can obey BL exactly, since the Benford probabilities of sets
withm given significant digits become arbitrarily small asm goes to infinity, and
no discrete probability measure with finitely many atoms can take arbitrarily
small positive values. But, as first observed by M. Nigrini [Ni], if a table of real
data approximately follows BL, then the sum of the significands of all entries in
the table with first significant digit 1 is very close to the sum of the significands
of all entries with first significant digit 2, and to the sum of the significands
of entries with the other possible first significant digits as well. This clearly
implies that the table must contain more entries starting with 1 than with 2,
more entries starting with 2 than with 3, and so forth. Similarly, the sums of
significands of entries with D1 = d1, . . . , Dm = dm are approximately equal for
all tuples (d1, . . . , dm) of a fixed length m. In fact, even the sum-invariance of
first or first and second digits yields a distribution close to BL, see Fig 18 and
19. Nigrini conjectured, and partially proved, that this sum-invariance property
also characterizes BL. Note that it is the significands of the data, rather than
the data themselves, that are summed up. Simply summing up the raw data will
not lead to any meaningful conclusion, as the resulting sums may be dominated
by a few very large numbers. It is only through considering significands that the
magnitude of the individual numbers becomes irrelevant.

To motivate a precise definition of sum-invariance, note that if (xn) is Benford
then the set {xn : n ∈ N} is necessarily infinite, and consequently, for every
d ∈ {1, 2, . . . , 9}, the sum

∑
n:D1(xn)=d S(xn) is infinite as well. To compare

such sums, it is natural to normalise them by considering limiting averages. To
this end, for every m ∈ N, d1 ∈ {1, 2, . . . , 9} and dj ∈ {0, 1, . . . , 9}, j ≥ 2, define

Sd1,...,dm
(x) :=

{
S(x) if

(
D1(x), . . . , Dm(x)

)
= (d1, . . . , dm) ,

0 otherwise.
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d

Nd= #{xn=d}

dNd

Nd/N

log(1+d−1)

1

2520

2520

0.3535

0.3010

2

1260

2520

0.1767

0.1761

3

840

2520

0.1178

0.1240

4

630

2520

0.0884

0.0969

5

504

2520

0.0707

0.0792

6

620

2520

0.0589

0.0669

7

360

2520

0.0505

0.0580

8

315

2520

0.0442

0.0512

9

280

2520

0.0393

0.0458

N =
∑

d Nd = 7129

Fig 18. A (hypothetical) sample x1, x2, . . . xN containing N = 7129 numbers from {1, 2, . . . , 9}
and showing exact sum-invariance for the first digit. Note that the relative frequencies Nd/N
are quite close to the Benford probabilities log(1 + d−1).

(d1, d2) Nd1,d2
= #{xn=10d1 + d2} Nd1,d2

/N
∑

d2
Nd1,d2

/N log(1+d−1
1 )

.

..
.
..

.

..

0.30607 0.30102

0.04510 0.04575

(1, 0) 6972037522971247716453380893531230355680 0.04258

(1, 1) 6338215929973861560412164448664754868800 0.03871

(1, 2) 5810031269142706430377817411276025296400 0.03549

(1, 3) 5363105786900959781887216071947100273600 0.03276

(1, 4) 4980026802122319797466700638236593111200 0.03042

(1, 5) 4648025015314165144302253929020820237120 0.02839

(1, 6) 4357523451857029822783363058457018972300 0.02661

(1, 7) 4101198542924263362619635819724253150400 0.02505

(1, 8) 3873354179428470953585211607517350197600 0.02366

(1, 9) 3669493433142761956028095207121700187200 0.02241

(2, 0) 3486018761485623858226690446765615177840 0.02129

(8, 9) 783375002581039069264424819497891051200 0.00478

(9, 0) 774670835885694190717042321503470039520 0.00473

(9, 1) 766157969557279968841030867421014324800 0.00468

(9, 2) 757830165540353012657976184079481560400 0.00463

(9, 3) 749681454082929861984234504680777457600 0.00458

(9, 4) 741706119465026352814189456758641527200 0.00453

(9, 5) 733898686628552391205619041424340037440 0.00448

(9, 6) 726253908642838303797227176409503162050 0.00444

(9, 7) 718766754945489455304472257065075294400 0.00439

(9, 8) 711432400303188542495242948319513301600 0.00434

(9, 9) 704246214441540173379129383184972763200 0.00430

N =
∑

d1,d2
Nd1,d2

= 163731975056100444033114230488313094880847 ≈ 1.637·1041

(10d1 + d2)Nd1,d2
≡ 69720375229712477164533808935312303556800 ≈ 6.972·1040

Fig 19. An (even more hypothetical) sample x1, x2, . . . xN containing N ≈ 1.637 · 1041 num-
bers from {10, 11, . . . , 99} and showing exact sum-invariance for the first two digits. When
compared with the values in Fig 18, the relative frequencies

∑

d2
Nd1,d2/N of the first digits

are even closer to the Benford values log(1 + d−1
1 ).



A basic theory of Benford’s Law 61

1 2 3 4 5 6 7 8 9

42.71 43.82 44.75 40.35 43.28 38.67 37.10 59.21 38.58

37.67 47.68 65.92 89.59 42.17 12.80 29.30 17.20 9.700

Fibonacci

Prime

d

N = 102 Exact sum-invariance: 102 ·ESd =
100

ln 10
≈ 43.43 for d = 1, 2, . . . , 9

Fig 20. Except for d = 8, the value of
∑

D1=d S does not vary much with d for the first
one-hundred Fibonacci numbers, but it varies wildly for the first one-hundred primes.

Definition 4.34. A sequence (xn) of real numbers has sum-invariant significant
digits if, for every m ∈ N, the limit

limN→∞

∑N
n=1 Sd1,...,dm

(xn)

N

exists and is independent of d1, . . . , dm.

In particular, therefore, if (xn) has sum-invariant significant digits then there
exists c > 0 such that

limN→∞

∑N
n=1 Sd1(xn)

N
= c

for all d1 = 1, 2, . . . , 9.
As will follow from Theorem 4.37 below, the sequence (2n) and the Fibonacci

sequence (Fn) have sum-invariant significant digits. Clearly, (10n) does not have
sum-invariant significant digits since all the first digits are 1, i.e. for all N ,

∑N
n=1 Sd1(10

n)

N
=

{
1 if d1 = 1 ,

0 if d1 ≥ 2.

Not too surprisingly, the sequence (pn) of prime numbers does not have sum-
invariant significant digits either, see Fig 20.

The definitions of sum-invariance of significant digits for functions, distribu-
tions and random variables are similar, and it is in the context of distributions
and random variables that the sum-invariance characterization of BL will be
established. Informally, a probability distribution has sum-invariant significant
digits if in a collection of numbers with that distribution, the sums of (the sig-
nificands of) all entries with first significant digit 1 is the same as each of the
sums of all entries with the other first significant digits; and the sum of all the
entries with, say, first two significant digits 1 and 3, respectively, is the same as
the sum of all entries with any other combination of first two significant digits,
etc; and similarly for all other finite initial sequences of significant digits. In
complete analogy to Definition 4.34, this is put more formally by

Definition 4.35. A random variable X has sum-invariant significant digits if,
for every m ∈ N, the value of ESd1,...,dm

(X) is independent of d1, . . . , dm.
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Example 4.36. (i) If X is uniformly distributed on [0, 1), then X does not have
sum-invariant significant digits. This follows from Theorem 4.37 below but can
also be seen by a simple direct calculation. Indeed, for every d1 ∈ {1, 2, . . . , 9},

ESd1(X) =
∑

n∈N
10n

∫ 10−n(d1+1)

10−nd1

t dt =
2d1 + 1

18
,

which obviously depends on d1.

(ii) Similarly, if P(X = 1) = 1 then X does not have sum-invariant significant
digits, as

ESd1(X) =

{
1 if d1 = 1 ,

0 if d1 ≥ 2 .

(iii) Assume that X is Benford. For every m ∈ N, d1 ∈ {1, 2, . . . , 9} and
dj ∈ {0, 1, . . . , 9}, j ≥ 2,

ESd1,...,dm
(X) =

∫ d1+10−1d2+...+101−m(dm+1)

d1+10−1d2+...+101−mdm

t · 1

t ln 10
dt =

101−m

ln 10
.

Thus X has sum-invariant significant digits. Note, however, that even in this
example the higher moments of Sd1,...,dm

(X) generally depend on d1, . . . , dm, as
for instance

ESd1(X)2 =
2d1 + 1

2 ln 10
, d1 = 1, 2, . . . , 9 .

This example shows that it would be too restrictive to require in Definition
4.35 that the distribution of the random variable Sd1,...,dm

(X), rather than its
expectation, be independent of d1, . . . , dm.

According to Example 4.36(iii) every Benford random variable has sum-
invariant significant digits. As hinted at earlier, the converse is also true, i.e.,
sum-invariant significant digits characterize BL.

Theorem 4.37 (Sum-invariance characterization [Al]). A random variable X
with P(X = 0) = 0 has sum-invariant significant digits if and only if it is
Benford.

Proof. The “if”-part has been verified in Example 4.36(iii). To prove the “only
if”-part, assume that X has sum-invariant significant digits. For every m ∈ N,
d1 ∈ {1, 2, . . . , 9} and dj ∈ {0, 1, . . . , 9}, j ≥ 2, let

Jd1,...,dm
:=
[
d1+10−1d2 + . . .+ 101−mdm, d1 + 10−1d2 + . . .+ 101−m(dm + 1)

)

=
{
1 ≤ x < 10 :

(
D1(x), D2(x), . . . , Dm(x)

)
= (d1, d2, . . . dm)

}
.

With this,

Sd1,...,dm
(X) = S(X)1Jd1,...,dm

(
S(X)

)
,
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and by assumption ESd1,...,dm
(X) is independent of d1, . . . , dm. Note that each

of the 9 · 10m−1 intervals Jd1,...,dm
has the same length λ(Jd1,...,dm

) = 101−m.
Consequently,

ESd1,...,dm
(X) =

1

9 · 10m−1
ES(X) =

λ(Jd1,...,dm
)

9
ES(X) ,

and since the family

{
Jd1,...,dm

: m ∈ N, d1 ∈ {1, 2, . . . , 9} and dj ∈ {0, 1, . . . , 9}, j ≥ 2
}

generates B[1, 10),

E
(
S(X)1[a,b)

(
S(X)

))
=
b− a

9
ES(X) (4.9)

holds for every 1 ≤ a < b < 10. Given any 1 < t < 10, consider the sequence of
functions (fn), where fn : R → R is given by

fn =
∑n

j=1

n

n+ (t− 1)j
1[

1+(t−1) j−1
n

,1+(t−1) j
n

) .

Note that fn(τ) ↑ 1[1,t)(τ)

τ as n → ∞, uniformly in τ . Hence by the Monotone
Convergence Theorem and (4.9),

P(1 ≤ S(X) < t) = E1[1,t)

(
S(X)

)
= E

(
S(X)

1

S(X)
1[1,t)

(
S(X)

))

= limn→∞ E
(
S(X)fn

(
S(X)

))

= limn→∞
∑n

j=1

n

n+ (t− 1)j
E

(
S(X)1[

1+(t−1) j−1
n

,1+(t−1) j
n

)(S(X)
))

= limn→∞
∑n

j=1

n

n+ (t− 1)j
· t− 1

9n
ES(X)

=
ES(X)

9
limn→∞

t− 1

n

∑n

j=1

1

1 + (t− 1)j/n

=
ES(X)

9

∫ 1

0

t− 1

1 + (t− 1)σ
dσ

=
ES(X)

9
ln t .

From P(1 ≤ S(X) < 10) = P(X 6= 0) = 1, it follows that ES(X) = 9
ln 10 and

hence

P(S(X) < t) =
ln t

ln 10
= log t for all t ∈ [1, 10) ,

i.e., X is Benford.
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Remarks. (i) As shown by Example 4.36(iii) and Theorem 4.37, a random vari-
able X has sum-invariant significant digits if and only if

ESd1,...,dm
(X) =

101−m

ln 10
P(X 6= 0)

holds for all m ∈ N, d1 ∈ {1, 2, . . . , 9} and dj ∈ {0, 1, . . . , 9}, j ≥ 2.

(ii) Theorem 4.37 provides another informal test for goodness-of-fit to BL:
Simply calculate the differences between the sums of the significands of the data
corresponding to the same initial sequence of significant digits, see [Ni]. ♣

5. Benford’s Law for deterministic processes

The goal of this chapter is to present the basic theory of BL in the context
of deterministic processes, such as iterates of maps, powers of matrices, and
solutions of differential equations. Except for somewhat artificial examples, pro-
cesses with linear growth are not Benford, and among the others, there is a clear
distinction between those with exponential growth or decay, and those with
super-exponential growth or decay. In the exponential case, processes typically
are Benford for all starting points in a region, but are not Benford with respect
to other bases. In contrast, super-exponential processes typically are Benford
for all bases, but have small sets (of measure zero) of exceptional points whose
orbits or trajectories are not Benford.

5.1. One-dimensional discrete-time processes

This section presents some elementary facts about BL for one-dimensional dis-
crete-time processes. The focus is first on processes with exponential growth
or decay, then on processes with doubly-exponential or more general growth
or decay. Finally, some possible applications such as Newton’s method, and
extensions to nonautonomous and chaotic systems are discussed briefly.

Processes with exponential growth or decay

Many classical integer sequences exhibiting exponential growth are known to be
Benford.

Example 5.1. (i) Recall from Examples 4.11(i) and 4.12 that (2n) and the
Fibonacci sequence (Fn) are Benford. Similarly, (n!) is Benford [BBH, Di], see
also Fig 21.

(ii) Recall from the remark on p.18 that (n) is not Benford, but weakly
Benford in the sense explained there, and the same is true for the sequence of
prime numbers.
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(2n)

(n!)

(Fn)

103·log(1+d−1)

d
#
{
D

1
=

d
}

1

301

293

301

301.0

2

176

176

177

176.0

3

125

124

125

124.9

4

97

102

96

96.91

5

79

69

80

79.18

6

69

87

67

66.94

7

56

51

56

57.99

8

52

51

53

51.15

9

45

47

45

45.75

Fig 21. Empirical frequencies of D1 for the first 103 terms of the sequences (2n), (n!) and
the Fibonacci numbers (Fn), as compared with the Benford probabilities.

Let T : C → C be a measurable map that maps C ⊂ R into itself, and for
every n ∈ N denote by T n the n-fold iterate of T , i.e. T 1 := T and T n+1 :=
T n ◦ T ; also let T 0 be the identity map idC on C, that is, T 0(x) = x for all
x ∈ C. The orbit of x0 ∈ C is the sequence

OT (x0) :=
(
T n−1(x0)

)
n∈N

=
(
x0, T (x0), T

2(x0), . . .
)
.

Note that this interpretation of the orbit as a sequence differs from terminology
sometimes used in dynamical systems theory (e.g. [KH]) according to which the
orbit of x0 is the mere set {T n−1(x0) : n ∈ N}.
Example 5.2. (i) If T (x) = 2x then OT (x0) = (x0, 2x0, 2

2x0, . . .) = (2n−1x0)
for all x0. Hence limn→∞ |xn| = +∞ whenever x0 6= 0.

(ii) If T (x) = x2 then OT (x0) = (x0, x
2
0, x

22

0 , . . .) =
(
x2

n−1

0

)
for all x0. Here

xn approaches 0 or +∞ depending on whether |x0| < 1 or |x0| > 1. Moreover,
OT (±1) = (±1, 1, 1, . . .).

(iii) If T (x) = 1 + x2 then OT (x0) = (x0, 1 + x20, 2 + 2x20 + x40, . . .). Since
xn ≥ n for all x0 and n ∈ N, limn→∞ xn = +∞ for every x0.

Recall from Example 4.11(i) that (2n) is Benford, and in fact (2nx0) is Ben-
ford for every x0 6= 0, by Theorem 4.22. In other words, Example 5.2(i) says
that with T (x) = 2x, the orbit OT (x0) is Benford whenever x0 6= 0. The goal
of the present sub-section is to extend this observation to a much wider class of
maps T . The main result (Theorem 5.8) rests upon three simple lemmas.

Lemma 5.3. Let T (x) = ax with a ∈ R. Then OT (x0) is Benford for every
x0 6= 0 or for no x0 at all, depending on whether log |a| is irrational or rational,
respectively.

Proof. By Theorem 4.10, OT (x0) = (an−1x0) is Benford for every x0 6= 0 or
none, depending on whether log |a| is irrational or not.
Example 5.4. (i) Let T (x) = 4x. Since log 4 is irrational, OT (x0) = (4n−1x0) is
Benford for every x0 6= 0; in particular OT (4) = (4n) is Benford. Note, however,
that (4n) is not base-2 Benford since log2 4 = 2 is rational, and correspond-
ingly the second binary digit of 4n is identically equal to zero, whereas for a
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d · · ·· · · 9

1
1

1

1

1

0
0 log10 5

log10 2

2

5

0.1

0.10.2

0.3

10

10

S ◦ T (x)

0

histograms for

N = 103 iterations

compared to BL

2x

x/5

y
+
lo
g
2

y
−
lo
g
5

x = 10y , y = log x

log S ◦ T (10y)

yx

1

Fig 22. With T (x) = 2x, OT (x0) is Benford for all x0 6= 0.

2-Benford sequence the second binary digit is zero only with a relative frequency
of log2(3/2) ≈ 0.5850.

(ii) Since log π is irrational, every orbit of T (x) = πx is Benford, unless
x0 = 0. Here OT (x0) is actually base-b Benford for every b ∈ N\{1}.

Clearly, the simple proof of Lemma 5.3 works only for maps that are exactly
linear. The same argument would for instance not work for T (x) = 2x + e−x

even though T (x) ≈ 2x for large x. To establish the Benford behavior of maps
like this, a simple version of shadowing will be used. While the argument em-
ployed here is elementary, note that in dynamical systems theory, shadowing is
a powerful and sophisticated tool, see e.g. [Pa].

To explain the basic idea, fix T as above, i.e. let T (x) = 2x + e−x and note
first that T (x) ≥ max(0, x + 1) for all x, and hence limn→∞ T n(x0) = +∞ for
every x0. While no explicit analytical expression is available for T n(x0), it is
certainly plausible to expect that, for large n, the orbit OT (x0) should resemble
an orbit of the linear map x 7→ 2x. Fortunately, this is easily made rigorous. To
this end, note that

T n(x0) = 2nx0 +
∑n

j=1
2n−je−T j−1(x0)

holds for every n ∈ N and x0 ∈ R. Since T n(x0) ≥ 0 for all n and x0, the number

x0 := x0 +
∑∞

j=1
2−je−T j−1(x0) > x0 +

e−x0

2
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is well-defined and positive, and a short calculation using the fact that T n(x) ≥
x+ n confirms that

∣∣T n(x0)− 2nx0
∣∣ =

∑∞

j=n+1
2n−je−T j−1(x0)

≤
∑∞

j=1
2−je−(x0+j+n−1) =

e1−n−x0

2e− 1
, (5.1)

and hence |T n(x0) − 2nx0| → 0 exponentially fast as n → ∞. As will be seen
shortly, this implies that OT (x0) is Benford for all x0 ∈ R. Note also that even
if |T n(x0) − 2ny| were merely required to remain bounded as n → ∞, the only
choice for y would still be y = x0. Moreover, x0 depends continuously on x0. As
the following lemma shows, these observations hold in greater generality.

Lemma 5.5 (Shadowing Lemma). Let T : R → R be a map, and β a real
number with |β| > 1. If supx∈R |T (x) − βx| < +∞ then there exists, for every
x ∈ R, one and only one point x such that the sequence (T n(x)−βnx) is bounded.

Proof. Let ∆(x) := T (x) − βx and note that D := supx∈R |∆(x)| < +∞ by
assumption. With this, for all x ∈ R and n ∈ N0,

T n(x) = βnx+
∑n

j=1
βn−j∆ ◦ T j−1(x) .

Using this expression, together with the well-defined number

x := x+
∑∞

j=1
β−j∆ ◦ T j−1(x) ,

it follows that

|T n(x)− βnx| =
∣∣∣
∑∞

j=n+1
βn−j∆ ◦ T j−1(x)

∣∣∣

≤
∑∞

j=1
|β|−j |∆ ◦ T j+n−1(x)| ≤ D

|β| − 1
,

and hence (T n(x) − βnx) is bounded. Moreover, the identity

T n(x) − βny = T n(x)− βnx− βn(y − x)

shows that (T n(x) − βny) is bounded only if y = x.

Remarks. (i) From the proof of Lemma 5.5 it can be seen that the map h : x 7→ x
is continuous whenever T is continuous. In general, h need not be one-to-one.
For example, h(x) = 0 for every x for which OT (x) is bounded. Also note that
if lim|x|→+∞ |∆(x)| = 0 then lim|x|→+∞ |h(x)− x| = 0 as well. This is often the
case in applications and may be used to improve the bounds on |T n(x)− βnx|.
For example, for the map T (x) = 2x+e−x considered above, the rough estimate

T n(x0) ≥ 2nx0 −
e−x0

2e− 1
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obtained from (5.1) can be substituted into (5.1) again, leading to the much
more accurate

|T n(x0)− 2nx0| = O

(
e−2nx0

)
as n→ ∞ .

