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Abstract: The theory of equidistribution is about hundred years old, and
has been developed primarily by number theorists and theoretical com-
puter scientists. A motivated uninitiated peer could encounter difficulties
perusing the literature, due to various synonyms and polysemes used by
different schools. One purpose of this note is to provide a short introduc-
tion for probabilists. We proceed by recalling a perspective originating in
a work of the second author from 2002. Using it, various new examples of
completely uniformly distributed mod 1 sequences, in the “metric” (mean-
ing almost sure stochastic) sense, can be easily exhibited. In particular, we
point out natural generalizations of the original p-multiply equidistributed
sequence kp t mod 1, k ≥ 1 (where p ∈ N and t ∈ [0, 1]), due to Hermann
Weyl in 1916. In passing, we also derive a Weyl-like criterion for weakly
completely equidistributed (also known as WCUD) sequences, of substan-
tial recent interest in MCMC simulations.

The translation from number theory to probability language brings into
focus a version of the strong law of large numbers for weakly correlated
complex-valued random variables, the study of which was initiated by Weyl
in the aforementioned manuscript, followed up by Davenport, Erdős and
LeVeque in 1963, and greatly extended by Russell Lyons in 1988. In this
context, an application to∞-distributed Koksma’s numbers tk mod 1, k ≥ 1
(where t ∈ [1, a] for some a > 1), and an important generalization by
Niederreiter and Tichy from 1985 are discussed.

The paper contains negligible amount of new mathematics in the strict
sense, but its perspective and open questions included in the end could be
of considerable interest to probabilists and statisticians, as well as certain
computer scientists and number theorists.
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1. Introduction

This is certainly neither the first nor the last time that equidistribution is viewed
using a “probabilistic lense”. A probability and number theory enthusiast will
likely recall in this context the famous Erdös-Kac central limit theorem [EK]
(see also [Du], Ch. 2 (4.9)), or the celebrated monograph by Kac [Ka1].

Unlike in [Ka1, Ka2, EK, Ke1, Ke2] our main concern here are the completely
equidistributed sequences and their “generation”. In the abstract we deliberately
alternate between equidistribution (or equidistributed) and two of its synonyms.
In particular, the completely uniformly distributed (sometimes followed bymod 1)
and ∞-distributed in the abstract, the keywords, and the references (see for
example any of [Ho1, Ho2, DT, Kn1, Kn2, Kr5, KN, NT1, Lac, Lo, Le2, TO,
OT, SP]) mean the same as completely equidistributed. Uniform distribution is a
fundamental probability theory concept. To minimize the confusion, in the rest
of this note we shall:

(i) always write the uniform law when referring to the distribution of a uni-
form random variable, and

(ii) almost exclusively write equidistributed (to mean equidistributed, uni-
formly distributed, uniformly distributed mod 1 or · -distributed), usually pre-
ceded by one of the following attributes: simply, d-multiply or completely.

Let D = [0, 1]d be the d-dimensional unit cube. Let r ∈ N and assume
that a bounded domain G is given in R

r. Denote by λ the restriction of the
d-dimensional Lebesgue measure on D, as well as the Lebesgue measure on R

r.
In particular λ(G) is the r-dimensional volume of G. In most of our examples r
will equal 1, and G will be an interval.

Throughout this note, a sequence of measurable (typically continuous) func-
tions (xk)k≥1, where xk : G �→ R

d will define a sequence of points βk ∈ D as
follows:

βk ≡ β(t) := xk(t) mod 1, t ∈ G, (1.1)

understanding that 1 = (1, . . . , 1) ∈ Rd, and that the modulo operation is
naturally extended to vectors in the component-wise sense. While each βk is
a (measurable) function of t, this dependence is typically omitted from the
notation. The (xk)k is called the generating sequence or simply the generator,
and the elements t of G are called seeds.

Any A =
∏

j(aj , bj ] ⊂ D, 0 ≤ aj < bj ≤ 1 will be called a d-dimensional
box, or just a box in D. As usual, we denote by 1S the indicator of a set S. The
sequence β = {βk : k ∈ N} is simply equidistributed in D if

lim
N→∞

1

N

N∑
k=1

1A(βk(t)) = λ(A), (1.2)

for each A box in D, and almost every t ∈ G.
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1.1. Notes on the literature

Our general setting is mostly inherited from [Li]. The few changes in the no-
tation and the jargon aim to simplify reading of the present work by an inter-
ested probabilist or statistician. In [DT, Kn2, KN, Kr5, SP] and other standard
references, equidistribution is defined as a property of a single (deterministic)
sequence of real numbers. Nevertheless, in any concrete example discussed here
(e.g. the sequences mentioned in the abstract, as well as all the examples given
in the forthcoming sections), this property is verified only up to a null set over a
certain parameter space. So there seems to be no loss of generality in integrating
the almost everywhere/surely aspect in Definitions 1.1 and 1.2 below. There is
one potential advantage: the Weyl criterion (viewed in a.s. sense) reduces to
(countably many applications of) the strong law of large numbers (SLLN) for
specially chosen sequences of dependent complex-valued random variables. The
just made observation is the central theme of this note. Note in addition that
the study of R4 (and R6) types of randomness (according to Knuth [Kn2], Sec-
tion 3.5, see also Sections 2.4.1 and 3 below) makes sense only in the stochastic
setting.