(ii) Stronger, quantitative versions of the Shadowing Lemma have been estab-
lished. They are very useful for an analysis of BL in more complicated systems,
see e.g. [BBH] or [Ber3]. ♣

Example 5.6. (i) Let T (x) = 2x+1. For this simple map, T n can be computed
explicitly, and it is illuminating to compare the explicit findings with Lemma
5.5. From

T n(x) = 2nx+ 2n − 1 ,

it is clear that (T n(x) − 2nx) is unbounded for every x ∈ R. However, using
x := x+ 1, one obtains

T n(x)− 2nx ≡ −1 ,

and hence (T n(x) − 2nx) is bounded.

(ii) Strictly speaking, the map T (x) = 2x+e−x studied above does not meet
the assumptions of Lemma 5.5, as ∆(x) = e−x is not bounded for x→ −∞. The
conclusion of the lemma, however, does hold nevertheless because ∆ is bounded
on R+ and T maps R into R+. Put differently, x is well-defined for every x ∈ R.

(iii) Let T (x) = 2x − e−x. Note that T has a unique fixed point x∗, i.e.
T (x∗) = x∗; numerically, x∗ ≈ 0.5671. Lemma 5.5 applies to T for x > x∗. To
see this formally, replace T (x) by x∗+2(x−x∗) whenever x ≤ x∗ and note that
this modification of T does not affect OT (x0) for x0 ≥ x∗. Thus for every x ≥ x∗

there exists an x such that (T n(x)− 2nx) is bounded. Lemma 5.7 below implies
that OT (x0) is Benford for all x0 > x∗. Clearly, OT (x

∗) = (x∗, x∗, x∗, . . .) is not
Benford. If x0 < x∗ then T n(x0) → −∞ super-exponentially fast. The Benford
properties of OT (x0) in this case will be analyzed in the next sub-section.

The next lemma enables application of Lemma 5.5 to establish the Benford
property for orbits of a wide class of maps.

Lemma 5.7. (i) Assume that (an) and (bn) are sequences of real numbers
with |an| → +∞ and supn∈N |an− bn| < +∞. Then (bn) is Benford if and
only if (an) is Benford.

(ii) Suppose that the measurable functions f, g : [0,+∞) → R are such that
|f(t)| → +∞ as t → +∞, and supt≥0 |f(t) − g(t)| < +∞. Then f is
Benford if and only if g is Benford.

Proof. To prove (i), let c := supn∈N
|an − bn| + 1. By discarding finitely many

terms if necessary, it can be assumed that |an|, |bn| ≥ 2c for all n. From
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− log

(
1 +

c

|an| − c

)
≤ log

|bn|
|bn|+ c

≤ log
|bn|
|an|

≤ log
|an|+ c

|an|
≤ log

(
1 +

c

|an| − c

)
,

it follows that

∣∣ log |bn| − log |an|
∣∣ =

∣∣∣∣log
|bn|
|an|

∣∣∣∣ ≤ log

(
1 +

c

|an| − c

)
→ 0 as n→ ∞ .

Lemma 4.3(i) now shows that (log |bn|) is u.d. mod 1 if and only (log |an|) is.
The proof of (ii) is completely analogous.

Lemmas 5.5 and 5.7 can now easily be combined to produce the desired gen-
eral result. The theorem is formulated for orbits converging to zero. As explained
in the subsequent Example 5.9, a reciprocal version holds for orbits converging
to ±∞.

Theorem 5.8 ([BBH]). Let T : R → R be a C2-map with T (0) = 0. Assume
that 0 < |T ′(0)| < 1. Then OT (x0) is Benford for all x0 6= 0 sufficiently close to
0 if and only if log |T ′(0)| is irrational. If log |T ′(0)| is rational then OT (x0) is
not Benford for any x0 sufficiently close to 0.

Proof. Let α := T ′(0) and observe that there exists a continuous function f :
R → R such that T (x) = αx

(
1 − xf(x)

)
. In particular, T (x) 6= 0 for all x 6= 0

sufficiently close to 0. Define

T̃ (x) := T (x−1)−1 =
x2

α
(
x− f(x−1)

) ,

and note that

T̃ (x)− α−1x =
x

α
· f(x−1)

x− f(x−1)
=
f(x−1)

α
+

f(x−1)2

α
(
x− f(x−1)

) .

From this it is clear that sup|x|≥ξ |T̃ (x) − α−1x| is finite, provided that ξ is
sufficiently large. Hence Lemma 5.5 shows that for every x with |x| sufficiently

large,
(
|T̃ n(x) − α−nx|

)
is bounded with an appropriate x 6= 0. Lemma 5.7

implies that OT̃ (x0) is Benford if and only if (α1−nx0) is, which in turn is the
case precisely if log |α| is irrational. The result then follows from noting that,

for all x0 6= 0 with |x0| sufficiently small, OT (x0) =
(
T̃ n−1(x−1

0 )−1
)
n∈N

, and

Corollary 4.7(i) which shows that (x−1
n ) is Benford whenever (xn) is.

Example 5.9. (i) For T (x) = 1
2x + 1

4x
2, the orbit OT (x0) is Benford for

every x0 6= 0 sufficiently close to 0. A simple graphical analysis shows that
limn→∞ T n(x) = 0 if and only if −4 < x < 2. Thus for every x0 ∈ (−4, 2)\{0},
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OT (x0) is Benford. Clearly, OT (−4) = (−4, 2, 2, . . .) and OT (2) = (2, 2, 2, . . .)
are not Benford. For x0 < −4 or x0 > 2, one might try to mimic the proof of
Theorem 5.8 and consider

T̃ (x) := T (x−1)−1 =
4x2

1 + 2x

near x = 0. Note that indeed T̃ is a smooth (C∞) map near x = 0, and T̃ (0) = 0.

However, T̃ ′(0) = 0 as well, and Theorem 5.8 does not apply. It will follow from
the main result of the next subsection (Theorem 5.12) that for almost every point
x0 ∈ R\[−4, 2] the orbit OT (x0) is Benford. However, R\[−4, 2] also contains a
large set of exceptional points, i.e. points whose orbit is not Benford.

(ii) To see that Theorem 5.8 applies to the map T (x) = 2x+ e−x considered
in Example 5.6(ii), let

T̃ (x) := T (x−2)−1/2 =
x√

2 + x2e−1/x2
, x 6= 0 .

With T̃ (0) := 0, the map T̃ : R → R is smooth, and T̃ ′(0) = 1√
2
. Moreover,

limn→∞ T̃ n(x) = 0 for every x ∈ R. By Theorem 5.8, OT̃ (x0) is Benford for
every x0 6= 0, and hence OT (x0) is Benford for every x0 6= 0 as well, because

T n(x) = T̃ n(|x|−1/2)−2 for all n.

(iii) As in (ii), Theorem 5.8 applies to the map T (x) = 10x + e2−x. Note
that again limn→∞ T n(x) = +∞ for every x ∈ R, but since log 10 is rational,
no T -orbit is Benford. In fact, it is not hard to see that for every m ∈ N and
x ∈ R, the sequence of m-th significant digits of T n(x), i.e.

(
Dm(T n(x))

)
n∈N

is
eventually constant.

Remark. Theorem 5.8 remains essentially unchanged if the case |T ′(0)| = 1 is
also allowed, the conclusion being that in this case OT (x0) is not Benford for any
x near 0. However, this extension requires the explicit assumption that x = 0
be attracting, see [Ber4]. (If |T ′(0)| < 1 then x = 0 is automatically attracting.)

For a simple example, consider the smooth map T (x) =
√
1 + x2. While

limn→∞ T n(x) = +∞ for every x ∈ R, it follows from the explicit formula
T n(x) =

√
n+ x2 that OT (x0) is not Benford, as (log

√
n+ x20) is not u.d. mod

1, by Proposition 4.8(iv). The extended version of Theorem 5.8 just mentioned
easily leads to the same conclusion because

T̃ (x) := T (x−1)−1 =
x√

x2 + 1

is smooth, with T̃ (0) = 0 and T̃ ′(0) = 1, and x = 0 is an attracting fixed point

for T̃ .
To see that the situation can be more complicated if |T ′(0)| = 1 yet x = 0 is

not attracting, fix α > 1 and consider the map

Tα(x) = αx− (α− 1)x

1 + x2
,
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for which Tα(0) = 0, T ′
α(0) = 1, and x = 0 is repelling. As far as the dynamics

near x = 0 is concerned, all maps Tα are the same. However,

T̃α(x) = Tα(x
−1)−1 = x

1 + x2

α+ x2

is smooth with T̃ ′
α(0) = α−1. Hence it is clear from Theorem 5.8 that OTα

(x0)
is Benford for all x0 6= 0 or for none, depending on whether logα is irrational
or not. ♣

Processes with super-exponential growth or decay

As was seen in the previous subsection, for the maps

T : x 7→ α(x + e−x)

with α > 1, either all orbits are Benford (if logα is irrational) or else none are
(if logα is rational). This all-or-nothing behavior is linked to the exponential
growth of orbits since, by the Shadowing Lemma 5.5,

T n(x) = αnx+ O(e−n) as n→ ∞ .

For an altogether different scenario, consider the smooth map

T : x 7→
√
30 + 12x2 + x4 .

As before, limn→∞ T n(x) = +∞ for every x ∈ R. However, it follows from
T (x)2 + 6 = (x2 + 6)2 that

T n(x) =
√
(x2 + 6)2n − 6 = (x2 + 6)2

n−1

+ O
(
6−2n−1)

as n→ ∞ ,

showing that every T -orbit grows at a doubly-exponential rate. Is OT (x0) Ben-
ford for some or even all x0 ∈ R? The main result of this subsection, Theorem
5.12 below, shows that indeed OT (x0) is Benford for most x0. While it is dif-
ficult to explicitly produce even a single x0 with this property, it is very easy
to see that OT (x0) cannot be Benford for every x0. Indeed, taking for example
x0 = 2, one obtains

OT (2) = (2,
√
94,

√
9994,

√
999994, . . .) ,

and it is clear that D1

(
T n(2)

)
= 9 for every n ∈ N. Hence OT (2) is not Benford.

For another example, choose x0 =
√
104/3 − 6 = 3.943 . . . for which the sequence

of first significant digits is eventually 2-periodic,
(
D1(T

n−1(x0))
)
= (3, 2, 4, 2, 4, 2, 4, . . .) .

As also shown by Theorem 5.12, for maps like T there are always many excep-
tional points.

The following is an analog of Lemma 5.3 in the doubly-exponential setting.
Recall that a statement holds for almost every x if there is a set of Lebesgue
measure zero that contains all x for which the statement does not hold.
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Lemma 5.10. Let T (x) = αxβ for some α > 0 and β > 1. Then OT (x0)
is Benford for almost every x0 > 0, but there also exist uncountably many
exceptional points, i.e. x0 > 0 for which OT (x0) is not Benford.

Proof. Note first that letting T̃ (x) = cT (c−1x) for any c > 0 implies OT (x) =

c−1OT̃ (cx), and with c = α(β−1)−1

one finds T̃ (x) = xβ . Without loss of general-
ity, it can therefore be assumed that α = 1, i.e. T (x) = xβ . Define R : R → R as
R(y) = logT (10y) = βy. Since x 7→ log x establishes a bijective correspondence
between both the points and the nullsets in R+ and R, respectively, all that has
to be shown is that OR(y) is u.d. mod 1 for a.e. y ∈ R, but also that OR(y)
fails to be u.d. mod 1 for at least uncountably many y. To see the former, let
fn(y) = Rn(y) = βny. Clearly, f ′

n(y)−f ′
m(y) = βn−m(βm−1) is monotone, and

|f ′
n − f ′

m| ≥ β − 1 > 0 whenever m 6= n. By Proposition 4.9, therefore, OR(y) is
u.d. mod 1 for a.e. y ∈ R.

The statement concerning exceptional points will be proved here only under
the additional assumption that β is an integer, see [Ber4] for the remaining
cases. Given an integer β ≥ 2, let (ηn) be any sequence of 0s and 1s such that
ηnηn+1 = 0 for all n ∈ N, that is, (ηn) does not contain two consecutive 1s.
With this, consider

y0 :=
∑∞

j=1
ηjβ

−j

and observe that, for every n ∈ N,

0 ≤ 〈βny0〉 =
∑∞

j=n+1
ηjβ

n−j ≤ 1

β
+

1

β2(β − 1)
< 1 ,

from which it is clear that (βny0) is not u.d. mod 1. The proof is completed
by noting that there are uncountably many different sequences (ηn), and each
sequence defines a different point y0.

Example 5.11. Let T (x) = x2. By Lemma 5.10, OT (x0) is Benford for almost
every but not for every x0 ∈ R, as for instance T n(x) = x2

n

always has first
significant digit D1 = 1 if x = 10k for some k ∈ Z.

To study maps like T (x) =
√
30 + 12x2 + x4 mentioned above, Lemma 5.10

has to be extended. Note that

T̃ (x) = T (x−1)−1 =
x2√

1 + 12x2 + 30x4
,

so T̃ (x) ≈ x2 near x = 0. Again the technique of shadowing can be applied to

relate the dynamics of T̃ to the one of x 7→ x2 covered by Lemma 5.10. The
following is an analog of Theorem 5.8 for the case when T is dominated by
power-like terms.

Theorem 5.12 ([BBH]). Let T be a smooth map with T (0) = 0, and assume
that T ′(0) = 0 but T (p)(0) 6= 0 for some p ∈ N\{1}. Then OT (x0) is Benford
for almost every x0 sufficiently close to 0, but there are also uncountably many
exceptional points.
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Fig 23. With T (x) = x2, OT (x0) is Benford for almost every, but not every x0 ∈ R.

Proof. Without loss of generality, assume that p = min{j ∈ N : T (j)(0) 6= 0}.
The map T can be written in the form T (x) = αxp

(
1 + f(x)

)
where f is a

C∞-function with f(0) = 0, and α 6= 0. As in the proof of Lemma 5.10, it may
be assumed that α = 1. Let R(y) = − logT (10−y) = py − log

(
1 + f(10−y)

)
, so

that OT (x0) is Benford if and only if OR(− logx0) is u.d. mod 1. As the proof
of Lemma 5.10 has shown, (pny) is u.d. mod 1 for a.e. y ∈ R. Moreover, Lemma
5.5 applies to R, and it can be checked by term-by-term differentiation that the
shadowing map

h : y 7→ y = y −
∑∞

j=1
p−j log

(
1 + f

(
10−Rj(y)

))

is a C∞-diffeomorphism on [y0,+∞) for y0 sufficiently large. For a.e. sufficiently
large y, therefore, OR(y) is u.d. mod 1. As explained earlier, this means that
OT (x0) is Benford for a.e. x0 sufficiently close to 0. The existence of exceptional
points follows similarly as in the proof of Lemma 5.10.

Example 5.13. (i) Consider the map T (x) = 1
2 (x

2 + x4) and note that
limn→∞ T n(x) = 0 if and only if |x| < 1. Theorem 5.12 shows that OT (x0)
is Benford for a.e. x0 ∈ (−1, 1). If |x| > 1 then limn→∞ T n(x) = +∞, and the
reciprocal version of Theorem 5.12 applies to

T̃ (x) := T (x−1)−1 =
2x4

1 + x2

near x = 0. Overall, therefore, OT (x0) is Benford for a.e. x0 ∈ R.
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(ii) For T (x) =
√
30 + 12x2 + x4, Theorem 5.12 applied to

T̃ (x) := T (x−1)−1 =
x2√

1 + 12x2 + 30x4

shows that OT (x0) is Benford for a.e. x0 ∈ R.

(iii) Let T (x) = 1 + x2. Again Theorem 5.12 applied to

T̃ (x) = T (x−1)−1 =
x2

1 + x2
,

shows that OT (x0) is Benford for a.e. x0 ∈ R. As also asserted by that theorem,
there are many exceptional points as well. For example, it can be shown that
with

x0 = limn→∞

√
. . .

√√
102n − 1− 1 . . . = 9.949 . . . ,

the first significant digit of T n−1(x0) always equals 9, i.e. D1

(
T n−1(x0)

)
= 9

for all n ∈ N. (In fact, x0 is the only point with this property, see [BBH] for
details.)

Remarks. (i) Note that while in Lemma 5.3 and Theorem 5.8 OT (x0) is Benford
either for all x0 or for none at all, Lemma 5.10 and Theorem 5.12 guarantee
the coexistence of many x0 for which OT (x0) is Benford and many exceptional
points. The latter form an uncountable set of Lebesgue measure zero. From a
measure-theoretic point of view, therefore, exceptional points are extremely rare.
It can be shown, however, that the points x0 for which OT (x0) is Benford form
a set of first category, i.e. a countable union of nowhere dense sets. In particular,
the exceptional points are dense in a neighbourhood of x = 0. (Recall that a set
M is dense in C ⊂ R if, given any c ∈ C and ε > 0, there exists an m ∈M with
|m−c| < ε.) Thus from a topological point of view, most points are exceptional.
This discrepancy between the measure-theoretic and the topological point of
view is not uncommon in ergodic theory and may explain why it is difficult
to explicitly find even a single point x0 for which OT (x0) is Benford for, say,
T (x) = 1 + x2 — despite the fact that Theorem 5.12 guarantees the existence
of such points in abundance.

(ii) Theorem 5.12 covers for instance all polynomial or rational functions of
degree at least two, for |x| sufficiently large. An example not covered by that

theorem is T (x) = ex or, more precisely, its reciprocal T̃ (x) = e−1/x. In this
case, OT (x0) grows even faster than doubly-exponential. Theorem 5.21 below
shows that nevertheless OT (x0) is Benford for a.e. x0 ∈ R. Again, there is also
a (measure-theoretically small yet topologically large) set of exceptional points.

(iii) In the context of Lemma 5.10 and Theorem 5.12, and in view of (i),
many interesting questions may be asked. For instance, OT (x0) is Benford for

a.e. x0 ∈ R if T (x) = x2. What if x0 = 2, i.e., is OT (2) = (22
n−1

) Benford?
More generally, let T be any polynomial with integer coefficients and degree at
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least two. Then OT (x0) is Benford for almost all sufficiently large |x0|. Is OT (k)
Benford for some, or even many integers k? In the case of T (x) = x2, this is
equivalent to asking whether (2n log |k|) is u.d. mod 1 or, in number-theoretic
terminology, whether log |k| is 2-normal. At present, 2-normality of common
mathematical constants such as log 2, π or e is a well-known open problem,
considered to be exceedingly difficult. Similarly, one may ask whether (F2n) is
Benford. Again, this may be a very hard problem, contrasting the simple fact
that (F|P (n)|) is Benford whenever P is a non-constant polynomial with integer
coefficients. ♣

To conclude the present section on one-dimensional processes, a few possible
applications and extensions of the results above will be discussed. The presenta-
tion is very brief and mostly based on examples; for any details, the interested
reader may wish to consult the references mentioned in the text.

An application: Newton’s method and related algorithms

In scientific calculations using digital computers and floating point arithmetic,
roundoff errors are inevitable, and as Knuth points out in his classic text The
Art of Computer Programming [Kn, pp.253–255]

In order to analyze the average behavior of floating-point arithmetic algorithms
(and in particular to determine their average running time), we need some statis-
tical information that allows us to determine how often various cases arise . . . [If,
for example, the] leading digits tend to be small [that] makes the most obvious
techniques of “average error” estimation for floating-point calculations invalid.
The relative error due to rounding is usually . . . more than expected.

Thus for the problem of finding numerically the root of a function by means of
Newton’s Method (NM), it is important to study the distribution of significant
digits (or significands) of the approximations generated by the method. As will
be seen shortly, the differences between successive Newton approximations, and
the differences between the successive approximations and the unknown root
often exhibit exactly the type of non-uniformity of significant digits alluded to
by Knuth — they typically follow BL.

Throughout this subsection, let f : I → R be a differentiable function defined
on some open interval I ⊂ R, and denote by Nf the map associated with f by
NM, that is

Nf (x) := x− f(x)

f ′(x)
for all x ∈ I with f ′(x) 6= 0.

For Nf to be defined wherever f is, set Nf (x) := x if f ′(x) = 0. Using NM for
finding roots of f (i.e. real numbers x∗ with f(x∗) = 0) amounts to picking an
initial point x0 ∈ I and iterating Nf . Henceforth, (xn) will denote the sequence
of iterates of Nf starting at x0, that is (xn) = ONf

(x0).
Clearly, if (xn) converges to x∗, say, and if Nf is continuous at x∗, then

Nf(x
∗) = x∗, so x∗ is a fixed point of Nf , and f(x

∗) = 0. (Note that according
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to the definition of Nf used here, Nf(x
∗) = x∗ could also mean that f ′(x∗) = 0.

If, however, f ′(x∗) = 0 yet f(x∗) 6= 0 then Nf is not continuous at x∗ unless
f is constant.) It is this correspondence between the roots of f and the fixed
points of Nf that makes NM work locally. Often, every fixed point x∗ of Nf is
attracting, i.e. limn→∞Nn

f (x0) = x∗ for all x0 sufficiently close to x∗. (Observe
that if f is linear near x∗, i.e. f(x) = c(x−x∗) for some c 6= 0, then Nf (x) = x∗

for all x near x∗.)
To formulate a result about BL for NM, it will be assumed that f : I → R

is real-analytic. Recall that this means that f can, in a neighbourhood of every
point of I, be represented by its Taylor series. Although real-analyticity is a
strong assumption indeed, the class of real-analytic functions covers most prac-
tically relevant cases, including all polynomials, and all rational, exponential,
and trigonometric functions, and compositions thereof.

If f : I → R is real-analytic and x∗ ∈ I a root of f , i.e. if f(x∗) = 0, then
f(x) = (x − x∗)mg(x) for some m ∈ N and some real-analytic g : I → R with
g(x∗) 6= 0. The number m is the multiplicity of the root x∗; if m = 1 then
x∗ is referred to as a simple root. The following theorem becomes plausible
upon observing that f(x) = (x− x∗)mg(x) implies that Nf is real-analytic in a
neighbourhood of x∗, and

N ′
f (x) =

f(x)f ′′(x)

f ′(x)2

=
m(m− 1)g(x)2 + 2m(x− x∗)g′(x)g(x) + (x− x∗)2g′′(x)g(x)

m2g(x)2 + 2m(x− x∗)g′(x)g(x) + (x− x∗)2g′(x)2
,

so that in particular N ′
f (x

∗) = 1−m−1.

Theorem 5.14 ([BH1]). Let f : I → R be real-analytic with f(x∗) = 0, and
assume that f is not linear.

(i) If x∗ is a simple root, then (xn − x∗) and (xn+1 − xn) are both Benford
for (Lebesgue) almost every, but not every x0 in a neighbourhood of x∗.

(ii) If x∗ is a root of multiplicity at least two, then (xn − x∗) and (xn+1 − xn)
are Benford for all x0 6= x∗ sufficiently close to x∗.

The full proof of Theorem 5.14 can be found in [BH1]. It uses the following
lemma which may be of independent interest for studying BL in other numerical
approximation procedures. Part (i) is an analog of Lemma 5.7, and (ii) and (iii)
follow directly from Theorem 5.12 and 5.8, respectively.

Lemma 5.15. Let T : I → I be C∞ with T (y∗) = y∗ for some y∗ ∈ I.

(i) If T ′(y∗) 6= 1, then for all y0 such that limn→∞ T n(y0) = y∗, the sequence
(T n(y0)− y∗) is Benford precisely when

(
T n+1(y0)− T n(y0)

)
is Benford.

(ii) If T ′(y∗) = 0 but T (p)(y∗) 6= 0 for some p ∈ N\{1}, then (T n(y0)− y∗) is
Benford for (Lebesgue) almost every, but not every y0 in a neighbourhood
of y∗.
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(iii) If 0 < |T ′(y∗)| < 1, then (T n(y0) − y∗) is Benford for all y0 6= y∗ suffi-
ciently close to y∗ precisely when log |T ′(y∗)| is irrational.

Example 5.16. (i) Let f(x) = x/(1 − x) for x < 1. Then f has a simple
root at x∗ = 0, and Nf (x) = x2. By Theorem 5.14(i), the sequences (xn) and
(xn+1 − xn) are both Benford sequences for (Lebesgue) almost every x0 in a
neighbourhood of 0.

(ii) Let f(x) = x2. Then f has a double root at x∗ = 0 and Nf (x) = x/2, so
by Theorem 5.14(ii), the sequence of iterates (xn) ofNf as well as (xn+1−xn) are
both Benford for all starting points x0 6= 0. (They are not, however, 2-Benford.)

Utilizing Lemma 5.15, an analog of Theorem 5.14 can be established for other
root-finding algorithms as well.

Example 5.17. Let f(x) = x+ x3 and consider the successive approximations
(yn) generated by the Jacobi-Steffensen method,

yn+1 = yn − f(yn)
2

f(yn)− f
(
yn − f(yn)

) , n ∈ N0 .

For almost every, but not every y0 near 0, (yn) is Benford. This follows from
Lemma 5.15(ii), since yn = Jn

f (y0) with the Jacobi-Steffensen transformation

Jn
f (x) = −y5 1− y2

1 + y2 − y4 + y6
,

and Jf (y) ≈ −y5 near y = 0. Alternatively, Jf = Nf̃ with the real-analytic

function f̃(x) = (x+ x3)e
1
4x

4−x2

, so Theorem 5.14(i) applies directly as well.

If f fails to be real-analytic, then Nf may not be well-behaved analytically.
For instance, Nf may have discontinuities even if f is C∞. Pathologies like this
can cause NM to fail for a variety of reasons, of which the reader can gain an
impression from [BH1, Sec.4]. Even if Nf is smooth, (xn) may not be Benford.

Example 5.18. Let f be the C∞-function

f(x) =

{
e−1/x2

if x 6= 0 ,
0 if x = 0 ,

for which Nf(x) = x(1 − 1
2x

2) is C∞ as well. Note that limn→∞Nn
f (x) = 0 if

and only if |x| < 2. In this case, however, ONf
(x) is not Benford. This follows

from the extended version of Theorem 5.8 mentioned in the remark on p.70 but
can also be seen directly. Indeed, let T (x) = x

1+|x| and note that N ′
f(x) > 0,

T ′(x) > 0 and |T (x)| ≤ |Nf (x)| holds whenever |x| ≤ 1
2 . From this it follows

that

|Nn
f (x)| ≥ |T n(x)| = |x|

1 + n|x| for all n ∈ N ,



78 A. Berger and T.P. Hill

and consequently (log |Nn
f (x)|) is not u.d. mod 1 by Proposition 4.8(iv), i.e.,

ONf
(x) is not Benford. On the other hand, if |x0| > 2 then limn→∞ |Nn

f (x0)| =
+∞, and Theorem 5.12, applied to

T̃ (x) := Nf(x
−1)−1 = − 2x3

1− 2x2

near x = 0, shows that ONf
(x0) is Benford for almost every, but not every x0

in this case.

Theorem 5.14 has important practical implications for estimating roots of a
function via NM using floating-point arithmetic. One type of error in scientific
computations is overflow (or underflow), which occurs when the running compu-
tations exceed the largest (or smallest, in absolute value) floating-point number
allowed by the computer. Feldstein and Turner [FT, p.241] show that under “the
assumption of the logarithmic distribution of numbers [i.e. BL] floating-point
addition and subtraction can result in overflow and underflow with alarming
frequency . . . ” Together with Theorem 5.14, this suggests that special attention
should be given to overflow and underflow errors in any computer algorithm
used to estimate roots by means of NM.

Another important type of error in scientific computing arises due to round-
off. In estimating a root from its Newton approximations, for example, a rule for
stopping the algorithm must be specified, such as “stop when n = 106” or “stop
when the differences between successive approximations are less than 10−6”.
Every stopping rule will result in some round-off error, and Theorem 5.14 shows
that this difference is generally Benford. In fact, justified by heuristics and by
the extensive empirical evidence of BL in other numerical procedures, analysis
of roundoff errors has often been carried out under the hypothesis of a statistical
logarithmic distribution of significant digits or significands [BB]. Therefore, as
Knuth points out, a naive assumption of uniformly distributed significant digits
in the calculations tends to underestimate the average relative roundoff error in
cases where the actual statistical distribution is skewed toward smaller leading
significant digits, as is the case for BL. To obtain a rough idea of the magnitude
of this underestimate when the true statistical distribution is BL, let X denote
the absolute round-off error at the time of stopping the algorithm, and let Y
denote the fraction part of the approximation at the time of stopping. Then the
relative error is X/Y , and assuming that X and Y are independent random vari-
ables, the average (i.e., expected) relative error is simply EX ·E(1/Y ). As shown
in [BH1], the assumption that Y is uniform while its true distribution is BL leads
to an average underestimation of the relative error by more than one third.

The relevance of BL for scientific computing does not end here. For example,
Hamming gives “a number of applications to hardware, software, and general
computing which show that this distribution is not merely an amusing curiosity”
[Ha, p.1609], and Schatte analyzes the speed of multiplication and division in
digital computers when the statistical distribution of floating-point numbers is
logarithmic and proves that, for design of computers, “[t]he base b = 8 is optimal
with respect to [minimizing expected] storage use” [Scha1, p.453].
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Extension I: Time-dependent systems

So far, the sequences considered in this chapter have been generated by the iter-
ation of a single map T or, in dynamical systems terminology, by an autonomous
dynamical system. Autonomous systems constitute a classical and well-studied
field. Beyond this field there has been, in the recent past, an increased interest
in systems that are nonautonomous, i.e. explicitly time-dependent in one way
or the other. This development is motivated and driven by important practical
applications as well as pure mathematical questions. In this context, it is inter-
esting to study how the results discussed previously extend to systems with the
map T explicitly depending on n. In full generality, this is a very wide topic
with many open problems, both conceptual and computational. Only a small
number of pertinent results (without proofs) and examples will be mentioned
here, and the interested reader is referred e.g. to [Ber4] for a fuller account and
references as well as to [KM, LS] for an intriguing specific problem.

Throughout, let (Tn) be a sequence of maps that map R or parts thereof into
itself, and for every n ∈ N denote by T n the n-fold composition T n := Tn◦. . .◦T1;
also let T 0 be the identity map on R. Given x0, it makes sense to consider the
sequence OT (x0) :=

(
T n−1(x0)

)
n∈N

=
(
x0, T1(x0), T2

(
T1(x0)

)
, . . .

)
. As in the

autonomous case (which corresponds to Tn being independent of n) the sequence
OT (x0) is referred to as the (nonautonomous) orbit of x0.

The following is a nonautonomous variant of Theorem 5.8. A proof (of a
substantially more general version) can be found in [BBH]. It relies heavily on
a nonautonomous version of the Shadowing Lemma.

Theorem 5.19 ([BBH]). Let Tj : R → R be C2-maps with Tj(0) = 0 and
T ′
j(0) 6= 0 for all j ∈ N, and set αj := T ′

j(0). Assume that supj max|x|≤1 |T ′′
j (x)|

and
∑∞

n=1

∏n
j=1 |αj | are both finite. If limj→∞ log |αj | exists and is irrational,

then OT (x0) is Benford for all x0 6= 0 sufficiently close to 0.

Example 5.20. (i) Let Rj(x) = (2 + j−1)x for j = 1, 2, . . .. It is easy to see
that all assumptions of Theorem 5.19 are met for

Tj(x) = Rj(x
−1)−1 =

j

2j + 1
x

with limj→∞ log |αj | = − log 2. Hence OR(x0) is Benford for all x0 6= 0.

(ii) Let Tj(x) = Fj+1/Fjx for all j ∈ N, where Fj denotes the j-th Fibonacci

number. Since limj→∞ log(Fj+1/Fj) = log 1+
√
5

2 is irrational, and by taking
reciprocals as in (i), Theorem 5.19 shows that OT (x0) is Benford for all x0 6= 0.
In particular, OT (F1) = (Fn) is Benford, as was already seen in Example 4.12.
Note that the same argument would not work to show that (n!) is Benford.

(iii) Consider the family of linear maps Tj(x) = 10−1+
√
j+1−√

jx for j =

1, 2, . . .. Here
∏n

j=1 αj = 10−n+
√
n+1−1, so

∑+∞
n=1

∏n
j=1 |αj | < +∞. However,
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Theorem 5.19 does not apply since limj→∞ log |αj | = −1 is rational. Neverthe-
less, as (

√
n) is u.d. mod 1 by [KN, Ex.3.9] and

log |T n(x)| = −n+
√
n+ 1− 1 + log |x| ,

the sequence OT (x0) is Benford for every x0 6= 0.

In situations where most of the maps Tj are power-like or even more strongly
expanding, the following generalization of Lemma 5.10 may be useful. (In its
fully developed form, the result also extends Theorem 5.12, see [BBH, Thm.5.5]
and [Ber3, Thm.3.7].) Again the reader is referred to [Ber4] for a proof.

Theorem 5.21 ([Ber4]). Assume the maps Tj : R+ → R+ satisfy, for some
ξ > 0 and all j ∈ N, the following conditions:

(i) x 7→ lnTj(e
x) is convex on [ξ,+∞);

(ii) xT ′
j(x)/Tj(x) ≥ βj > 0 for all x ≥ ξ.

If lim infj→∞ βj > 1 then OT (x0) is Benford for almost every sufficiently large
x0, but there are also uncountably many exceptional points.

Example 5.22. (i) To see that Theorem 5.21 does indeed generalize Lemma
5.10, let Tj(x) = αxβ for all j ∈ N. Then x 7→ lnTj(e

x) = βx + lnα clearly is
convex, and xT ′

j(x)/Tj(x) = β > 1 for all x > 0.

(ii) As mentioned already in (ii) of the remark on p.74, Theorem 5.21 also
shows that OT (x0) with T (x) = ex is Benford for almost every, but not every
x0 ∈ R, as x 7→ lnT (ex) = ex is convex, and xT ′(x)/T (x) = x as well as
T 3(x) > e holds for all x ∈ R. Similarly, the theorem applies to T (x) = 1 + x2.

(iii) For a truly nonautonomous example consider

Tj(x) =

{
x2 if j is even ,
2x if j is odd ,

or Tj(x) = (j + 1)x .

In both cases, OT (x0) is Benford for almost every, but not every x0 ∈ R.

(iv) Finally, it is important to note that Theorem 5.21 may fail if one of its
hypotheses is violated even for a single j. For example

Tj(x) =

{
10 if j = 1 ,
x2 if j ≥ 2 ,

satisfies (i) and (ii) for all j > 1, but does not satisfy assumption (ii) for j = 1.
Clearly, OT (x0) is not Benford for any x0 ∈ R, since D1

(
T n(x0)

)
= 1 for all

n ∈ N.

Using slightly more sophisticated tools, Theorem 5.21 can be extended so as
to provide the following corollary for polynomial maps.
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Corollary 5.23. Let the maps Tj be polynomials,

Tj(x) = xnj + aj,nj−1x
nj−1 + . . .+ aj,1x+ aj,0 ,

with nj ∈ N\{1} and aj,l ∈ R for all j ∈ N, 0 ≤ l < nj. If supj∈N max
nj−1
l=0 |aj,l| <

+∞ then OT (x0) is Benford for almost every x0 ∈ R\[−ξ, ξ] with some ξ ≥ 0.
However, R\[−ξ, ξ] also contains an uncountable dense set of exceptional points.

Example 5.24. Let Tj(x) = xj − 1 for all j − 1 . Then even though (Tj)
do not satisfy the hypothesis (i) of Theorem 5.21, by Corollary 5.23, the orbit
OT (x0) = (x0, x0 − 1, x20 − 2x0, . . .) is Benford for almost all |x0| ≥ 3, but that
region also contains uncountably many points for which OT (x0) is not Benford.

Extension II: Chaotic dynamical systems

The dynamical scenarios studied so far for their conformance with BL have all
been very simple indeed: In Theorems 5.8, 5.12 and 5.19 limn→∞ T n(x) = 0
holds automatically for all relevant initial values x, whereas limn→∞ T n(x) =
+∞ in Theorem 5.21. While this dynamical simplicity does not necessarily force
the behavior of

(
S
(
T n(x)

))
to be equally simple (recall e.g. Example 5.13(iii)), it

makes one wonder what might be observed under more general circumstances.
The present subsection presents two simple examples in this regard. Among
other things, they illustrate that, as a rule, Benford sequences may be rare in
more general dynamical systems.

Example 5.25. Consider the tent-map T : R → R given by T (x) = 1−|2x−1|.
Using Theorem 5.8, it is not hard to see that OT (x0) is Benford whenever x0
lies outside [0, 1]. Clearly, OT (0) = (0, 0, 0, . . .) and OT (1) = (1, 0, 0, . . .) are not
Benford. As far as BL is concerned, therefore, it remains to analyze OT (x0) for
0 < x0 < 1. Define two maps τL, τR : [0, 1] → [0, 1] as

τL(x) =
x

2
, τR(x) = 1− x

2
.

Then T ◦ τL(x) = T ◦ τR(x) = x for all x ∈ [0, 1], and τL, τR can be used for a
symbolic description of the dynamics of T . To this end, recall that the set Σ of
all sequences consisting of the two symbols L and R, that is Σ = {L,R}N, is a
compact metric space when endowed with the metric

d(ω, ω̃) :=

{
2−min{n :ωn 6=ω̃n} if ω 6= ω̃ ,
0 if ω = ω̃ .

Moreover, the (left) shift map σ on Σ, given by σ(ω) = (ωn+1) is a continuous
map. With these ingredients, define a map h : Σ → [0, 1] as

h(ω) := limn→∞ τω1 ◦ τω2 ◦ . . . ◦ τωn

(
1
2

)
.

It is easy to see that h is well defined, continuous and onto, and h ◦ σ(ω) =
T ◦ h(ω) for all ω ∈ Σ. In particular, therefore, T n−1 ◦ h(ω) ∈ Iωn

holds for all
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ω ∈ Σ and n ∈ N, where IL = τL([0, 1]) = [0, 12 ] and IR = τR([0, 1]) = [ 12 , 1].
Thus it is reasonable to think of ω as the “symbolic itinerary” of h(ω) under
the iteration of T . (Note that h is not one-to-one, however #h−1({x}) = 1
unless x is a dyadic rational, i.e. unless 2lx is an integer for some l ∈ N0.) By
means of this symbolic coding, some dynamical properties of T are very easy
to understand. For example, the set of x0 for which OT (x0) is periodic is dense
in [0, 1]. To see this simply observe that h(ω) is periodic (under T ) whenever
ω ∈ Σ is periodic (under σ), and periodic sequences are dense in Σ. On the
other hand, T is topologically transitive. Informally, this means that there is
no non-trivial way of breaking the dynamics of T on [0, 1] into non-interacting
pieces. In the present example, this property (defined and studied thoroughly
e.g. in [KH]) simply means that OT (x0) is dense for at least one, but in fact
many x0 ∈ [0, 1]. Overall, therefore, the map T : [0, 1] → [0, 1] is chaotic in
the sense of [Ber1, Def.2.21]. In particular, it exhibits the hallmark property of
chaos, namely sensitive dependence on initial conditions. The latter means that,
for every 0 < x < 1 and every ε > 0, a point x can be found such that

|x− x| < ε yet lim supn→∞ |T n(x)− T n(x)| ≥ 1

2
.

This follows e.g. from [Ber1, Thm.2.18] but can also be seen directly by noticing
that T n is piecewise linear with slope 2n.

While the above analysis clearly reveals the complexity of the dynamics of
T on [0, 1], the reader may still wonder how all this is related to BL. Is OT (x0)
Benford for many, or even most x0 ∈ [0, 1]? The chaotic nature of T suggests
a negative answer. For a more definitive understanding, note that, for every
0 < a < 1,

T∗λ0,1
(
[0, a]

)
= λ0,1

([
0, τL(a)

]
∪
[
τR(a), 1

])
= a = λ0,1

(
[0, a]

)
,

showing that T∗λ0,1 = λ0,1, i.e. T preserves λ0,1. In fact, T is known to even be
ergodic with respect to λ0,1. As a consequence of the Birkhoff Ergodic Theorem,
OT (x0) is distributed according to λ0,1 for Lebesgue almost every x0 ∈ [0, 1].
By Example 3.10(i), for every such x0 the sequence

(
S(T n(x0))

)
is uniformly

distributed on [1, 10). Thus for a.e. x0 ∈ [0, 1], the orbit OT (x0) is not Benford.
It remains to investigate whether OT (x0) is Benford for any x0 ∈ [0, 1] at

all. To this end first note that while OT (x0) is guaranteed to be uniformly
distributed for a.e. x0 ∈ [0, 1], there are plenty of exceptions. In fact, given any
sequence ω ∈ Σ whose asymptotic relative frequencies

limN→∞
#{1 ≤ n ≤ N : ωn = L}

N
and limN→∞

#{1 ≤ n ≤ N : ωn = R}
N

do not both equal 1
2 , or perhaps do not even exist at all, the orbit of h(ω) is not

uniformly distributed. For instance, if

ω =
(
L,L, . . . , L︸ ︷︷ ︸

N times

, R,R,R, . . .
)
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for some N ∈ N0, then h(ω) = 21−N

3 , and T n
(
h(ω)

)
= 2

3 for all n ≥ N . In
view of this abundance of exceptional points, one may hope to identify some
x0 ∈ [0, 1] for which OT (x0) is Benford. Using the symbolic encoding of the
dynamics, this can indeed be done as follows: Observe that T (x) = 2x whenever
x ≤ 1

2 , i.e. whenever x ∈ IL, in which case

logS
(
T (x)

)
= 〈log 2 + logS(x)〉 .

Thus if T n(x0) ∈ IL held for all n, then OT (x0) would be Benford. This is
impossible since T n(x0) ∈ IL for all n implies that x0 = 0, and x0 is a fixed
point for T . However, since being Benford is an asymptotic property of OT (x0),
it is enough for T n(x0) ∈ IL to hold for most n and along arbitrarily long
sequences. Concretely, let

ω∗ =
(
L,L, . . . , L︸ ︷︷ ︸

N1 times

, R, L, L, . . . , L︸ ︷︷ ︸
N2 times

, R, L, L, . . . , L︸ ︷︷ ︸
N3 times

, R, L, . . .
)
, (5.2)

where (Nn) is any sequence in N with Nn → ∞, and set x∗ = h(ω∗). According
to (5.2), the orbit OT (x

∗) stays in IL for the first N1 steps, then makes a one-
step excursion to IR, then remains in IL for N2 steps, etc. It follows from [Ber4,
Lem.2.7(i)], but can also be verified directly, that OT (x

∗) is Benford. For a
concrete example, choose e.g. Nn ≡ 2n, then

ω∗ =
(
L,L,R, L, L, L, L,R, L, L, L, L, L, L,R, L, . . .