Davenport, Erdös and LeVeque [DELV] are strongly motivated by the Weyl
equidistribution analysis [We], yet they do not mention any connections to prob-
ability theory. Lyons [Ly] clearly refers to the main result of [DELV] as a SLLN
criterion, but is not otherwise interested in equidistribution.

The Weyl variant of the SLLN (see Section 2.2) is central to the analy-
sis of Koksma [Kok], who seems to ignore its probabilistic aspect. The break-
through on the complete equidistribution of Koksma’s numbers (and variations)
by Franklin [Fr] relies on the main result in [Kok], but without (any need of)
recalling the Weyl variant of the SLLN in the background (see the proof of
[Fr], Theorems 14 and 15). On the surface, this line of research looks more
and more distant from the probability theory. The classical mainstream num-
ber theory textbooks (e.g. [KN]), as well as modern references (e.g. [DT, SP]),
corroborate this point of view of equidistribution in the “metric” (soon to be
called “stochastic a.s.”) sense. And yet, the Niederreiter and Tichy [NT1] met-
ric theorem, considered by many as one of the highlights on this topic, consists
of lengthy and clever (calculus based) covariance calculations, followed by an
application of the SLLN from [DELV] (see Section 2.4.1 for more details).

To the best of our knowledge, [Li] is the first (and at present the only) study
of complete (or other) equidistribution in the “metric” sense, which identifies
the verification of Weyl’s criterion as a stochastic problem (equivalent to count-
ably many SLLN, recalled in Section 2), without any additional restriction on
the nature of the generator (xk)k. In comparison, Holewijn [Ho1, Ho2] made
analogous connection (and in [Ho2] even applied the SLLN criterion of [DELV]
to the sequence of rescaled Weyl’s sums (2.4)), but only under particularly nice
probabilistic assumptions, which are not satisfied in any of the examples dis-
cussed in the present survey. In addition, both Lacaze [Lac] and Loynes [Lo]
use the Weyl variant (or a slight modification) of the SLLN, again under rather
restrictive probabilistic hypothesis (to be recalled in Section 2.1.2).
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Kesten in [Ke1, Ke2], as well as in his subsequent articles on similar prob-
abilistic number theory topics, works in the setting analogous to that of [Ho1,
Ho2], however his analysis is not directly connected to the Weyl criterion. On a
related topic, in a pioneer study of (non-)normal numbers and their relation to
equidistribution, Mendes France [MF] also applies the SLLN from [DELV] as a
purely analytic result, though it is not clear that a probabilistic interpretation
brings a new insight in that setting. Interested readers are referred to [Kem, Kh]
for probabilistic perspectives on normal numbers.

The study of complete equidistribution in the standard (deterministic) sense,
and its close link to normal numbers, was initiated by Korobov [Kr1] in 1948.
Korobov used Weyl’s criterion [We] for (multiple and complete) equidistribu-
tion, and exhibited an explicit function f (in a form of a power series) such that
(f(k) mod 1)k is a completely equidistributed sequence (see also [Kr5], Theorem
28). Knuth was aware of [Fr], but apparently unaware of either [We, Kr1], when
he exhibited in [Kn1] a (deterministic) completely equidistributed (there called
“random”) sequence of numbers in [0, 1], by extending the method of Champer-
nowne’s that previously served to find an explicit normal number. Knuth [Kn1,
Kn2] uses his own (computer science inspired) criterion for complete equidistri-
bution. All the examples given in [Kr1, Kr2] and [Kn1, Kn2], as well as those
obtained later on by the “Korobov school” (see Levin [Le2], Korobov [Kr5], and
also the historical notes in [KN], and [SP]), are practical to a varying degree. To
find out more about the deterministic setting, readers are encouraged to use the
pointers (to synonyms and references) given above as a guide to the literature.

We finally wish to make note of a recent spur of interest in completely equidis-
tributed sequences, and their generalizations (definable only in the stochastic
setting), in relation to Markov chain Monte-Carlo simulations [CMNO, CDO,
OT, TO]. Section 2.3 makes a brief digression in this direction. Importance of
complete equidistribution for MCMC is not surprising, in view of a long list of
empirical tests that these sequences satisfy (see [Fr, Kn2] and Remark 2(d,e)).
The first author is convinced that anyone who regularly runs or even looks at
pseudo-random simulations should benefit from reading a note of this kind.