)

as well as

x∗ = h(ω∗) =
∑∞

n=1
21+2n−n2

(−1)n+1 = 0.2422 . . . ,

and OT (x
∗) is Benford. Notice finally that (5.2) provides uncountably many

different points x∗, and hence the set

{x0 ∈ [0, 1] : OT (x0) is Benford }

is uncountable; as initial segments of ω∗ do not matter, this set is also dense in
[0, 1]. To put this fact into perspective, note that with the points x∗ constructed
above, OT (x

∗) is actually also Benford base b whenever b is not a power of 2,
i.e. whenever b 6∈ {2n : n ∈ N}. On the other hand, OT (x0) is not Benford base
2, 4, 8 etc. for any x0 ∈ R, see [Ber4, Ex.2.11].

Example 5.26. The family of quadratic polynomials Qρ : x 7→ ρx(1−x), with
ρ ∈ R, often referred to as the logistic family, plays a pivotal role in dynamical
systems theory, see e.g. [Ber1, KH]. Arguably the most prominent member of
this family is the map Q4 which has many features in common with the tent
map T from the previous example. Unlike the latter, however, Q4 is smooth,
and it is this smoothness which makes the dynamics of Q4, or generally the
logistic family, a much richer yet also more subtle topic.
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To understand the dynamics of Q4 with regards to BL, note first that near
x = 0,

Q4(x
−1)−1 = − x2

4(1− x)
= −x

2

4
+ O(x3) .

Hence Theorem 5.12 applies, showing that OQ4(x0) is Benford for almost ev-
ery, but not every x0 ∈ R\[0, 1]. As in Example 5.25, it remains to study the
dynamics within the interval [0, 1]. A similar symbolic coding can be applied to
demonstrate that on this interval Q4 is, in any respect, as chaotic as the tent
map T . This is somewhat hard to do directly, but it becomes very simple upon
introducing the homeomorphism H : [0, 1] → [0, 1] with H(x) = sin2(12πx) and
noting that, for all x ∈ [0, 1],

Q4 ◦H(x) = sin2(πx) = H ◦ T (x) . (5.3)

Thus Q4 and T differ only by a change of coordinates, and all topological prop-
erties of T (such as e.g. the existence of a dense set of periodic orbits, and
topological transitivity) carry over to Q4. Together with T∗λ0,1 = λ0,1 it follows
from (5.3) that

Q4∗(H∗λ0,1) = (Q4 ◦H)∗λ0,1 = (H ◦ T )∗λ0,1 = H∗(T∗λ0,1) = H∗λ0,1 ,

hence Q4 preserves the probability measure H∗λ0,1, and is in fact ergodic with
respect to it. Note that

d

dx
H∗λ0,1

(
[0, x]

)
=

d

dx

(
λ0,1

(
[0,

2

π
arcsin

√
x]
))

=
1

π
√
x(1 − x)

, 0 < x < 1 ,

showing that H∗λ0,1 is simply the arcsin- or Beta(12 ,
1
2 )-distribution, and there-

fore H∗λ0,1(B) = 0 if and only if λ0,1(B) = 0. Again, the Birkhoff Ergodic
Theorem implies that OQ4(x0) is, for almost every x0 ∈ [0, 1], distributed ac-
cording to H∗λ0,1, and consequently not Benford, see Example 3.10(iii). As in
Example 5.25, one may wonder whether OQ4(x0) is Benford for any x0 ∈ [0, 1]
at all. Essentially the same argument shows that the answer is, again, positive.
With ω∗ as in (5.2), the orbit of H ◦ h(ω∗) spends most of its time arbitrarily
close to the (unstable) fixed point at x = 0, and

logS
(
Q4(x)

)
= 〈log 4 + logS(x) + log(1 − x)〉 ≈ 〈log 4 + logS(x)〉

whenever x > 0 is very small. A careful analysis in the spirit of Lemma 4.3(i)
then shows that OQ4

(
H ◦h(ω∗)

)
is indeed Benford. As in the previous example,

it follows that

{x0 ∈ [0, 1] : OQ4 (x0) is Benford }

is uncountable and dense in [0, 1].
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5.2. Multi-dimensional discrete-time processes

The purpose of this section is to extend the basic results of the previous section
to multi-dimensional systems, notably to linear, as well as some non-linear re-
currence relations. Recall from Example 4.12 that the Fibonacci sequence (Fn)
is Benford. Hence the linear recurrence relation xn+1 = xn + xn−1 generates a
Benford sequence when started from x0 = x1 = 1. As will be seen shortly, many,
but not all linear recurrence relations generate Benford sequences.

Under a BL perspective, an obvious difficulty when dealing with multi-di-
mensional systems is the potential for more or less cyclic behavior, either of the
orbits themselves or of their significands.

Example 5.27. (i) Let the sequence (xn) be defined recursively as

xn+1 = xn − xn−1 , n = 1, 2, . . . , (5.4)

with given x0, x1 ∈ R. By using the matrix
[

0 1
−1 1

]
associated with (5.4), it is

straightforward to derive an explicit representation for (xn),

xn = x0 cos
(
1
3πn

)
+

2x1 − x0√
3

sin
(
1
3πn

)
, n = 0, 1, . . . .

From this it is clear that xn+6 = xn for all n, i.e., (xn) is 6-periodic. This oscilla-
tory behavior of (xn) corresponds to the fact that the roots of the characteristic
equation λ2 = λ − 1 associated with (5.4) are λ = e±ıπ/3 and hence lie on the
unit circle. For no choice of x0, x1, therefore, is (xn) Benford.

(ii) Consider the linear 3-step recursion

xn+1 = 2xn + 10xn−1 − 20xn−2 , n = 2, 3, . . . .

Again it is easy to confirm that, for any x0, x1, x2 ∈ R, the value of xn is given
explicitly by

xn = c12
n + c210

n/2 + c3(−1)n10n/2 ,

where

c1 =
10x0 − x2

6
, c2,3 =

x2 − 4x0
12

± x2 + 3x1 − 10x0

6
√
10

.

Clearly, limn→∞ |xn| = +∞ unless x0 = x1 = x2 = 0, so unlike in (i) the
sequence (xn) is not bounded or oscillatory. However, if |c2| 6= |c3| then

log |xn| =
n

2
+ log

∣∣∣c110−n( 1
2−log 2) + c2 + (−1)nc3

∣∣∣ ≈ n

2
+ log |c2 + (−1)nc3| ,

showing that
(
S(xn)

)
is asymptotically 2-periodic and hence (xn) is not Benford.

Similarly, if |c2| = |c3| 6= 0 then
(
S(xn)

)
is convergent along even (if c2 = c3) or

odd (if c2 = −c3) indices n, and again (xn) is not Benford. Only if c2 = c3 = 0
yet c1 6= 0, or equivalently if 1

4x2 = 1
2x1 = x0 6= 0 is (xn) Benford. Obviously,
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the oscillatory behavior of
(
S(xn)

)
in this example is due to the characteristic

equation λ3 = 2λ2 + 10λ − 20 having two roots with the same modulus but
opposite signs, namely λ = −

√
10 and λ =

√
10.

(iii) Let γ = cos(π log 2) ≈ 0.5852 and consider the sequence (xn) defined
recursively as

xn+1 = 4γxn − 4xn−1 , n = 1, 2 . . . , (5.5)

with given x0, x1 ∈ R. As before, an explicit formula for xn is easily derived as

xn = 2nx0 cos(πn log 2) + 2n−1x1 − 2γx0√
1− γ2

sin(πn log 2) .

Although somewhat oscillatory, the sequence (xn) is clearly unbounded. As
will be shown now, however, it is not Benford. While the argument is es-
sentially the same for any (x0, x1) 6= (0, 0), for convenience let x0 = 0 and
x1 = 2 sin(π log 2) ≈ 1.622, so that

log |xn| = log 2n| sin(πn log 2)| = n log 2 + log | sin(πn log 2)| , n = 1, 2, . . . .

With the (measurable) map T : [0, 1) → [0, 1) defined as

T (s) = 〈s+ log | sin(πs)|〉 , 0 ≤ s < 1 ,

therefore simply 〈log |xn|〉 = T (〈n log 2〉). Recall that (n log 2) is u.d. mod 1,
and hence (〈log |xn|〉) is distributed according to the probability measure T∗λ0,1.
Consequently, (xn) is Benford if and only if T∗λ0,1 equals λ0,1. The latter, how-
ever, is not the case. While this is clear intuitively, an easy way to see this
formally is to observe that T is piecewise smooth and has a unique local max-
imum at some 0 < s0 < 1. (Concretely, s0 = 1 − 1

π arctan π
ln 10 ≈ 0.7013 and

T (s0) ≈ 0.6080.) Thus if T∗λ0,1 = λ0,1, then for all sufficiently small ε > 0,

T (s0)− T (s0 − ε)

ε
=
λ0,1

([
T (s0 − ε), T (s0)

))

ε
=
T∗λ0,1

([
T (s0 − ε), T (s0)

))

ε

≥ λ0,1
(
[s0 − ε, s0)

)

ε
= 1 ,

which is impossible since T ′(s0) = 0. Hence (xn) is not Benford. The reason
for this can be seen in the fact that, while log |λ| = log 2 is irrational for the
characteristic roots λ = 2e±ıπ log 2 associated with (5.5), there obviously is a
rational dependence between the two real numbers log |λ| and 1

2π argλ, namely
log |λ| − 2( 1

2π argλ) = 0.

The above recurrence relations are linear and have constant coefficients.
Hence they can be rewritten and analyzed using matrix-vector notation. For
instance, in Example 5.27(i)

[
xn
xn+1

]
=

[
0 1

−1 1

] [
xn−1

xn

]
,
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so that, with A =
[

0 1
−1 1

]
∈ R2×2, the sequence (xn) is simply given by

xn =
[
1 0

]
An

[
x0
x1

]
, n = 0, 1, . . . .

It is natural, therefore, to study the Benford property of more general sequences
(x⊤Any) for any A ∈ Rd×d and x, y ∈ Rd. Linear recurrence relations like
the ones in Example 5.27 are then merely special cases. As suggested by that
example, in order to guarantee the Benford property for (x⊤Any), conditions
have to be imposed on A so as to rule out cyclic behavior of orbits or their
significands. To prepare for these conditions, denote the real part, imaginary
part, complex conjugate, and modulus (absolute value) of z ∈ C by ℜz, ℑz, z,
and |z|, respectively. For z 6= 0, define arg z as the unique number in [−π, π)
that satisfies z = |z|eı arg z; for notational convenience, let arg 0 := 0. Recall
that real or complex numbers z1, z2, . . . , zn are rationally independent (or Q-
independent) if

∑n
j=1 qjzj = 0 with q1, q2, . . . , qn ∈ Q implies that qj = 0 for

all j = 1, 2, . . . , n. A set Z ⊂ C is rationally independent if every of its finite
subsets is, and rationally dependent otherwise.

Let Z ⊂ C be any set such that all elements of Z have the same modulus
ζ, i.e., Z is contained in the periphery of a circle with radius ζ centered at the
origin of the complex plain. Call the set Z resonant if either #(Z ∩ R) = 2
or the numbers 1, log ζ and the elements of 1

2π argZ are rationally dependent,
where 1

2π argZ =
{

1
2π arg z : z ∈ Z

}
\{− 1

2 , 0}.
Given A ∈ Rd×d, recall that the spectrum σ(A) ⊂ C of A is simply the set of

all eigenvalues of A. Denote by σ(A)+ the “upper half” of the spectrum, i.e., let
σ(A)+ = {λ ∈ σ(A) : ℑλ ≥ 0}. Usage of σ(A)+ refers to the fact that non-real
eigenvalues of real matrices always occur in conjugate pairs, and hence σ(A)+

only contains one of the conjugates.

With the above preparations, what will shortly turn out to be an appropriate
condition on A reads as follows.

Definition 5.28. A matrix A ∈ Rd×d is Benford regular (base 10) if σ(A)+

contains no resonant set.

Note that in the simplest case, i.e. for d = 1, the matrix A = [a] is Benford
regular if and only if log |a| is irrational. Hence Benford regularity may be con-
sidered a generalization of this irrationality property. Also note that A is regular
(invertible) whenever it is Benford regular.

Example 5.29. None of the matrices associated with the recurrence rela-

tions in Example 5.27 is Benford regular. Indeed, in (i), A =
[

0 1
−1 1

]
, hence

σ(A)+ = {eıπ/3}, and clearly log |eıπ/3| = 0 is rational. Similarly, in (ii),

A =




0 1 0
0 0 1

−10 10 2



, and σ(A)+ = {−
√
10, 2,

√
10} contains the resonant set

{−
√
10,

√
10}. Finally, for (iii), A =

[
0 1

−4 4γ

]
, and σ(A)+ = {2eıπ log 2} is res-

onant.
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Example 5.30. Let A =
[
1 −1
1 1

]
∈ R2×2, with characteristic polynomial

pA(λ) = λ2−2λ+2, and hence σ(A)+ = {
√
2eıπ/4}. As 1, log

√
2 and 1

2π · π4 = 1
8

are rationally dependent, the matrix A is not Benford regular.

Example 5.31. Consider A =
[
0 1
1 1

]
∈ R2×2. The characteristic polynomial

of A is pA(λ) = λ2 − λ − 1, and so, with ϕ = 1
2 (1 +

√
5), the eigenvalues of A

are ϕ and −ϕ−1. Since pA is irreducible and has two roots of different absolute
value, it follows that logϕ is irrational (in fact, even transcendental). Thus A is
Benford regular.

With the one-dimensional result (Lemma 5.3), as well as Example 5.27 and
Definition 5.28 in mind, it seems realistic to hope that iterating (i.e. taking
powers of) any matrix A ∈ Rd×d produces many Benford sequences, provided
that A is Benford regular. This is indeed the case. To concisely formulate the
pertinent result, call a sequence (zn) of complex numbers terminating if zn = 0
for all sufficiently large n.

Theorem 5.32 ([Ber2]). Assume that A ∈ Rd×d is Benford regular. Then, for
every x, y ∈ Rd, the sequence (x⊤Any) is either Benford or terminating. Also,
(‖Anx‖) is Benford for every x 6= 0.

The proof of Theorem 5.32 will make use of the following variant of [Ber2,
Lem.2.9].

Proposition 5.33. Assume that the real numbers 1, ρ0, ρ1, . . . , ρm are Q-inde-
pendent. Let (zn) be a convergent sequence in C, and at least one of the numbers
c1, c2, . . . , cm ∈ C non-zero. Then (xn) given by

xn = nρ0 + log
∣∣ℜ
(
c1e

2πınρ1 + . . .+ cme
2πınρm + zn

)∣∣

is u.d. mod 1.

Proof of Theorem 5.32. Given A ∈ Rd×d, let σ(A)+ = {λ1, λ2, . . . , λs}, where
s ≤ d and, without loss of generality, |λ1| ≥ |λ2| ≥ . . . ≥ |λs|. Fix x, y ∈ Rd and
recall that there exist (possibly non-real) polynomials p1, p2, . . . , ps of degrees
at most d− 1 such that

x⊤Any = ℜ
(
p1(n)λ

n
1 + . . .+ ps(n)λ

n
s

)
, n = 0, 1, . . . . (5.6)

(This follows e.g. from the Jordan Normal Form Theorem.) If (x⊤Any) is not
terminating, then it can be assumed that p1 6= 0. (Otherwise relabel the pj and
λj , and reduce s accordingly.) Now distinguish two cases.

Case 1: |λ1| > |λ2|

In this case, λ1 is a dominant eigenvalue. Denote by k the degree of p1 and let
c := limn→∞ n−kp1(n). Note that c is a non-zero number that is real whenever
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λ1 is real. From

|x⊤Any| = |λ1|nnk

∣∣∣∣ℜ
(
n−kp1(n)

(
λ1
|λ1|

)n

+ n−kp2(n)

(
λ2
|λ1|

)n

+ . . .

+ n−kps(n)

(
λs
|λ1|

)n)∣∣∣∣
= |λ1|nnk|ℜ(ceın arg λ1 + zn)| ,

with zn = (n−kp1(n)− c)
(

λ1

|λ1|

)n
+
∑s

j=2 n
−kpj(n)

(
λj

|λ1|

)n
→ 0, it follows that

log |x⊤Any| = n log |λ1|+ k logn+ log |ℜ(ce2πın
arg λ1

2π + zn)| .

In view of Proposition 4.8(iii), no generality is lost by assuming that k = 0. If
λ1 is real then, by Lemma 4.3(i) and the irrationality of log |λ1|, the sequence
(log |x⊤Any|) is u.d. mod 1. If λ1 is not real, then apply Proposition 5.33 with
m = 1, ρ0 = log |λ1|, and ρ1 = 1

2π argλ1. In either case, (x⊤Any) is Benford.

Case 2: |λ1| = . . . = |λl| > |λl+1| for some l ≤ s.

Here several different eigenvalues of the same magnitude occur. Let k be the
maximal degree of p1, p2, . . . pl and cj := limn→∞ n−kpj(n) for j = 1, 2, . . . , l.
Note that if x⊤Any 6= 0 infinitely often then at least one of the numbers
c1, c2, . . . , cl is non-zero. As before,

|x⊤Any| = |λ1|nnk

∣∣∣∣ℜ
(
n−kp1(n)

(
λ1
|λ1|

)n

+ n−kp2(n)

(
λ2
|λ1|

)n

+ . . .

+ n−kps(n)

(
λs
|λ1|

)n)∣∣∣∣
= |λ1|nnk|ℜ(c1eın arg λ1 + . . .+ cle

ın arg λl + zn)| ,

where

zn =
∑l

j=1
(n−kpj(n)− cj)

(
λj
|λ1|

)n

+
∑s

j=l+1
n−kpj(n)

(
λj
|λ1|

)n

→ 0 .

Propositions 4.8(iii) and 5.33 with m = l and ρ0 = log |λ1|, ρ1 = 1
2π argλ1, . . . ,

ρl =
1
2π argλl imply that

log |x⊤Any| = n log |λ1|+ k logn+ log |ℜ(c1eın arg λ1 + . . .+ cle
ın arg λl + zn)|

is u.d. mod 1, hence (x⊤Any) is Benford.
The assertion concerning (‖Anx‖) is proved in a completely analogous man-

ner.

Example 5.34. According to Example 5.31, the matrix
[
0 1
1 1

]
is Benford

regular. By Theorem 5.32, every solution of the difference equation xn+1 =
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xn + xn−1 is Benford, except for the trivial solution xn ≡ 0 resulting from x0 =
x1 = 0. In particular, therefore, the sequences of Fibonacci and Lucas numbers,
(Fn) = (1, 1, 2, 3, 5, . . .) and (Ln) = (−1, 2, 1, 3, 4, . . .), generated respectively
from the initial values

[
x0 x1

]
=
[
1 1

]
and

[
x0 x1

]
=
[
−1 2

]
, are

Benford. For the former sequence, this has already been seen in Example 4.12.
Note that (F 2

n), for instance, is Benford as well by Corollary 4.7(i), see Fig 24.

Example 5.35. Recall from Example 5.30 that A =
[
1 −1
1 1

]
is not Benford

regular. Hence Theorem 5.32 does not apply, and the sequence (x⊤Any) may,
for some x, y ∈ R2, be neither Benford nor terminating. Indeed, pick for example

x = y =
[
1 0

]⊤
and note that

x⊤Any =
[
1 0

]
2n/2

[
cos(14πn) − sin(14πn)

sin(14πn) cos(14πn)

] [
1
0

]
= 2n/2 cos

(
1
4πn

)
.

Hence (x⊤Any) is clearly not Benford as x⊤Any = 0 whenever n = 2 + 4l for
some l ∈ N0. It will be seen later (in Theorem 5.37) that in the case of a 2× 2-
matrix A, the Benford regularity of A is actually necessary for every sequence
of the form (x⊤Any) to be either Benford or terminating. Note, however, that
this does of course not rule out the possibility that some sequences derived from
iterating A may be Benford nevertheless. For a concrete example, fix any x 6= 0
and, for each n ∈ N, denote by En the area of the triangle with vertices at Anx,
An−1x, and the origin. Then

En =
1

2

∣∣ det(Anx,An−1x)
∣∣ = 2n−2‖x‖2 , n = 1, 2, . . . ,

so (En) is Benford, see Fig 24.

Remark. According to Theorem 5.32, Benford regularity of a matrix A is a
simple condition guaranteeing the widespread generation of Benford sequences of
the form (x⊤Any). Most d×d-matrices are Benford regular, under a topological
as well as a measure-theoretic perspective. To put this more formally, let

Bd := {A ∈ Rd×d : A is Benford regular } .

While the complement of Bd is dense in Rd×d, it is a topologically small set:
Rd×d\Bd is of first category, i.e. a countable union of nowhere dense sets. A
(topologically) typical (“generic”) d × d-matrix therefore belongs to Bd, i.e. is
Benford regular. Similarly, if A is an Rd×d-valued random variable, that is, a
random matrix, whose distribution is a.c. with respect to the d2-dimensional
Lebesgue measure on Rd×d, then P(A ∈ Bd) = 1, i.e., A is Benford regular
with probability one. Similar statements hold for instance within the family of
stochastic matrices, see [BHKR]. ♣

While Benford regularity ofA is a property sufficient for all sequences (x⊤Any)
to be either Benford or terminating, the following example shows that this
property is not in general necessary.
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8
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16

A =

[

1 −1
1 1

]

A9

[

1
0

]

A8

[

1
0

]

F 2
6

F 2
5F 2

4

F 2
3

E9

E8

E7

E6

Fig 24. Two Benford sequences derived from linear 2-dimensional systems, see Examples 5.34
and 5.35. Note that the matrix A associated with (En) is not Benford regular.

Example 5.36. Consider the 4× 4-matrix

A = 10
√
2




cos(2π
√
3) − sin(2π

√
3) 0 0

sin(2π
√
3) cos(2π

√
3) 0 0

0 0 cos(4π
√
3) − sin(4π

√
3)

0 0 sin(4π
√
3) cos(4π

√
3)


 ,

for which σ(A)+ = {10
√
2e−2πı

√
3, 10

√
2e4πı

√
3} =: {λ1, λ2}. Since 2 argλ1 +

argλ2 = 0, the matrix A is not Benford regular. It will now be shown that
nevertheless for any x, y ∈ R4 the sequence (x⊤Any) is either Benford or termi-

nating. Indeed, with x⊤ =
[
x1 x2 x3 x4

]
and y =

[
y1 y2 y3 y4

]⊤
, a

straightforward calculation confirms that

x⊤Any = 10n
√
2ℜ
(
(x1+ıx2)(y1−ıy2)e−2πın

√
3+(x3+ıx4)(y3−ıy4)e−4πın

√
3
)
.

Unless (x21 + x22)(y
2
1 + y22) + (x23 + x24)(y

2
3 + y24) = 0, therefore, (x⊤Any) is not

terminating, and
log |x⊤Any| = n

√
2 + f(n

√
3) ,

with the function f : [0, 1) → R given by

f(s) = log
∣∣ℜ
(
(x1 + ıx2)(y1 − ıy2)e

−2πıs + (x3 + ıx4)(y3 − ıy4)e
−4πıs

)∣∣ .
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Note that f has at most finitely many discontinuities. Moreover, 1,
√
2,
√
3 are

Q-independent, and hence [Ber2, Cor.2.6] implies that (x⊤Any) is Benford.

The dimension d = 4 in Example 5.36 is smallest possible. Indeed, as the fol-
lowing result shows, Benford regularity is (not only sufficient but also) necessary
in Theorem 5.32 whenever d < 4.

Theorem 5.37. Assume d < 4, and let A ∈ Rd×d be invertible. Then the
following statements are equivalent:

(i) A is Benford regular.

(ii) For every x, y ∈ Rd the sequence (x⊤Any) is either Benford or terminat-
ing.

Proof. As demonstrated by Theorem 5.32, assumption (i) implies (ii) even with-
out any restrictions on d.

Conversely, assume that (ii) holds. Notice that whenever A has a real eigen-
value λ 6= 0, with a corresponding eigenvector eλ 6= 0, then choosing x = y = eλ
results in x⊤Any = λn‖eλ‖2. Hence log |λ| must be irrational. For d = 1, this
shows that A is Benford regular.

Next let d = 2. In this case, two different eigenvalues of the same modulus can
occur either in the form ±λ with λ > 0, i.e. as non-zero eigenvalues of opposite
sign, or in the form λ = |λ|e±2πıρ with |λ| > 0 and 0 < ρ < 1

2 , i.e. as a pair of
conjugate non-real eigenvalues. In the former case, let e− and e+ be normalized
eigenvectors corresponding to −λ and λ, respectively. Note that 1 + e⊤+e− > 0,
by the Cauchy–Schwarz inequality. Then

(e+ + e−)
⊤An(e+ + e−) =

{
2λn(1 + e⊤+e−) if n is even ,
0 if n is odd ,

showing that (x⊤Any) is not Benford for x = y = e+ + e−. Assuming (ii),
therefore, implies that A does not have real eigenvalues of opposite sign. On the
other hand, if σ(A)+ = {|λ|e2πıρ} then there exists a regular matrix P ∈ R2×2

such that

P−1AP = |λ|
[

cos(2πρ) − sin(2πρ)
sin(2πρ) cos(2πρ)

]
.

Specifically choosing x⊤ =
[
0 1

]
P−1 and y = P

[
1 0

]⊤
yields

x⊤Any = |λ|n sin(2πnρ) , n = 0, 1, . . . . (5.7)

If log |λ| is rational, say log |λ| = p
q , then the sequence

〈q log |x⊤Any|〉 = 〈q log | sin(2πnρ)|〉

is either periodic (if ρ is rational) or else distributed according to T∗λ0,1, with
T : [0, 1) → [0, 1) given by T (s) = 〈q log | sin(2πs)|〉. As in Example 5.27(iii), it
can be shown that T∗λ0,1 6= λ0,1. Thus, as before, rationality of log |λ| is ruled
out by assumption (ii). If ρ is rational then x⊤Any = 0 holds for infinitely many
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but not all n, and hence (x⊤Any) is neither Benford nor terminating. Again,
this possibility is ruled out by assumption (ii). To conclude the case d = 2,
assume that log |λ| and ρ are both irrational, yet 1, log |λ| and ρ are rationally
dependent, i.e., there exist integers k1, k2, k3 with k2k3 6= 0 such that

k1 + k2 log |λ|+ k3ρ = 0 .

Without loss of generality, assume k3 > 0. For every j ∈ {1, 2, . . . , k3} and
n ∈ N0 therefore

log |x⊤Ank3+jy| = (nk3+j) log |λ|+log

∣∣∣∣sin
(
2πj

k1
k3

+ 2π

(
j
k2
k3

+ nk2

)
log |λ|

)∣∣∣∣ ,

so (log |x⊤Ank3+jy|) is distributed according to Tj∗λ0,1, with Tj : [0, 1) → [0, 1)
given by

Tj(s) =

〈
k3s+ j log |λ|+ log

∣∣∣∣sin
(
2πj

k1
k3

+ 2π
k2
k3
j log |λ|+ 2πk2s

)∣∣∣∣
〉
,

and (〈log |x⊤Any|〉) is distributed according to 1
k3

∑k3

j=1 Tj∗λ0,1. Again it can be

shown that the latter probability measure on
(
[0, 1),B[0, 1)

)
does not equal λ0,1.

Overall, therefore, for d = 2 and σ(A)+ = {|λ|e2πıρ}, assumption (ii) implies
that 1, log |λ|, and 1

2π argλ are rationally independent. In other words, A is
Benford regular.

Finally, consider the case d = 3. The only eigenvalue configuration not cov-
ered by the preceding arguments is that of three different eigenvalues with the
same modulus, i.e. with |λ| > 0 and 0 < ρ < 1

2 either σ(A)+ = {|λ|, |λ|e2πıρ} or
σ(A)+ = {−|λ|, |λ|e2πıρ}. In both cases, there exists a regular matrix P ∈ R3×3

such that

P−1AP = |λ|




±1 0 0
0 cos(2πρ) − sin(2πρ)
0 sin(2πρ) cos(2πρ)


 ,

and choosing x⊤ =
[
0 0 1

]
P−1 and y = P

[
0 1 0

]⊤
again yields (5.7).

As before, assumption (i) implies that 1, log |λ|, and ρ are rationally indepen-
dent.

Finally, it is worth noting that even if A is not Benford regular, many or even
most sequences of the form (x⊤Any) may nevertheless be Benford.

Example 5.38. Recall from Example 5.30 that A =
[
1 −1
1 1

]
is not Benford

regular because σ(A)+ = {
√
2eıπ/4} is resonant. However, a short calculation

with x⊤ =
[
x1 x2

]
, y =

[
y1 y2

]⊤
confirms that

x⊤Any = 2n/2‖x‖ ‖y‖ cos
(
1
4πn+ ψ

)
, n = 0, 1, . . . ;

here ψ ∈ [−π, π) is the angle of a counter-clockwise rotation moving x/‖x‖
into y/‖y‖. (Note that ψ is unique unless ‖x‖ ‖y‖ = 0 in which case x⊤Any ≡ 0
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anyway.) By virtue of Proposition 4.8(ii), if ψ 6∈ [−π, π)∩ 1
4πZ then (log |x⊤Any|)

is u.d. mod 1. Thus, if ψ is not an integer multiple of 1
4π, or equivalently if

(
(x21 − x22)y1y2 − x1x2(y

2
1 − y22)

)(
(x21 − x22)(y

2
1 − y22) + 4x1x2y1y2

)
6= 0 ,

then (x⊤Any) is Benford.

The present section closes with two examples of non-linear systems. The sole
purpose of these examples is to hint at possible extensions of the results pre-
sented earlier; for more details the interested reader is referred to the references
provided.

Example 5.39. Consider the non-linear map T : R2 → R2 given by

T :

[
x1
x2

]
7→
[

2 0
0 2

] [
x1
x2

]
+

[
f(x1)
f(x2)

]
,

with the bounded continuous function

f(t) =
3

2
|t+2| − 3|t+1|+3|t− 1| − 3

2
|t− 2| =





0 if |t| ≥ 2 ,
3t+ 6 if − 2 < t < −1 ,
−3t if − 1 ≤ t < 1 ,
3t− 6 if 1 ≤ t < 2 .

Sufficiently far away from the x1- and x2-axes, i.e. for min{|x1|, |x2|} sufficiently

large, the dynamics of T is governed by the matrix
[
2 0
0 2

]
, and since the latter is

Benford regular, one may reasonably expect that
(
x⊤T n(y)

)
should be Benford.

It can be shown that this is indeed the case. More precisely, by means of a
multi-dimensional shadowing argument, the following statement can be proved,
see [Ber2, Thm.4.1]: Let T : Rd → Rd be of the form T (x) = Ax + f(x)
with A ∈ Rd×d and a bounded continuous f : Rd → Rd. If A is Benford
regular and has no eigenvalues inside the unit disc, that is, |λ| > 1 holds for
every eigenvalue λ of A, then the sequence

(
x⊤T n(y)

)
is Benford whenever it is

unbounded. Notice that the provision concerning boundedness is already needed
in the present simple example: For instance, if |ξ| ≤ 3

2 and x⊤ =
[
ξ 0

]
then(

T n(x)
)
is eventually 2-periodic and hence

(
x⊤T n(x)

)
is not Benford.

Example 5.40. Consider the non-linear map T : R2 → R2 defined as

T :

[
x1
x2

]
7→
[

3x31x
2
2 + 4x1

5x21x
4
2 − 2x22 + 1

]
.

Unlike in the previous example, the map T is now genuinely non-linear and
cannot be considered a perturbation of a linear map. Rather, T may be thought
of as a 2-dimensional analogue of the polynomial map x 7→ 1 + x2. Clearly,
if |x1| or |x2| is small, then the behavior of

(
T n(x)

)
may be complicated. For

instance, on the x2-axis, i.e. for x1 = 0, the map T reduces to x2 7→ 1 − 2x22
which, up to a change of coordinates, is nothing else but the chaotic map Q4
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studied in Example 5.26. If, however, |x1| and |x2| are sufficiently large then
a two-dimensional version of Theorem 5.12 asserts that, for (Lebesgue) almost
every x, each component of OT (x) is Benford, see [BS, Thm.16]; at the same
time, there is also an abundance of exceptional points [BS, Cor.17].

5.3. Differential equations

By presenting a few results on, and examples of differential equations, i.e. de-
terministic continuous-time processes, this short section aims at convincing the
reader that the emergence of BL is not at all restricted to discrete-time dynam-
ics. Rather, solutions of ordinary or partial differential equations often turn out
to be Benford as well. Recall that a (Borel measurable) function f : [0,+∞) → R
is Benford if and only if log |f | is u.d. mod 1.

Consider the initial value problem (IVP)

ẋ = F (x) , x(0) = x0 , (5.8)

where F : R → R is continuously differentiable with F (0) = 0, and x0 ∈ R. In
the simplest case, F (x) ≡ αx with some α ∈ R. In this case, the unique solution
of (5.8) is x(t) = x0e

αt. Unless αx0 = 0, therefore, every solution of (5.8) is
Benford, by Example 4.5(i). As in the discrete-time setting, this feature persists
for arbitrary C2-functions F with F ′(0) < 0. The direct analog of Theorem 5.8 is

Theorem 5.41 ([BBH]). Let F : R → R be C2 with F (0) = 0. Assume that
F ′(0) < 0. Then, for every x0 6= 0 sufficiently close to 0, the unique solution of
(5.8) is Benford.

Proof. Pick δ > 0 so small that xF (x) < 0 for all 0 < |x| ≤ δ. As F is C2,
the IVP (5.8) has a unique local solution whenever |x0| ≤ δ, see [Wa]. Since
the interval [−δ, δ] is forward invariant, this solution exists for all t ≥ 0. Fix
any x0 with 0 < |x0| ≤ δ and denote the unique solution of (5.8) as x = x(t).
Clearly, limt→+∞ x(t) = 0. With y : [0,+∞) → R defined as y = x−1 therefore
y(0) = x−1

0 =: y0 and limt→+∞ |y(t)| = +∞. Let α := −F ′(0) > 0 and note that
there exists a continuous function g : R → R such that F (x) = −αx + x2g(x).
From

ẏ = − ẋ

x2
= αy − g(y−1) ,

it follows via the variation of constants formula that, for all t ≥ 0,

y(t) = eαty0 −
∫ t

0

eα(t−τ)g
(
y(τ)−1

)
dτ .

As α > 0 and g is continuous, the number

y0 := y0 −
∫ +∞

0

e−ατg
(
y(τ)−1

)
dτ
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is well defined. (Note that y0 is simply the continuous-time analogue of the
auxiliary point x in Lemma 5.5.) Moreover, for all t > 0,

∣∣y(t)− eαty0
∣∣ =

∣∣∣∣
∫ +∞

t

eα(t−τ)g
(
y(τ)−1

)
dτ

∣∣∣∣

≤
∫ +∞

0

e−ατ
∣∣g
(
y(t+ τ)−1

)∣∣ dτ ≤ ‖g‖∞
α

,

where ‖g‖∞ = max|x|≤δ |g(x)|, and Lemma 5.7(ii) shows that y is Benford if and
only if t 7→ eαty0 is. An application of Corollary 4.7(ii), together with Example
4.5(i) therefore completes the proof.

Example 5.42. (i) The function F (x) = −x+x4e−x2

satisfies the assumptions
of Theorem 5.41. Thus except for the trivial x = 0, every solution of ẋ =
−x+ x4e−x2

is Benford.

(ii) The function F (x) = −x3 + x4e−x2

is also smooth with xF (x) < 0 for
all x 6= 0. Hence for every x0 ∈ R, the IVP (5.8) has a unique solution with
limt→+∞ x(t) = 0. However, F ′(0) = 0, and as will be shown now, this prevents
x from being Benford. To see this, fix x0 6= 0 and integrate

− ẋ

x3
= 1− xe−x2

from 0 to t to obtain the implicit representation

x2(t) =
x20

1 + 2tx20 − 2x20

∫ t

0

x(τ)e−x(τ)2dτ

. (5.9)

Note that limt→+∞ x(t) = 0 implies limt→+∞
1
t

∫ t

0
x(τ)e−x(τ)2dτ = 0. Hence it

follows from (5.9) that limt→+∞ 2tx(t)2 = 1. Consequently, t 7→ | log x|/ log t is
bounded as t → +∞, and (the continuous-time version of) Proposition 4.8(iv)
shows that x is not Benford.

Informally, the fact that F ′(0) = 0 causes the solutions of ẋ = F (x) to
approach the equilibrium x = 0 too slowly in order to be Benford. It is not
hard to see that this is true in general: If F is C2 and xF (x) < 0 for all x 6= 0
in a neighborhood of 0, and hence F (0) = 0, yet F ′(0) = 0 then, for all |x0|
sufficiently small the solution of (5.8) is not Benford.

(iii) As the previous example showed, for solutions of (5.8) with F (0) =
F ′(0) = 0 to be Benford for all x0 6= 0 sufficiently close to 0, it is necessary
that F not be C2. (In fact, F must not even be C1+ε for any ε > 0, see [BBH,
Thm.6.7].) For an example of this type, consider

F (x) = − x√
1 + (log x)4

, x 6= 0 .
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With F (0) := 0, the function F is C1 with F ′(0) = 0, and every non-trivial
solution of ẋ = F (x) is Benford. To see this, fix x0 6= 0 and let y = − logx.
Then

ẏ =
1

ln 10
√
1 + y4

,

from which it is straightforward to deduce that |y(t) − 3
√
3t/ ln 10| → 0 as

t→ +∞, which in turn shows that y is u.d. mod 1, i.e., x is Benford.

(iv) Theorem 5.41 applies to the smooth function F (x) = −x+x log(1+x2).
In this case, ẋ = F (x) has three equilibria, namely x = 0 and x = ±3, and
consequently the solution of (5.8) is Benford whenever 0 < |x0| < 3.

To analyze the behavior of solutions outside of [−3, 3], fix x0 > 3 and let
y := log x− 1

2 . Then

ẏ =
2y

ln 10
+

log(1 + 10−1−2y)

ln 10
,

and hence, for all t ≥ 0,

y(t) = e2t/ ln 10y0 +

∫ t

0

e2(t−τ)/ ln 10 log(1 + 10−1−2y(τ))

ln 10
dτ .

With the usual auxiliary point y0 := y0 +
∫ +∞
0 e−2τ)/ ln 10 log(1+10−1−2y(τ))

ln 10 dτ ,

∣∣∣y(t)− e2t/ ln 10y0

∣∣∣ =
∣∣∣∣
∫ +∞

t

e2(t−τ)/ ln 10 log(1 + 10−1−2y(τ))

ln 10
dτ

∣∣∣∣

≤
∫ +∞

0

e−2τ/ ln 10 log(1 + 10−1−2y(t+τ))

ln 10
dτ

≤ log
√
1 + 10−1−2y(t) → 0 as t→ +∞ .

By the same reasoning as in Example 4.5(iii), the function y is u.d. mod 1. Thus
by Theorem 4.2, x is Benford for |x0| > 3 as well. Note that |x| goes to +∞
faster than exponentially in this case, i.e. limt→+∞ |x(t)e−αt| = +∞ for every
α > 0.

Also, note that the case |x0| > 3 could be rephrased in the setting of Theorem
5.41 as well. Indeed, with z := x−1 one finds

ż = z log(z2) + z − z log(1 + z2) =: F̃ (z) .

With F̃ (0) := 0, the function F̃ : R → R is continuous but not C1, as

limz→0 F̃ (z)/z = −∞. Thus Theorem 5.41 does not apply. The lack of smooth-

ness of F̃ corresponds to the fact that solutions of the IVP ż = F̃ (z), z(0) = z0,
though still unique and globally defined, approach z = 0 faster than exponen-
tially whenever |z0| < 1

3 . For a result in the spirit of Theorem 5.41 that does

apply to ż = F̃ (z) directly, see [BBH, Thm.6.9].



98 A. Berger and T.P. Hill

Just as their discrete-time counterparts, linear differential equations in higher
dimensions are also a rich source of Benford behavior. Consider for instance the
IVP

ẍ− x = 0 , x(0) = x0, ẋ(0) = v0 , (5.10)

with given numbers x0, v0 ∈ R. The unique solution of (5.10) is

x(t) =
x0 + v0

2
et +

x0 − v0
2

e−t

which clearly is Benford unless x0 = v0 = 0. Using matrix-vector notation,
(5.10) can be written as

d

dt

[
x
ẋ

]
=

[
0 1
1 0

] [
x
ẋ

]
,

[
x
ẋ

] ∣∣∣
t=0

=

[
x0
v0

]
.

Much more generally, therefore, consider the linear d-dimensional ordinary dif-
ferential equation

ẋ = Ax , (5.11)

where A is a real d× d-matrix. Recall that every solution of (5.11) is given by
x : t 7→ etAx0 for some x0 ∈ Rd, in fact x0 = x(0), with the matrix exponential
etA defined as

etA =
∑∞

l=0

tl

l!
Al .

To ensure that every component of x, or that, more generally, for any x, y ∈ Rd

the function t 7→ x⊤etAy is either Benford or trivial, a condition reminiscent of
Benford regularity has to be imposed on A.

Definition 5.43. A matrix A ∈ Rd×d is exponentially Benford regular (base
10) if eτA is Benford regular for some τ > 0.

Note that in the simplest case, i.e. for d = 1, the matrix A = [a] is ex-
ponentially Benford regular if and only if a 6= 0. Moreover, every exponen-
tially Benford regular matrix is regular. It is easily checked that a matrix A
fails to be exponentially Benford regular exactly if there exist λ1, λ2, . . . , λl in
σ(A)+ with ℜλ1 = ℜλ2 = . . . = ℜλl such that ℜλ1/ ln 10 and the elements of
{ 1
2πℑλ1, 1

2πℑλ2, . . . , 1
2πℑλl}\ 1

2Z are rationally dependent. Also, it is not hard
to see that if A is exponentially Benford regular then the set

{t ∈ R : etA is not Benford regular }

actually is at most countable, i.e. finite (possibly empty) or countable. With
this, the continuous-time analog of Theorem 5.32 is

Theorem 5.44. Assume that A ∈ Rd×d is exponentially Benford regular. Then,
for every x, y ∈ Rd, the function t 7→ x⊤etAy is either Benford or identically
equal zero. Also, t 7→ ‖etAx‖ is Benford for every x 6= 0.
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Proof. Given x, y ∈ Rd, define f : R → R according to f(t) := x⊤etAy. As
observed above, for almost every h > 0 the matrix ehA is Benford regular and,
by Theorem 5.32, the sequence (x⊤(ehA)ny) =

(
f(nh)

)
is either terminating or

Benford. In the former case, f = 0 due to the fact that f is real-analytic. In the
latter case,

(
log |f(nh)|

)
is u.d. mod 1 for almost all h > 0, and [KN, Thm.9.6]

shows that log |f | is u.d. mod 1, i.e., f is Benford. The function t 7→ ‖etAx‖ is
dealt with similarly.