Disclaimer and motivation This review and tutorial is highly inclusive,
but by no means exhaustive. The theory of equidistribution (or uniform distribu-
tion) is rich, complex and fast evolving, and it would be very difficult to point to
a single book volume, let alone a survey paper, which covers all of its interesting
aspects (for example, the list of references in the specialized survey [AB2] over-
laps with ours in only four items). Even when focusing on complete equidistribu-
tion in the metric (stochastic a.s.) sense, it seems hard to find a single expository
article aimed at specialists, let alone at the probability and statistics community
at large. We hope to have accomplished here an “order of magnitude” effect,
citing several dozens of original research papers and surveys, textbooks or mono-
graphs, in a brief attempt to shed a probability-friendly light on the concepts
and ideas presented, as well as to point out a number of natural and interesting
open questions. We wish we had come across such a paper at our very encounter
with this important topic. The latter thought gave the impetus to our writing.
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1.2. One-dimensional examples

Suppose that d = r = 1, and that G is an interval. We recall several well-known
examples of functions xk : G �→ R, that generate equidistributed sequences in
[0, 1]. The first class of examples is as follows: for each p ∈ N define

xk(t) = kp t, t ∈ G := (0, 1), k ≥ 1. (1.3)

Then (βk)k≥1 ∈ [0, 1]N from (1.1) are Weyl’s numbers of parameter p. The
second class of examples are the so-called multiplicatively generated numbers:
for each M ∈ {2, 3, . . . , } let

xk(t) = Mk t, t ∈ G := (0, 1), k ≥ 1, (1.4)

and (βk)k≥1 ∈ [0, 1]N as in (1.1). Finally, if one defines for each k, and any a > 1

xk(t) = tk, t ∈ G := (1, a), k ≥ 1, (1.5)

then (βk)k≥1 from (1.1) are known as Koksma’s numbers. It is well-known that
for each of the above three examples, the sequences (βk)k are (at least simply)
equidistributed for almost all seeds [We, Fr, Kok] (see also [KN, DT, SP]). In
fact if p = 1, then the Weyl (Sierpinski, Bohl) equidistribution theorem is a
stronger claim: k · t mod 1 is simply equidistributed for all irrational t.

One could refine the notion of a seed, and call t a seed only if βk(t) is
(sufficiently) equidistributed. The new set of seeds T would then be well-defined
up to a null-set. Note that (1.3) and (1.4) are both linear in t, which is not
true for (1.5). The methodology developed by the second author in [Li] was
motivated by the particularly simple analysis of the linear case, which can be
extended (under certain hypotheses on (xk)k) to the non-linear setting.

1.3. Multiple equidistribution with examples

Let d ≥ 2 be fixed. A sequence of real measurable functions (xk)k≥1 can be
used to form sequences (xk)k≥1 of d-dimensional vector-valued (measurable)
functions, and therefore the corresponding sequences (βk)k≥1 (see (1.1)), in at
least three different natural ways:

(a) The set of seeds could be equally d-dimensional (here r = d). More pre-
cisely, for t = (t1, t2, . . . , td) ∈ G, let xk(t) := (xk1(t), xk2(t), . . . , xkd(t)),
where xkj(t) := x(k−1)d+j(tj), for all k ∈ N, j = 1, . . . , d. In this case

βd
kj = x(k−1)d+j(tj) mod 1, k ∈ N, j = 1, . . . , d. (1.6)

(b) The set of seeds could be r-dimensional, and the successive x (and β) could
be formed by shifting the window of observation by 1. More precisely, for
t ∈ G ⊂ R

r, define xk(t) := (xk1(t), xk2(t), . . . , xkd(t)), where xkj(t) :=
xk+j−1(t), for all k ∈ N, j = 1, . . . , d. In this case

βd
kj = xk+j−1(t) mod 1, k ∈ N, j = 1, . . . , d. (1.7)



136 V. Limic and N. Limić

(c) Let d ≥ 1. The set of seeds could be r-dimensional, and the successive x
(and β) could be formed by shifting the window of observation by h ∈ N.
More precisely, for t ∈ G ⊂ Rr, define xk(t) := (xk1(t), xk2(t), . . . , xkd(t)),
where xkj(t) := x(k−1)h+j(t), for all k ∈ N, j = 1, . . . , d. In this case

βd,h
kj = x(k−1)h+j(t) mod 1, k ∈ N, j = 1, . . . , d. (1.8)

Note that class (c) comprises class (b) (if h is set to 1), and that if h > d,

then (βd,h
k )k is formed from a strict subsequence of (xk)k. We shall consider the

above definitions with d varying over N. The sequences in (1.6) will be included
in the analysis of Section 2.1.