Example 5.45. (i) The matrix A =
[
0 1
1 0

]
associated with (5.10) is expo-

nentially Benford regular, as σ(A)+ = {−1, 1}, and hence, as seen earlier, the
solution of (5.10) is Benford unless x0 = v0 = 0.

(ii) For A =
[
0 1
1 1

]
recall from Example 5.31 that σ(A)+ = {−ϕ−1, ϕ} with

ϕ = 1
2 (1 +

√
5). Hence A is exponentially Benford regular, and every function

of the form t 7→ x⊤etAy is either Benford or vanishes identically. This is also
evident from the explicit formula

etA =
etϕ

2 + ϕ

[
1 ϕ
ϕ 1 + ϕ

]
+
e−tϕ−1

2 + ϕ

[
ϕ+ 1 −ϕ
−ϕ 1

]
,

which shows that the latter is the case if and only if x and y are proportional to[
1 ϕ

]⊤
and

[
−ϕ 1

]⊤
(or vice versa), i.e. to the two perpendicular eigendi-

rections of A.
(iii) Consider A =

[
1 −π/ ln 10

π/ ln 10 1

]
with σ(A)+ = {1 + ıπ/ ln 10}. In this

case, A fails to be exponentially Benford regular because, with λ = 1+ ıπ/ ln 10,

ℜλ
ln 10

− 2
ℑλ
2π

= 0 .

As a matter of fact, no function t 7→ x⊤etAy is Benford. Indeed,

etA = et
[

cos(πt/ ln 10) − sin(πt/ ln 10)
sin(πt/ ln 10) cos(πt/ ln 10)

]
,

and picking for instance x⊤ =
[
0 1

]
and y =

[
1 0

]⊤
yields

log |x⊤etAy| = log

∣∣∣∣et sin
(

πt

ln 10

)∣∣∣∣ =
t

ln 10
+ log

∣∣∣∣sin
(

πt

ln 10

)∣∣∣∣ = g

(
t

ln 10

)
,

where g(s) = s+ log | sin(πs)|. As in Example 5.27(iii), it can be shown that g
is not u.d. mod 1.

This example suggests that exponential Benford regularity of Amay (not only
be sufficient but) also be necessary in Theorem 5.44. In analogy to Example 5.36
and Theorem 5.37, one can show that this is indeed true if d < 4, but generally
false otherwise; details are left to the interested reader.

Finally, it should be mentioned that at present little seems to be known
about the Benford property for solutions of partial differential equations or more
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general functional equations such as e.g. delay or integro-differential equations.
Quite likely, it will be very hard to decide in any generality whether many, or
even most solutions of such systems exhibit the Benford property in one form
or another.

Example 5.46. A fundamental example of a partial differential equation is the
so-called one-dimensional heat (or diffusion) equation

∂u

∂t
=
∂2u

∂x2
, (5.12)

a linear second-order equation for u = u(t, x). Physically, (5.12) describes e.g.
the diffusion over time of heat in a homogeneous one-dimensional medium. With-
out further conditions, (5.12) has many solutions of which for instance

u(t, x) = cx2 + 2ct ,

with any constant c 6= 0, is neither Benford in t (“time”) nor in x (“space”),
whereas

u(t, x) = e−c2t sin(cx)

is Benford (or identically zero) in t but not in x, and

u(t, x) = ec
2t+cx

is Benford in both t and x. Usually, to specify a unique solution an equation
like (5.12) has to be supplemented with initial and/or boundary conditions. A
prototypical example of an Initial-boundary Value Problem (IBVP) consists of
(5.12) together with

u(0, x) = u0(x) for all 0 < x < 1 ,

u(t, 0) = u(t, 1) = 0 for all t > 0 .
(5.13)

Physically, the conditions (5.13) may be interpreted as the ends of the medium,
at x = 0 and x = 1, being kept at a reference temperature u = 0 while the initial
distribution of heat (or temperature etc.) is given by the function u0 : [0, 1] → R.
It turns out that, under very mild assumptions on u0, the IBVP consisting of
(5.12) and (5.13) has a unique solution which, for any t > 0, can be written as

u(t, x) =
∑∞

n=1
une

−π2n2t sin(πnx) ,

where un = 2
∫ 1

0 u0(s) sin(πns) ds. From this it is easy to see that, for every
0 ≤ x ≤ 1, the function t 7→ u(t, x) either vanishes identically or else is Benford.

Another possible set of initial and boundary data is

u(0, x) = u0(x) for all x > 0 ,

u(t, 0) = 0 for all t > 0 ,
(5.14)
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corresponding to a semi-infinite one-dimensional medium kept at zero temper-
ature at its left end x = 0, with an initial heat distribution given by the (in-
tegrable) function u0 : [0,+∞) → R. Again, (5.12) together with (5.14) has a
unique solution, for any t > 0 given by

u(t, x) =
1

2
√
πt

∫ +∞

0

u0(y)
(
e−(x−y)2/(4t) − e−(x+y)2/(4t)

)
dy .

Assuming
∫ +∞
0 y|u0(y)| dy < +∞, it is not hard to see that, for every x ≥ 0,

limt→+∞ t3/2u(t, x) =
x

2
√
π

∫ +∞

0

yu0(y) dy ,

and hence, for any fixed x ≥ 0, the function u is not Benford in time. On the
other hand, if for example u0(x) = xe−x then a short calculation confirms that,
for every t > 0,

limx→+∞
exu(t, x)

x
= et ,

showing that u is Benford in space. Similarly, if u0(x) = 1[0,1)(x) then

limx→+∞ xe(x−1)2/(4t)u(t, x) =

√
t

π

holds for every t > 0, and again u is Benford in space.

6. Benford’s Law for random processes

The purpose of this chapter is to show how BL arises naturally in a variety of
stochastic settings, including products of independent random variables, mix-
tures of random samples from different distributions, and iterations of random
maps. Perhaps not surprisingly, BL arises in many other important fields of
stochastics as well, such as geometric Brownian motion, order statistics, ran-
dom matrices, Lévy processes, and Bayesian models. The present chapter may
also serve as a preparation for the specialized literature on these advanced topics
[EL, LSE, MN, Schü1].

6.1. Independent random variables

The analysis of sequences of random variables, notably the special case of (sums
or products of) independent, identically distributed (i.i.d.) sequences of ran-
dom variables, constitutes an important classical topic in probability theory.
Within this context, the present section studies general scenarios that lead to
BL emerging as an “attracting” distribution. The results nicely complement the
observations made in previous chapters.

Recall from Chapter 3 that a (real-valued) random variable X by definition
is Benford if P(S(X) ≤ t) = log t for all t ∈ [1, 10). Also, recall that a sequence
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(Xn) of random variables converges in distribution to a random variable X ,

symbolically Xn
D→ X , if limn→∞ P(Xn ≤ t) = P(X ≤ t) holds for every

t ∈ R for which P(X = t) = 0. By a slight abuse of terminology, say that (Xn)

converges in distribution to BL if S(Xn)
D→ S(X), where X is a Benford random

variable, or equivalently if

limn→∞ P(S(Xn) ≤ t) = log t for all t ∈ [1, 10) .

Another important concept is almost sure convergence. Specifically, the se-
quence (Xn) converges to X almost surely (a.s.), in symbols Xn

a.s.→ X , if

P(limn→∞Xn = X) = 1. It is easy to check that Xn
a.s.→ 1 implies Xn

D→ X .
The reverse implication does not hold in general, as is evident from any i.i.d.
sequence (Xn) for which X1 is not constant: In this case, all Xn have the same

distribution, so trivially Xn
D→ X1, yet P( limn→∞Xn exists ) = 0.

An especially simple way of generating a sequence of random variables is
this: Fix a random variable X , and set Xn := Xn for every n ∈ N. While the
sequence (Xn) thus generated is clearly not i.i.d. unless X = 0 a.s. or X = 1
a.s., Theorems 4.10 and 4.17 imply

Theorem 6.1. Assume that the random variable X has a density. Then:

(i) (Xn) converges in distribution to BL.

(ii) With probability one, (Xn) is Benford.

Proof. To prove (i), note that the random variable log |X | has a density as well.
Hence, by Theorem 4.17

P(S(Xn) ≤ t) = P(〈log |Xn|〉 ≤ log t)

= P(〈n log |X |〉 ≤ log t) → log t as n→ ∞

holds for all t ∈ [1, 10), i.e. (Xn) converges in distribution to BL.
To see (ii), simply note that log |X | is irrational with probability one. By

Theorem 4.10, therefore, P
(
(Xn) is Benford

)
= 1.

Example 6.2. (i) Let X be uniformly distributed on [0, 1). For every n ∈ N,

FS(Xn)(t) =
t1/n − 1

101/n − 1
, 1 ≤ t < 10 ,

and a short calculation, together with the elementary estimate et−1−t
et−1 < t

2 for
all t > 0 shows that

∣∣FS(Xn)(t)− log t
∣∣ ≤ 101/n − 1− ln 10

n

101/n − 1
<

ln 10

2n
→ 0 as n→ ∞ ,

and hence (Xn) converges in distribution to BL. Since P( logX is rational ) = 0,
the sequence (Xn) is Benford with probability one.



A basic theory of Benford’s Law 103

(ii) Assume that X = 2 a.s. Thus PX = δ2, and X does not have a density.
For every n, S(Xn) = 10〈n log 2〉 with probability one, so (Xn) does not converge
in distribution to BL. On the other hand, (Xn) is Benford a.s.

Remarks. (i) In the spirit of Theorem 6.1, several results from Chapter 5 can
be extended to a stochastic context. For a prototypical result, consider the
map T : x 7→ 1 + x2 from Example 5.13(iii). If X has a density, then so has
Y := log |X |. Recall from the proof of Theorem 5.12 that

log |T n(X)| − 2nY
a.s.→ 0 as n→ ∞ ,

with a uniquely defined Y = h(Y ), and a close inspection of the map h shows
that Y has a density as well. Hence by Theorems 4.2 and 4.17, OT (X) =(
T n−1(X)

)
converges in distribution to BL, whereas Theorem 5.12 implies that

P(OT (X) is Benford ) = 1.
(ii) For any random variable, it is not hard to see that assertion (ii) in The-

orem 6.1 holds whenever (i) does. In the case of an i.i.d. sequence (Xn), the
convergence of (Xn) in distribution to BL also implies that (Xn) is Benford for
all n, so by independence it is easy to see that (Xn) is Benford with proba-
bility one. In general, however, these two properties are independent. For one
implication see Example 6.2(ii). For the other implication consider the constant
sequence (X,X,X, . . .) which is evidently not Benford, but if X is a Benford
random variable then (X) trivially converges in distribution to BL. ♣

The sequence of random variables considered in Theorem 6.1 is very special
in that Xn is the product of n quantities that are identical, and hence dependent
in extremis. Note that Xn is Benford for all n if and only if X is Benford. This
invariance property of BL persists if, unlike the case in Theorem 6.1, products
of independent factors are considered.

Theorem 6.3. Let X, Y be two independent random variables with P(XY =
0) = 0. Then:

(i) If X is Benford then so is XY .

(ii) If S(X) and S(XY ) have the same distribution, then either logS(Y ) is
rational with probability one, or X is Benford.

Proof. As in the proof of Theorem 4.13, the argument becomes short and trans-
parent through the usage of Fourier coefficients. Note first that logS(XY ) =
〈logS(X) + logS(Y )〉 and, since the random variables X0 := logS(X) and
Y0 := logS(Y ) are independent,

̂Plog S(XY ) = ̂P〈X0+Y0〉 = P̂X0 · P̂Y0 . (6.1)

To prove (i), simply recall that X being Benford is equivalent to PX0 = λ0,1,

and hence P̂X0(k) = 0 for every integer k 6= 0. Consequently, ̂Plog S(XY )(k) = 0
as well, i.e., XY is Benford.
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To see (ii), assume that S(X) and S(XY ) have the same distribution. In this
case, (6.1) implies that

P̂X0(k)
(
1− P̂Y0(k)

)
= 0 for all k ∈ Z .

If P̂Y0(k) 6= 1 for all non-zero k, then P̂X0 = λ̂0,1, i.e., X is Benford. Alterna-

tively, if P̂Y0(k0) = 1 for some k0 6= 0 then, as seen in the proof of Theorem
4.13(iii), PY0(

1
|k0|Z) = 1, hence |k0|Y0 = |k0| logS(Y ) is an integer with proba-

bility one.

Example 6.4. Let V , W be independent random variables distributed accord-
ing to U(0, 1). Then X := 10V and Y := W are independent and, by Theorem
6.3(i), XY is Benford even though Y is not. If, on the other hand, X := 10V

and Y := 101−V then X and Y are both Benford, yet XY is not. Hence the
independence of X and Y is crucial in Theorem 6.3(i). It is essential in asser-

tion (ii) as well, as can be seen by letting X equal either 10
√
2−1 or 102−

√
2 with

probability 1
2 each, and choosing Y := X−2. Then S(X) and S(XY ) = S(X−1)

have the same distribution, but neither X is Benford nor logS(Y ) is rational
with probability one.

Corollary 6.5. Let X be a random variable with P(X = 0) = 0, and let α be
an irrational number. If S(X) and S(αX) have the same distribution, i.e., if X
and αX have the same distribution of significant digits, then X is Benford.

Now consider a sequence (Xn) of independent random variables. From The-
orem 6.3 it is clear that if the product

∏n
j=1Xj is Benford for all sufficiently

large n then one of the factors Xj is necessarily Benford. Clearly, this is a very
restrictive assumption, especially in the i.i.d. case, where all Xj would have
to be Benford. Much greater applicability is achieved by requiring

∏n
j=1Xj to

conform to BL only asymptotically. As the following theorem, an i.i.d. counter-
part of Theorem 6.1, shows, convergence of

(∏n
j=1Xj

)
in distribution to BL is

a very widespread phenomenon. The result may help explain why BL often ap-
pears in mathematical models that describe e.g. the evolution of stock prices by
regarding the future price as a product of the current price times a large number
of successive, multiplicative changes in price, with the latter being modeled as
independent continuous random variables.

Theorem 6.6. Let (Xn) be an i.i.d. sequence of random variables that are not
purely atomic, i.e. P(X1 ∈ C) < 1 for every countable set C ⊂ R. Then:

(i)
(∏n

j=1Xj

)
converges in distribution to BL.

(ii) With probability one,
(∏n

j=1Xj

)
is Benford.

Proof. Let Yn = log |Xn|. Then (Yn) is an i.i.d. sequence of random variables
that are not purely atomic. By Theorem 4.13(iii), the sequence of

〈∑n
j=1 Yj

〉
=〈

log |∏n
j=1Xj |

〉
converges in distribution to U(0, 1). Thus

(∏n
j=1Xj

)
converges

in distribution to BL.
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To prove (ii), let Y0 be u.d. mod 1 and independent of (Yn)n∈N, and define

Sj := 〈Y0 + Y1 + . . .+ Yj〉 , j ∈ N0 .

Recall from Theorem 4.13(i) that Sj is uniform on [0, 1) for every j ≥ 0. Also
note that, by definition, the random variables Yj+1, Yj+2, . . . are independent
of Sj . The following argument is most transparent when formulated in ergodic
theory terminology. (For an alternative approach see e.g. [Ro].) To this end,
endow

T∞ := [0, 1)N0 = {(xj)j∈N0 : xj ∈ [0, 1) for all j }
with the σ-algebra

B∞ :=
⊗

j∈N0

B[0, 1)

:= σ
(
{B0×B1×. . .×Bj×[0, 1)×[0, 1)×. . . : j ∈ N0, B0, B1, . . . , Bj∈B[0, 1)}

)
.

A probability measure P∞ is uniquely defined on (T∞,B∞) by setting

P∞(B0×B1×. . .×Bj×[0, 1)×[0, 1)×. . .) = P(S0 ∈ B0, S1 ∈ B1, . . . , Sj ∈ Bj)

for all j ∈ N0 and B0, B1, . . . , Bj ∈ B[0, 1). The map σ∞ : T∞ → T∞ with
σ∞
(
(xj)

)
= (xj+1), often referred to as the (one-sided) left shift on T∞ (cf.

Example 5.25), is clearly measurable, i.e. σ−1
∞ (A) ∈ B∞ for every A ∈ B∞. As

a consequence, (σ∞)∗P∞ is a well-defined probability measure on (T∞,B∞). In
fact, since S1 is u.d. mod 1 and (Yn) is an i.i.d. sequence,

(σ∞)∗P∞(B0×B1×. . .×Bj×[0, 1)×[0, 1)×. . .)
= P∞([0, 1)×B0×B1×. . .×Bj×[0, 1)×[0, 1)×. . .)
= P(S1 ∈ B0, S2 ∈ B1, . . . , Sj+1 ∈ Bj)

= P(S0 ∈ B0, S1 ∈ B1, . . . , Sj ∈ Bj)

= P∞(B0×B1×. . .×Bj×[0, 1)×[0, 1)×. . .) ,

showing that (σ∞)∗P∞ = P∞, i.e., σ∞ is P∞-preserving. (In probabilistic terms,
this is equivalent to saying that the random process (Sj)j∈N0 is stationary, see
[Sh, Def.V.1.1].) It will now be shown that σ∞ is even ergodic with respect to
P∞. Recall that this simply means that every invariant set A ∈ B∞ has measure
zero or one, or, more formally, that P∞(σ−1

∞ (A)∆A) = 0 implies P∞(A) ∈ {0, 1};
here the symbol ∆ denotes the symmetric difference of two sets, i.e. A∆B =
A\B ∪ B\A. Assume, therefore, that P∞(σ−1

∞ (A)∆A) = 0 for some A ∈ B∞.
Given ε > 0, there exists a number N ∈ N and sets B0, B1, . . . , BN ∈ B[0, 1)
such that

P∞
(
A∆ (B0×B1×. . .×BN×[0, 1)×[0, 1)×. . .)

)
< ε .

For notational convenience, let Aε := B0×B1×. . .×BN×[0, 1)×[0, 1)×. . . ∈ B∞,
and note that P∞

(
σ−j
∞ (A)∆σ−j

∞ (Aε)
)
< ε for all j ∈ N0. Recall now from
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Theorem 4.13(iii) that, given S0, S1, . . . , SN , the random variables Sn converge
in distribution to U(0, 1). Thus, for all sufficiently large M ,

∣∣P∞
(
Ac

ε ∩ σ−M
∞ (Aε)

)
− P∞(Ac

ε)P∞(Aε)
∣∣ < ε , (6.2)

and similarly
∣∣P∞

(
Aε∩σ−M

∞ (Ac
ε)
)
−P∞(Aε)P∞(Ac

ε)
∣∣ < ε. (Note that (6.2) may

not hold if X1, and hence also Y1, is purely atomic, see for instance Example
4.14(ii).) Overall, therefore,

2P∞(Aε)
(
1− P∞(Aε)

)
≤ 2ε+ P∞

(
Aε∆σ

−M
∞ (Aε)

)

≤ 2ε+ P∞(Aε∆A) + P∞
(
A∆σ−M

∞ (A)
)
+ P∞

(
σ−M
∞ (A)∆σ−M

∞ (Aε)
)

< 4ε ,

and consequently P∞(A)
(
1 − P∞(A)

)
< 3ε + ε2. Since ε > 0 was arbitrary,

P∞(A) ∈ {0, 1}, which in turn shows that σ∞ is ergodic. (Again, this is equiv-
alent to saying, in probabilistic parlance, that the random process (Sj)j∈N0 is
ergodic, see [Sh, Def.V.3.2].) By the Birkhoff Ergodic Theorem, for every (mea-

surable) function f : [0, 1) → C with
∫ 1

0 |f(x)| dx < +∞,

1

n

∑n

j=0
f(xj) →

∫ 1

0

f(x) dx as n→ ∞

holds for all (xj)j∈N0 ∈ T∞, with the possible exception of a set of P∞-measure
zero. In probabilistic terms, this means that

limn→∞
1

n

∑n

j=0
f(Sj) =

∫ 1

0

f(x) dx a.s. (6.3)

Assume from now on that f is actually continuous with limx↑1 f(x) = f(0), e.g.
f(x) = e2πıx. For any such f , as well as any t ∈ [0, 1) and m ∈ N, denote the
set

{
ω∈Ω : lim supn→∞

∣∣∣∣
1

n

∑n

j=1
f
(
〈t+ Y1(ω) + . . .+ Yj(ω)〉

)
−
∫ 1

0

f(x) dx

∣∣∣∣<
1

m

}

simply by Ωf,t,m. According to (6.3), 1 =
∫ 1

0
P(Ωf,t,m) dt, and hence P(Ωf,t,m) =

1 for a.e. t ∈ [0, 1). Since f is uniformly continuous, for every m ≥ 2 there exists
tm > 0 such that P(Ωf,tm,m) = 1 and Ωf,tm,m ⊂ Ωf,0,⌊m/2⌋. From

1 = P
(⋂

m≥2
Ωf,tm,m

)
≤ P

(⋂
m≥2

Ωf,0,⌊m/2⌋
)
≤ 1 ,

it is clear that

limn→∞
1

n

∑n

j=1
f
(
〈Y1 + . . .+ Yj〉

)
=

∫ 1

0

f(x) dx a.s. (6.4)
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As the intersection of countably many sets of full measure has itself full measure,
choosing f(x) = e2πıkx, k ∈ Z in (6.4) shows that, with probability one,

limn→∞
1

n

∑n

j=1
e2πık(Y1+...+Yj) =

∫ 1

0

e2πıkxdx = 0 for all k ∈ Z, k 6= 0 .

(6.5)
By Weyl’s criterion [KN, Thm.2.1], (6.5) is equivalent to

P
((∑n

j=1
Yj
)
is u.d. mod 1

)
= 1 .

In other words, (
∏n

j=1Xj) is Benford with probability one.

Remarks. (i) As has essentially been observed already in Example 4.14(ii), for
Theorem 6.6(i) to hold it is necessary and sufficient that

P(log |X1| ∈ a+ 1
mZ) < 1 for all a ∈ R,m ∈ N . (6.6)

On the other hand, it is not hard to see that (ii) holds if and only if

P(log |X1| ∈ 1
mZ) < 1 for all m ∈ N , (6.7)

which is a strictly weaker assumption than (6.6). Clearly, if X1 is not purely
atomic then (6.6), and hence also (6.7) hold. However, if e.g. X1 = 2 with
probability one then (6.6) does not hold, and correspondingly

(∏n
j=1Xj

)
= (2n)

does not converge in distribution to BL, whereas (6.7) does hold, and
(∏n

j=1Xj

)

is Benford with probability one, cf. Example 6.2(ii).
(ii) For more general results in the spirit of Theorem 6.6 the reader is referred

to [Schü1, Schü2]. ♣

Example 6.7. (i) Let (Xn) be an i.i.d. sequence with X1 distributed according
to U(0, a), the uniform distribution on [0, a) with a > 0. The k-th Fourier
coefficient of P〈logX1〉 is

̂P〈logX1〉(k) = e2πık log a ln 10

ln 10 + 2πık
, k ∈ Z ,

so that, for every k 6= 0,

∣∣∣ ̂P〈logX1〉(k)
∣∣∣ = ln 10√

(ln 10)2 + 4π2k2
< 1 .

As seen in the proof of Theorem 4.13(iii), this implies that
(∏n

j=1Xj

)
converges

in distribution to BL, a fact apparently first recorded in [AS]. Note also that
E logX1 = log a

e . Thus with probability one,
(∏n

j=1Xj

)
converges to 0 or +∞,

depending on whether a < e or a > e. In fact, by the Strong Law of Large
Numbers [CT],

n

√∏n

j=1
Xj

a.s.→ a

e
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holds for every a > 0. If a = e then

P
(
lim infn→∞

∏n

j=1
Xj = 0 and lim supn→∞

∏n

j=1
Xj = +∞

)
= 1 ,

showing that in this case the product
∏n

j=1Xj does not converge but rather
attains, with probability one, arbitrarily small as well as arbitrarily large positive
values. By Theorem 6.6(ii), the sequence

(∏n
j=1Xj

)
is a.s. Benford, regardless

of the value of a.

(ii) Consider an i.i.d. sequence (Xn) with X1 distributed according to a
log-normal distribution such that logX1 is standard normal. Denote by fn the
density of

〈
log
∏n

j=1Xj

〉
. Since log

∏n
j=1Xj =

∑n
j=1 logXj is normal with

mean zero and variance n,

fn(s) =
1√
2πn

∑
k∈Z

e−(k+s)2/(2n) , 0 ≤ s < 1 ,

from which it is straightforward to deduce that

limn→∞ fn(s) = 1 , uniformly in 0 ≤ s < 1 .

Consequently, for all t ∈ [1, 10),

P
(
S
(∏n

j=1
Xj

)
≤ t
)
= P

(〈
log
∏n

j=1
Xj

〉
≤ log t

)

=

∫ log t

0

fn(s) ds →
∫ log t

0

1 ds = log t ,

i.e.,
(∏n

j=1Xj

)
converges in distribution to BL. By Theorem 6.6(ii) also

P
((∏n

j=1
Xj

)
is Benford

)
= 1 ,

even though E log
∏n

j=1Xj =
∑n

j=1 E logXj = 0, and hence, as in the previous

example, the sequence
(∏n

j=1Xj

)
a.s. oscillates forever between 0 and +∞.

Having seen Theorem 6.6, the reader may wonder whether there is an anal-
ogous result for sums of i.i.d. random variables. After all, the focus in classical
probability theory is on sums much more than on products. Unfortunately, the
statistical behavior of the significands is much more complex for sums than for
products. The main basic reason is that the significand of the sum of two or
more numbers depends not only on the significand of each each number (as in
the case of products), but also on their exponents. For example, observe that

S
(
3 · 103 + 2 · 102

)
= 3.2 6= 5 = S

(
3 · 102 + 2 · 102

)
,

while clearly

S
(
3 · 103 × 2 · 102

)
= 6 = S

(
3 · 102 × 2 · 102

)
.
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Practically, this difficulty is reflected in the fact that for positive real numbers u,
v, the value of log(u+ v), relevant for conformance with BL via Theorem 4.2, is
not easily expressed in terms of log u and log v, whereas log(uv) = log u+ log v.

In view of these difficulties, it is perhaps not surprising that the analog of
Theorem 6.6 for sums arrives at a radically different conclusion.

Theorem 6.8. Let (Xn) be an i.i.d. sequence of random variables with finite
variance, that is EX2

1 < +∞. Then:

(i) Not even a subsequence of
(∑n

j=1Xj

)
converges in distribution to BL.

(ii) With probability one,
(∑n

j=1Xj

)
is not Benford.

Proof. Assume first that EX1 6= 0. By the Strong Law of Large Numbers,
1
n

∣∣∑n
j=1Xj

∣∣ converges a.s., and hence also in distribution, to the constant
|EX1|. Since

logS
(∣∣∣
∑n

j=1
Xj

∣∣∣
)
=
〈
log
∣∣∣
∑n

j=1
Xj

∣∣∣
〉
=

〈
log

(
1

n

∣∣∣
∑n

j=1
Xj

∣∣∣
)
+ logn

〉
,

any subsequence of
(
S
(
1
n

∣∣∑n
j=1Xj

∣∣)) either does not converge in distribution
at all or else converges to a constant; in neither case, therefore, is the limit a
Benford random variable. Since, with probability one,

∣∣∑n
j=1Xj

∣∣ → +∞, it
follows from

log
∣∣∣
∑n

j=1
Xj

∣∣∣− logn = log
1

n

∣∣∣
∑n

j=1
Xj

∣∣∣ a.s.→ |EX1| ,

together with Lemma 4.3(i) and Proposition 4.8(iii) that
(∑n

j=1Xj) is, with
probability one, not Benford.

It remains to consider the case EX1 = 0. Without loss of generality, it can
be assumed that EX2

1 = 1. By the Central Limit Theorem 1√
n

∑n
j=1Xj con-

verges in distribution to the standard normal distribution. Thus for sufficiently
large n, and up to a rotation (i.e. an addition mod 1) of [0, 1), the distri-
bution of 〈log |∑n

j=1Xj |〉 differs by arbitrarily little from the distribution of
Y := 〈log |Z|〉, where Z is standard normal. Intuitively, it is clear that PY 6= λ0,1,
i.e., Y is not uniform on [0, 1). To see this more formally, note that

FY (s) = 2
∑

k∈Z

(
Φ
(
10s+k

)
− Φ

(
10k
))
, 0 ≤ s < 1 , (6.8)

with Φ (= FZ) denoting the standard normal distribution function, see Example
4.16(ii). Thus

|FY (s)− s| ≥ FY (s)− s > 2
(
Φ (10s)− Φ (1)

)
− s =: R(s) , 0 ≤ s < 1 ,

and since R is concave on [0, 1) with R(0) = 0 and R′(0) = 2 ln 10√
2πe

− 1 =

0.1143 . . . > 1
9 , it follows that

max0≤s<1 |FY (s)− s| > max0≤s<1R(s) > 0 ,
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showing that indeed PY 6= λ0,1, and hence
(∑n

j=1Xj

)
does not converge in

distribution to BL.
The verification of (ii) in the case EX1 = 0 uses an almost sure version

of the Central Limit Theorem, see [LP]. With the random variables Xn de-
fined on some (abstract) probability space (Ω,A,P), let Ω1 :=

{
ω ∈ Ω :(∑n

j=1Xj(ω)
)
is Benford

}
. By Theorem 4.2 and Proposition 4.8(iii), the se-

quence
(
xn(ω)

)
with

xn(ω) = log
1√
n

∣∣∣
∑n

j=1
Xj(ω)

∣∣∣ , n ∈ N ,

is u.d. mod 1 for all ω ∈ Ω1. For every interval [a, b) ⊂ [0, 1), therefore,

1

lnN

∑N

n=1

1[a,b)

(
xn(ω)

)

n
→ b− a as N → ∞ .

(Recall the remark on p.18.) However, as a consequence of [LP, Thm.2], for
every [a, b) ⊂ [0, 1),

1

lnN

∑N

n=1

1[a,b)

(
xn
)

n

a.s.→ FY (b)− FY (a) ,

with FY given by (6.8). As shown above, FY (s) 6≡ s, and therefore P(Ω1) = 0.
In other words, P

(
(
∑n

j=1Xj) is Benford
)
= 0.

Example 6.9. (i) Let (Xn) be an i.i.d. sequence with P(X1 = 0) = P(X1 =
1) = 1

2 . Then EX1 = EX2
1 = 1

2 , and by Theorem 6.8(i) neither
(∑n

j=1Xj

)
nor

any of its subsequences converges in distribution to BL. Note that
∑n

j=1Xj is

binomial with parameters n and 1
2 , i.e. for all n ∈ N,

P
(∑n

j=1
Xj = l

)
= 2−n

(
n
l

)
, l = 0, 1, . . . , n .

The Law of the Iterated Logarithm [CT] asserts that

∑n

j=1
Xj =

n

2
+ Yn

√
n ln lnn for all n ≥ 3 , (6.9)

where the sequence (Yn) of random variables is bounded, in fact |Yn| ≤ 1 a.s. for
all n. From (6.9) it is clear that, with probability one, the sequence

(∑n
j=1Xj

)

is not Benford.

(ii) Let (Xn) be an i.i.d. sequence of Cauchy random variables. As E|X1| is
even infinite, Theorem 6.8 does not apply. However, recall from Example 4.14(i)
that 1

n

∑n
j=1Xj is again Cauchy, and hence the distribution of 〈log |(∑n

j=1Xj)|〉
is but a rotated version of P〈log |X1|〉, the density of which is given by

f〈log |X1|〉(s) =
ln 10

π

∑
k∈Z

1

cosh
(
(s+ k) ln 10

) , 0 ≤ s < 1.
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The density f〈log |X1|〉 is a smooth function, and

f〈log |X1|〉(0) =
ln 10

π

∑
k∈Z

2

10k + 10−k
>

ln 10

π

(
1 +

40

101

)
> 1 +

2

101
,

showing that
(
log |∑n

j=1Xj |
)
is not u.d. mod 1. Hence the sequence

(∑n
j=1Xj

)

does not converge in distribution to BL, and nor does any of its subsequences.
This example shows that the conclusions of Theorem 6.8 may hold, at least

in parts, even if the Xn do not have finite first, let alone finite second moments.

Remark. Recall from the remark on p.18 that a sequence failing to be Benford
may conform to a weaker form of BL. As seen above, under mild conditions the
stochastic sequence

(∑n
j=1Xj

)
is not Benford. Under the appropriate assump-

tions, however, it does obey a weaker form of BL, see [Scha2]. ♣

6.2. Mixtures of distributions

The characterizations of the Benford distribution via scale-, base- and sum-
invariance, given in Chapter 4, although perhaps mathematically satisfying,
hardly help explain the appearance of BL empirically in real-life data. Applica-
tion of those theorems requires explaining why the underlying data is scale- or
base-invariant in the first place. BL nevertheless does appear in many real-life
datasets. Thus the question arises: What do the population data of three thou-
sand U.S. counties according to the 1990 census have in common with the usage
of logarithm tables during the 1880s, numerical data from newspaper articles
of the 1930’s collected by Benford, or universal physical constants examined
by Knuth in the 1960’s? Why should these data exhibit a logarithmically dis-
tributed significand or equivalently, why should they be scale- or base-invariant?

As a matter of fact, most data-sets do not follow BL closely. Benford already
observed that while some of his tables conformed to BL reasonably well, many
others did not. But, as Raimi [Ra1] points out, “what came closest of all, how-
ever, was the union of all his tables.” Combine the molecular weight tables with
baseball statistics and drainage areas of rivers, and then there is a very good fit.
Many of the previous explanations of BL have first hypothesized some universal
table of constants, such as Raimi’s [Ra1] “stock of tabular data in the world’s
libraries”, or Knuth’s [Kn] “imagined set of real numbers”, and then tried to
prove why certain specific sets of real observations were representative of either
this mysterious universal table or the set of all real numbers. What seems more
natural though is to think of data as coming from many different distributions.
This was clearly the case in Benford’s original study. After all, he had made
an effort “to collect data from as many fields as possible and to include a wide
variety of types”, noting that “the range of subjects studied and tabulated was
as wide as time and energy permitted”.

The main goal of this section is to provide a statistical derivation of BL, in
the form of a central-limit-like theorem that says that if random samples are
taken from different distributions, and the results combined, then — provided
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the sampling is “unbiased” as to scale or base — the resulting combined samples
will converge to the Benford distribution.

Denote by M the set of all probability measures on (R,B). Recall that a
(real Borel) random probability measure, abbreviated henceforth as r.p.m., is a
function P : Ω → M, defined on some underlying probability space (Ω,A,P),
such that for every B ∈ B the function ω 7→ P (ω)(B) is a random variable.
Thus, for every ω ∈ Ω, P (ω) is a probability measure on (R,B), and, given any
real numbers a, b and any Borel set B,

{ω : a ≤ P (ω)(B) ≤ b} ∈ A ,

see e.g. [Ka] for an authoritative account on random probability measures. In
more abstract conceptual terms, an r.p.m. can be interpreted as follows: When
endowed with the topology of convergence in distribution, the set M becomes
a complete and separable metrizable space. Denote by BM its Borel σ-algebra,
defined as the smallest σ-algebra containing all open subsets of M. Then P∗P
simply is a probability measure on (M,BM).

Example 6.10. (i) Let P be an r.p.m. that is U(0, 1) with probability 1
2 , and

otherwise is exp(1), i.e. exponential with mean 1, hence P(X > t) = min(1, e−t)
for all t ∈ R, see Example 3.10(i,ii). Thus, for every ω ∈ Ω, the probability mea-
sure P is either U(0, 1) or exp(1), and P

(
P =U(0, 1)

)
= P

(
P =exp(1)

)
= 1

2 . For
a practical realization of P simply flip a fair coin — if it comes up heads, P(ω) is
a U(0, 1)-distribution, and if it comes up tails, then P is an exp(1)-distribution.

(ii) Let X be distributed according to exp(1), and let P be an r.p.m. where,
for each ω ∈ Ω, P (ω) is the normal distribution with mean X(ω) and variance
1. In contrast to the example in (i), here P is continuous, i.e., P(P = Q) = 0
for each probability measure Q ∈ M.

The following example of an r.p.m. is a variant of a classical construction due
to L. Dubins and D. Freedman which, as will be seen below, is an r.p.m. leading
to BL.

Example 6.11. Let P be the r.p.m. with support on [1, 10), i.e. P
(
[1, 10)

)
= 1

with probability one, defined by its (random) cumulative distribution function
FP , i.e.

FP (t) := FP (ω)(t) = P (ω)
(
[1, t]

)
, 1 ≤ t < 10 ,

as follows: Set FP (1) = 0 and FP (10) = 1. Next pick FP (10
1/2) according

to the uniform distribution on [0, 1). Then pick FP (10
1/4) and FP (10

3,4) in-
dependently, uniformly on

[
0, FP (10

1/2)
)
and

[
FP (10

1/2), 1
)
, respectively, and

continue in this manner. This construction is known to generate an r.p.m. a.s.
[DF, Lem.9.28], and as can easily be seen, is dense in the set of all probability
measures on

(
[1, 10),B[1, 10)

)
, i.e., it generates probability measures that are

arbitrarily close to any Borel probability measure on [1, 10).

The next definition formalizes the notion of combining data from different
distributions. Essentially, it mimics what Benford did in combining baseball
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statistics with square-root tables and numbers taken from newspapers, etc. This
definition is key to everything that follows. It rests upon using an r.p.m. to
generate a random sequence of probability distributions, and then successively
selecting random samples from each of those distributions.

Definition 6.12. Let m be a positive integer and P an r.p.m. A sequence of
P -random m-samples is a sequence (Xn) of random variables on (Ω,A,P) such
that, for all j ∈ N and some i.i.d. sequence (Pn) of r.p.m.s with P1 = P , the
following two properties hold:

Given Pj = Q, the random variables X(j−1)m+1, X(j−1)m+2, . . . , Xjm (6.10)

are i.i.d. with distribution Q ;

The variables X(j−1)m+1, X(j−1)m+2, . . . , Xjm are independent of (6.11)

Pi, X(i−1)m+1, X(i−1)m+2, . . . , Xim for every i 6= j .

Thus for any sequence (Xn) of P -random m-samples, for each ω ∈ Ω in the
underlying probability space, the first m random variables are a random sample
(i.e., i.i.d.) from P1(ω), a random probability distribution chosen according to
the r.p.m. P ; the second m-tuple of random variables is a random sample from
P2(ω) and so on. Note the two levels of randomness here: First a probability is
selected at random, and then a random sample is drawn from this distribution,
and this two-tiered process is continued.

Example 6.13. Let P be the r.p.m. in Example 6.10(i), and let m = 3. Then
a sequence of P -random 3-samples is a sequence (Xn) of random variables
such that with probability 1

2 , X1, X2, X3, are i.i.d. and distributed according
to U(0, 1), and otherwise they are i.i.d. but distributed according to exp(1);
the random variables X4, X5, X6 are again equally likely to be i.i.d. U(0, 1) or
exp(1), and they are independent of X1, X2, X3, etc. Clearly the (Xn) are all
identically distributed as they are all generated by exactly the same process.
Note, however, that for instance X1 and X2 are dependent: Given that X1 > 1,
for example, the random variable X2 is exp(1)-distributed with probability one,
whereas the unconditional probability that X2 is exp(1)-distributed is only 1

2 .

Remark. If (Xn) is a sequence of P -random m-samples for some m and some
r.p.m. P , then the Xn are a.s. identically distributed according to the distri-
bution that is the average (expected) distribution of P (see Proposition 6.15
below), but they are not in general independent (see Example 6.13). On the
other hand, given (P1, P2, . . .), the (Xn) are a.s. independent, but clearly are
not in general identically distributed. ♣

Although sequences of P -random m-samples have a fairly simple structure,
they do not fit into any of the familiar categories of sequences of random vari-
ables. For example, they are not in general independent, exchangeable, Markov,
martingale, or stationary sequences.

Example 6.14. Assume that the r.p.m. P is, with equal probability, the Dirac
measure concentrated at 1 and the probability measure 1

2 (δ1 + δ2), respectively,
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i.e. P(P = δ1) = P
(
P = 1

2 (δ1 + δ2)
)
= 1

2 . Let (Xn) be a sequence of P -random
3-samples. Then the random variables X1, X2, . . . are

not independent as

P(X2 = 2) =
1

4
but P(X2 = 2|X1 = 2) =

1

2
;

not exchangeable as

P
(
(X1, X2, X3, X4)=(1, 1, 1, 2)

)
=

9

64
6= 3

64
=P
(
(X1, X2, X3, X4)=(2, 2, 2, 1)

)
;

not Markov as

P(X3 = 1|X1 = X2 = 1) =
9

10
6= 5

6
= P(X3 = 1|X2 = 1) ;

not martingale as

E(X2|X1 = 2) =
3

2
but EX2 =

5

4
;

not stationary as

P
(
(X1, X2, X3) = (1, 1, 1)

)
=

9

16
6= 15

32
= P

(
(X2, X3, X4) = (1, 1, 1)

)
.

Recall that, given an r.p.m. P and any Borel set B, the quantity P (B) is
a random variable with values between 0 and 1. The following property of the
expectation of P (B), as a function of B, is easy to check.

Proposition 6.15. Let P be an r.p.m. Then EP , defined as

(EP )(B) := EP (B) =

∫

Ω

P (ω)(B) dP(ω) for all B ∈ B ,

is a probability measure on (R,B).

Example 6.16. (i) Let P be the r.p.m. of Example 6.10(i). Then EP is the
Borel probability measure with density

fEP (t) =





0 if t < 0 ,
1
2 + 1

2e
−t if 0 ≤ t < 1 ,

1
2e

−t if t ≥ 1 ,





=
1

2
1[0,1)(t)+

1

2
e−t

1[0,+∞) , t ∈ R .

(ii) Consider the r.p.m. P of Example 6.10(ii), that is, P (ω) is normal with
mean X(ω) and variance 1, where X is distributed according to exp(1). In this
case, EP is also a.c., with density

fEP (t) =
1√
2π

∫ +∞

0

e−
1
2 (t−τ)2e−τdτ = e

1
2−t
(
1− Φ(1− t)

)
, t ∈ R .
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(iii) Even if P is a.c. only with probability zero, it is possible for EP to be
a.c. As a simple example, let X be exp(1)-distributed and P = 1

2 (δ−X + δX).
Then P(P is purely atomic ) = 1, yet EP is the standard Laplace (or double-
exponential) distribution; i.e., EP is a.c. with density

fEP (t) =
e−|t|

2
, t ∈ R .

The next lemma shows that the limiting proportion of times that a sequence
of P -random m-sample falls in a (Borel) set B is, with probability one, the
average P-value of the set B, i.e., the limiting proportion equals EP (B). Note
that this is not simply a direct corollary of the classical Strong Law of Large
Numbers as the random variables in the sequence are not in general independent
(see Examples 6.13 and 6.14).

Lemma 6.17. Let P be an r.p.m., and let (Xn) be a sequence of P -random
m-samples for some m ∈ N. Then, for every B ∈ B,

#{1 ≤ n ≤ N : Xn ∈ B}
N

a.s.→ EP (B) as N → ∞ .

Proof. Fix B ∈ B and j ∈ N, and let Yj = #{1 ≤ i ≤ m : X(j−1)m+i ∈ B}. It
is clear that

limN→∞
#{1 ≤ n ≤ N : Xn ∈ B}

N
=

1

m
limn→∞

1

n

∑n

j=1
Yj , (6.12)

whenever the limit on the right exists. By (6.10), given Pj , the random variable
Yj is binomially distributed with parameters m and E

(
Pj(B)

)
, hence a.s.

EYj = E
(
E(Yj |Pj)

)
= E

(
mPj(B)

)
= mEP (B) (6.13)

since Pj has the same distribution as P . By (6.11), the Yj are independent. They
are also uniformly bounded, as 0 ≤ Yj ≤ m for all j, hence

∑∞
j=1 EY

2
j /j

2 < +∞.
Moreover, by (6.13) all Yj have the same mean value mEP (B). Thus by [CT,
Cor.5.1]

1

n

∑n

j=1
Yj

a.s.→ mEP (B) as n→ ∞ , (6.14)

and the conclusion follows by (6.12) and (6.14).

Remark. The assumption that each Pj is sampled exactly m times is not essen-
tial: The above argument can easily be modified to show that the same con-
clusion holds if the j-th r.p.m. is sampled Mj times where (Mj) is a sequence
of independent, uniformly bounded N-valued random variables which are also
independent of the rest of the process. ♣

The stage is now set to give a statistical limit law (Theorem 6.20 below) that
is a central-limit-like theorem for significant digits mentioned above. Roughly
speaking, this law says that if probability distributions are selected at random,
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and random samples are then taken from each of these distributions in such a
way that the overall process is scale- or base-neutral, then the significant digit
frequencies of the combined sample will converge to the logarithmic distribution.
This theorem may help explain and predict the appearance of BL in significant
digits in mixtures of tabulated data such as the combined data from Benford’s
individual datasets, and also his individual dataset of numbers gleaned from
newspapers.

In order to draw any conclusions concerning BL for the process of sampling
from different distributions, clearly there must be some restriction on the un-
derlying r.p.m. that generates the sampling procedure. Otherwise, if the r.p.m.
is, say, U(0, 1) with probability one, for example, then any resulting sequence
of P -random m-samples will be i.i.d. U(0, 1), and hence a.s. not Benford, by
Example 3.10(i). Similarly, it can easily be checked that sequences of P -random
m-samples from the r.p.m.s in Example 6.10 (i) and (ii) will not generate Benford
sequences. A natural assumption to make concerning an r.p.m. in this context
is that on average the r.p.m. is unbiased (i.e. invariant) with respect to changes
in scale or base.

Definition 6.18. An r.p.m. P has scale-unbiased (decimal) significant digits if,
for every significand event A, i.e. for every A ∈ S, the expected value of P (A)
is the same as the expected value P (αA) for every α > 0, that is, if

E
(
P (αA)

)
= E

(
P (A)

)
for all α > 0, A ∈ S .

Equivalently, the Borel probability measure EP has scale-invariant significant
digits.

Similarly, P has base-unbiased significant (decimal) digits if, for every A ∈ S

the expected value of P (A) is the same as the expected value of P (A1/n) for
every n ∈ N, that is, if

E
(
P (A1/n)

)
= E

(
P (A)

)
for all n ∈ N, A ∈ S ,

i.e., if EP has base-invariant significant digits.

An immediate consequence of Theorems 4.20 and 4.30 is

Proposition 6.19. Let P be an r.p.m. with EP ({0}) = 0. Then the following
statements are equivalent:

(i) P has scale-unbiased significant digits.

(ii) P ({±10k : k ∈ Z}) = 0, or equivalently S∗P ({1}) = 0 holds with probabil-
ity one, and P has base-unbiased significant digits.

(iii) EP (A) = B(A) for all A ∈ S, i.e., EP is Benford.

Random probability measures with scale- or base-unbiased significant digits
are easy to construct mathematically (see Example 6.22 below). In real-life
examples, however, scale- or base-unbiased significant digits should not be taken
for granted. For instance, picking beverage-producing companies in Europe at
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random, and looking at the metric volumes of samples of m products from each
company, is not likely to produce data with scale-unbiased significant digits,
since the volumes in this case are probably closely related to liters. Conversion
of the data to another unit such as gallons would likely yield a radically different
set of first-digit frequencies. On the other hand, if species of mammals in Europe
are selected at random and their metric volumes sampled, it seems more likely
that the latter process is unrelated to the choice of human units.

The question of base-unbiasedness of significant digits is most interesting
when the units in question are universally agreed upon, such as the numbers of
things, as opposed to sizes. For example, picking cities at random and looking
at the number of leaves of m-samples of trees from those cities is certainly less
base-dependent than looking at the number of fingers of m-samples of people
from those cities.

As will be seen in the next theorem, scale- or base-unbiasedness of an r.p.m.
imply that sequence of P -random samples are Benford a.s. A crucial point in the
definition of an r.p.m. P with scale- or base-unbiased significant digits is that
it does not require individual realizations of P to have scale- or base-invariant
significant digits. In fact, it is often the case (see Benford’s original data in [Ben]
and Example 6.22 below) that a.s. none of the random probabilities has either
of these properties, and it is only on average that the sampling process does not
favor one scale or base over another. Recall from the notation introduced above
that S∗P ({1}) = 0 is the event {ω ∈ Ω : P (ω)(S = 1) = 0}.
Theorem 6.20 ([Hi2]). Let P be an r.p.m. Assume P either has scale-unbiased
significant digits, or else has base-unbiased significant digits and S∗P ({1}) = 0
with probability one. Then, for every m ∈ N, every sequence (Xn) of P -random
m-samples is Benford with probability one, that is, for all t ∈ [1, 10),

#{1 ≤ n ≤ N : S(Xn) < t}
N

a.s.→ log t as N → ∞ .

Proof. Assume first that P has scale-unbiased significant digits, i.e., the proba-
bility measure EP has scale-invariant significant digits. According to Theorem
4.20, EP is Benford. Consequently, Lemma 6.17 implies that for every sequence
(Xn) of P -random m-samples and every t ∈ [1, 10),

#{1 ≤n≤ N :S(Xn) < t}
N

=
#
{
1 ≤n≤ N :Xn ∈ ⋃k∈Z

10k
(
(−t,−1] ∪ [1, t)

)}

N
a.s.→ EP

(⋃
k∈Z

10k
(
(−t,−1] ∪ [1, t)

))
= log t as N → ∞ .

Assume in turn that S∗P ({1}) = 0 with probability one, and that P has base-
unbiased significant digits. Then

S∗EP ({1}) = EP
(
S−1({1})

)
=

∫

Ω

S∗P (ω)({1}) dP(ω) = 0 .

Hence q = 0 holds in (4.8) with P replaced by EP , proving that EP is Benford,
and the remaining argument is the same as before.
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Corollary 6.21. If an r.p.m. P has scale-unbiased significant digits, then for
every m ∈ N, every sequence (Xn) of P -random m-samples, and every d ∈
{1, 2, . . . , 9},

#{1 ≤ n ≤ N : D1(Xn) = d}
N

a.s.→ log(1 + d−1) as N → ∞ .

A main point of Theorem 6.20 is that there are many natural sampling pro-
cedures that lead to the same logarithmic distribution. This helps explain how
the different empirical evidence of Newcomb, Benford, Knuth and Nigrini all
led to the same law. It may also help explain why sampling the numbers from
newspaper front pages or almanacs [Ben], or accumulating extensive accounting
data [Ni], often tends toward BL, since in each of these cases various distribu-
tions are being sampled in a presumably unbiased way. In a newspaper, perhaps
the first article contains statistics about population growth, the second arti-
cle about stock prices, the third about forest acreage. None of these individual
distributions itself may be unbiased, but the mixture may well be.

Justification of the hypothesis of scale- or base-unbiasedness of significant
digits in practice is akin to justification of the hypothesis of independence (and
identical distribution) when applying the Strong Law of Large Numbers or the
Central Limit Theorem to real-life processes: Neither hypothesis can be formally
proved, yet in many real-life sampling procedures, they appear to be reasonable
assumptions.

Many standard constructions of r.p.m. automatically have scale- and base-
unbiased significant digits, and thus satisfy BL in the sense of Theorem 6.20.

Example 6.22. Recall the classical Dubins–Freedman construction of an r.p.m.
P described in Example 6.11. It follows from [DF, Lem.9.28] that EP is Benford.
Hence P has scale- and base-unbiased significant digits. Note, however, that with
probability one P will not have scale- or base-invariant significant digits. It is
only on average that these properties hold but, as demonstrated by Theorem
6.20, this is enough to guarantee that random sampling from P will generate
Benford sequences a.s.

In the Dubins–Freedman construction, the fact that FP (10
1/2), FP (10

1/4),
FP (10

3/4), etc. are chosen uniformly from the appropriate intervals is not cru-
cial: If Q is any probability measure on (0, 1), and the values of FP (10

1/2) etc.
are chosen independently according to an appropriately scaled version on Q,
then, for the r.p.m. thus generated, EP will still be Benford, provided that Q
is symmetric about 1

2 , see [DF, Thm.9.29]. As a matter of fact, real-world pro-
cesses often exhibit this symmetry in a natural way: Many data may be equally
well recorded using certain units or their reciprocals, e.g. in miles per gallon vs.
gallons per mile, or Benford’s “candles per watt” vs. “watts per candle”. This
suggests that the distribution of logS should be symmetric about 1

2 .

Data having scale- or base-unbiased significant digits may be produced in
many ways other than through random samples. If such data are combined
with unbiased randomm-samples then the result will again conform to BL in the
sense of Theorem 6.20. (Presumably, this is what Benford did when combining
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mathematical tables with data from newspaper statistics.) For example, consider
the sequence (2n) which may be thought of as the result of a periodic sampling
from a (deterministic) geometric process. As (2n) is Benford, any mixture of this
sequence with a sequence of unbiased random m-samples will again be Benford.

Finally, it is important to note that many r.p.m. and sampling processes do
not conform to BL, and hence necessarily are scale- and base-biased.

Example 6.23. (i) Let P be the constant r.p.m. P ≡ δ1. Since EP = δ1 has
base-invariant significant digits, P has base-unbiased significant digits. Never-
theless, for every sequence (Xn) of P -random m-samples, the sequence of first
significant digits is constant, namely D1(Xn) ≡ 1.

Similarly, if P = λ0,1 with probability one, then EP = λ0,1 does not have
scale- or base-invariant significant digits. Consequently, every sequence of P -
random m-samples is an i.i.d. U(0, 1)-sequence and hence not Benford, by Ex-
ample 3.10(i).

(ii) The r.p.m. considered in Example 6.10 do not have scale- or base-
unbiased significant digits, simply because EP is not Benford.

(iii) As a another variant of the classical construction in [DF], consider the
following way of generating an r.p.m. on [1, 10): First let X1/2 be uniformly

distributed on [1, 10) and set FP (X1/2) =
1
2 . Next let X1/4 and X3/4 be inde-

pendent and uniformly distributed on [1, X1/2) and [X1/2, 10), respectively, and

set FP (X1/4) =
1
4 and FP (X3/4) =

3
4 , etc. It follows from [DF, Thm.9.21] that

FEP (t) =
2

π
arcsin log t , 1 ≤ t < 10 ,

and hence EP is not Benford. The r.p.m. P thus constructed, therefore, has
scale- and base-biased significant digits.

6.3. Random maps

The purpose of this brief concluding section is to illustrate and prove one simple
basic theorem that combines the deterministic aspects of BL studied in Chapter
5 with the stochastic considerations of the present chapter. Specifically, it is
shown how applying randomly selected maps successively may generate Benford
sequences with probability one. Random maps constitute a wide and intensely
studied field, and for stronger results than the one discussed here the interested
reader is referred e.g. to [Ber3].

For a simple example, first consider the map T : R → R with T (x) =
√
|x|.

Since T n(x) = |x|2−n → 1 as n → ∞ whenever x 6= 0, the orbit OT (x0) is not
Benford for any x0. More generally, consider the randomized map

T (x) =

{ √
|x| with probability p ,

x3 with probability 1− p ,
(6.15)
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and assume that, at each step, the iteration of T is independent of the entire
past process. If p = 1, this is simply the map studied before, and hence for
every x0 ∈ R, the orbit OT (x0) is not Benford. On the other hand, if p = 0
then Theorem 5.12 implies that, for almost every x0 ∈ R, OT (x0) is Benford. It
is plausible to expect that the latter situation persists for small p > 0. As the
following theorem shows, this is indeed that case even when the non-Benford
map

√
|x| occurs more than half of the time: If

p <
log 3

log 2 + log 3
= 0.6131 . . . , (6.16)

then, for a.e. x0 ∈ R, the (random) orbitOT (x0) is Benford with probability one.
To concisely formulate this result, recall that for any (deterministic or random)
sequence (Tn) of maps mapping R or parts thereof into itself, the orbit OT (x0)
of x0 ∈ R simply denotes the sequence

(
Tn−1 ◦ . . . ◦ T1(x0)

)
n∈N

.

Theorem 6.24 ([Ber3]). Let (βn) be an i.i.d. sequence of positive random vari-
ables, and assume that log β1 has finite variance, i.e. E(log β1)

2 < +∞. For
the sequence (Tn) of random maps given by Tn : x 7→ xβn and a.e. x0 ∈ R,
the orbit OT (x0) is Benford with probability one or zero, depending on whether
E log β1 > 0 or E log β1 ≤ 0.

Proof. For every x ∈ R and n ∈ N,

log
(
Tn ◦ . . . ◦ T1(x)

)
=
(∏n

j=1
βj

)
log |x| = 10Bn log |x| ,

where Bn =
∑n

j=1 log βj . Assume first that E log β1 > 0. In this case, Bn

n

a.s.→
log β1 as n → ∞, and it can be deduced from [KN, Thm.4.2] that, with proba-
bility one, the sequence (10Bny) is u.d. for a.e. y ∈ R. Since x 7→ log |x| maps the
family of (Lebesgue) nullsets into itself, with probability one OT (x0) is Benford
for a.e. x0 ∈ R. More formally, with (Ω,A,P) denoting the underlying probabil-
ity space, there exists Ω1 ∈ A with P(Ω1) = 1 such that for every ω ∈ Ω1 the
sequence OT (x0) is Benford for all x0 ∈ R\Bω, where Bω ∈ B with λ(Bω) = 0.
Denote by N ⊂ R × Ω the set of all (x0, ω) for which OT (x0) is not Benford,
and let

Nx = {ω ∈ Ω : (x, ω) ∈ N} , x ∈ R ,

Nω = {x ∈ R : (x, ω) ∈ N} , ω ∈ Ω .

Then Nx ∈ A and Nω ∈ B for all x ∈ R and ω ∈ Ω, respectively, and λ(Nω) = 0
for all ω ∈ Ω1. By Fubini’s Theorem,

0 =

∫

Ω

λ(Nω) dP(ω) =

∫

R×Ω

1N d(λ × P) =

∫

R

P(Nx) dλ(x) ,

showing that P(Nx) = 0 for a.e. x ∈ R. Equivalently P(OT (x0) is Benford ) = 1
holds for a.e. x0 ∈ R.
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Next assume that E log β1 < 0. Then Tn ◦ . . .◦T1(x) a.s.→ 1 as n→ ∞ for every
x 6= 0, and hence OT (x) is not Benford. (Note, however, that (Tn◦. . .◦T1(x)−1)
may be Benford in this case.)

Finally, it remains to consider the case E log β1 = 0. It follows from the Law
of the Iterated Logarithm that, for every t ∈ R,

lim supN→∞
#{1 ≤ n ≤ N : Bn ≤ t}

N
≥ 1

2
with probability one .

Clearly, this implies P(OT (x0) is Benford ) = 0 for every x0 ∈ R.

Example 6.25. (i) For the random map given by (6.15),

P

(
β =

1

2

)
= p = 1− P(β = 3) ,

and the condition E log β = −p log 2 + (1 − p) log 3 > 0 is equivalent to (6.16).
Note that E log β > 0 is not generally equivalent to the equally plausible (yet
incorrect) condition Eβ > 1. In the present example, the latter reduces to p < 4

5 .

(ii) Consider the sequence (Tn) of random maps Tn : x 7→ |x|102n+γn
where

(γn) is an i.i.d. sequence of Cauchy random variables. Since E|γ1| = +∞, Theo-
rem 6.24 does not apply. However,Bn = n(n+1)+

∑n
j=1 γj , and [CT, Thm.5.22]

shows that Bn

n2

a.s.→ 1 as n → ∞. The latter is enough to deduce from [KN,
Thm.4.2] that (10Bny) is u.d. mod 1 for a.e. y ∈ R. The same argument as in
the above proof shows that P(OT (x0) is Benford ) = 1 for a.e. x0 ∈ R. Thus the
conclusions of Theorem 6.24 may hold under weaker assumptions.

(iii) Statements in the spirit of Theorem 6.24 are true also for more general
random maps, not just monomials [Ber3].

List of symbols

N,N0,Z,Q, set of positive integer, non-negative integer, integer, rational,
R+,R,C positive real, real, complex numbers

(Fn) sequence of Fibonacci numbers, (Fn) = (1, 1, 2, 3, 5, 8, 13, . . .)

(pn) sequence of prime numbers, (pn) = (2, 3, 5, 7, 11, 13, 17, . . .)

⌊x⌋ largest integer not larger than x ∈ R

〈x〉 fractional part of x ∈ R, i.e. 〈x〉 = x− ⌊x⌋
ℜz, ℑz real, imaginary part of z ∈ C

z, |z| conjugate, absolute value (modulus) of z ∈ C

Cl set of all l times continuously differentiable functions, l ∈ N0

C∞ set of all smooth (i.e. infinitely differentiable) functions, i.e.
C∞ =

⋂
l≥0 C

l
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S significand function (Definition 2.3)

D1, D2, D3 etc. first, second, third etc. significant decimal digit (Definition 2.1)

D
(b)
m m-th significant digit base b

log x base 10 logarithm of x ∈ R+

lnx natural logarithm of x ∈ R+

#A cardinality (number of elements) of the finite set A

O order symbol; an = O(bn) as n→ ∞ provided that |an| ≤ c|bn|
for some c > 0 and all n

(Ω,A,P) probability space

Ac complement of A in some ambient space Ω clear from the con-
text, i.e. Ac = {ω ∈ Ω : ω 6∈ A}

A\B set of elements of A not in B, i.e. A\B = A ∩Bc

A∆B symmetric difference of A and B, i.e. A∆B = A\B ∪B\A
σ(f) σ-algebra generated by the function f : Ω → R

f∗P probability measure on R induced by P and the measurable
function f : Ω → R, via f∗P(•) := P

(
f−1(•)

)

δa Dirac probability measure concentrated at a ∈ Ω

B Borel σ-algebra on R or parts thereof

λ Lebesgue measure on (R,B) or parts thereof

S significand σ-algebra (Definition 2.7)

1A indicator function of the set A

λa,b normalized Lebesgue measure (uniform distribution)
on
(
[a, b),B[a, b)

)

i.i.d. independent, identically distributed (sequence or family of ran-
dom variables)

a.e. (Lebesgue) almost every

a.s. almost surely, i.e. with probability one

u.d. mod 1 uniformly distributed modulo one (Definition 4.1)

X,Y, . . . (real-valued) random variable Ω → R

EX expected (or mean) value of the random variable X

varX variance of the random variable with E|X | < +∞;
varX = E(X − EX)2

P probability measure on (R,B), possibly random

PX distribution of the random variable X
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FP , FX distribution function of P , X

B Benford distribution on (R+, S)

OT (x0) orbit of x0 under the map T , possibly nonautonomous

Nf Newton map associated with differentiable function f

σ(A) spectrum (set of eigenvalues) of d× d-matrix A

Xn
D→ X (Xn) converges in distribution to X

Xn
a.s.→ X (Xn) converges to X almost surely

EP expectation of r.p.m. P (Proposition 6.15)

� end of Proof

♣ end of Note and Remark(s)
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