The equidistribution analysis is typically done on the sequences of vectors
βd from (1.7). Yet (see Remark 1(c) below) the construction in (1.8) is par-
ticularly interesting from the perspective of comparison with (pseudo-)random
simulations.

Simple equidistribution in D was defined in the paragraph preceding Section
1.1. Let again G be a bounded domain in R

r for some r ≥ 1.

Definition 1.1. Assume that (xk)k≥1 is a sequence of real measurable functions
on G. (i) The sequence {βk : k ∈ N} defined in (1.1) is said to be d-multiply
equidistributed in [0, 1] if there exists a measurable subset of seeds Td, of full
measure (or equivalently, λ(Td) = λ(G)), such that the sequence of vectors βd

k

in (1.7) is simply equidistributed in [0, 1]d for each t ∈ Td.
(ii) If {βk : k ∈ N} is d-multiply equidistributed in [0, 1] for all d ≥ 1, then

{βk : k ∈ N} is called completely equidistributed.

We shall often abbreviate completely equidistributed sequence in [0, 1] by
c.e.s in [0, 1]. Occasionally we may drop the descriptive “in [0, 1]”. It is natural
to also consider shifts of arbitrary fixed length.

Definition 1.2. If for some measurable subset of seeds Td,h, again of full mea-

sure, we have that the sequence of vectors βd,h
k in (1.8) is simply equidistributed

in [0, 1]d for all t ∈ Td,h then we say that {βk : k ∈ N} defined in (1.1) is
d-multiply equidistributed in [0, 1] with respect to shift by h.

Naturally, we omit “with respect to shift...” if h = 1, and use attribute simply
instead of 1-multiply if d = 1 and h > 1.

Remark 1. (a) Fix some h ∈ N and o ∈ N0. It is easy to check that if {βk :
k ∈ N} is d-multiply equidistributed in [0, 1] with respect to shift by h, then the
same property holds (on the same subset of seeds) for {βk+o : k ∈ N}. For this
reason the definitions above are stated only in the case o = 0.

(b) Due to the just mentioned easy fact, one can quickly check (by averaging
over h different offsets) that if {βk : k ∈ N} is d-multiply equidistributed in
[0, 1] with respect to shift by h ≥ 2, then it is also d-multiply equidistributed
in [0, 1] (in the sense of Definition 1.1). Note however the following example:
suppose (αk)k and (γk)k are (simply) equidistributed in [0, 1] so that (αk/2)k
and ((1 + γk)/2)k are equidistributed in [0, 1/2] and [1/2, 1], respectively. Then
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(βk)k defined by
β2k−1 := αk, β2k := γk, k ≥ 1,

is (simply) equidistributed in [0, 1], but not even simply equidistributed in [0, 1]
with respect to shift by 2. One could construct similar examples in the multiply
equidistributed setting.

(c) As already noted, the interest of including shifts becomes apparent if
one compares the equidistribution with the law of large numbers (LLN), or
with Monte-Carlo simulations using pseudo-random numbers. If X1, X2, . . . is
a sequence of i.i.d. uniform random variables, and f : [0, 1]d → R a bounded
measurable map, then Ef(X1, . . . , Xd) is the theoretical (LLN) limit (in the Lp

and in the almost sure sense) of

1

n

n∑
k=1

f(X(k−1)d+1, . . . , X(k−1)d+d). (1.9)

Given a pseudo-random sequence a = (ak)k≥1, a direct analogue of (1.9) is

1

n

n∑
k=1

f(a(k−1)d+1, . . . , a(k−1)d+d), (1.10)

and the shift by h = d is typical in doing simulations. While it is also true that
for each choice of h, o ∈ N

lim
n

1

n

n∑
k=1

f(X(k−1)h+o, . . . , X(k−1)h+d+o−1) = Ef(X1, . . . , Xd),

the variance (and therefore the theoretical error) of the approximation is the
smallest if h ≥ d. This variance (error) bound is constant over shifts h ≥ d and
offsets o ≥ 1, hence (1.9) is an “economical” approximation (each element of
(Xk)k is used once and only once), and (1.10) is its direct analog.

(d) We can point the reader to at least two different derivations ([Kn2] Sec-
tion 3.5, Theorem C and the final Note in [Kr5] Ch. III, §20) of the following
important fact: if {βk : k ∈ N} is completely equidistributed, then it is also
(“omega-by-omega”, on the same set of seeds) d-multiply equidistributed in [0, 1]
with respect to shift by h for each d ≥ 1 and each h ≥ 2. Due to this fact, and
the observations made in (b), defining completely equidistributed with respect
to shifts is superfluous. (e) As a consequence of (d) and various other properties
derived in [Fr], Knuth [Kn1, Kn2] concludes that any c.e.s. passes numerous
empirical tests (see [Kn2], Section 3.5, the comment following Definition R1),
and is therefore an exemplary pseudo-random sequence.

The Weyl sequence (βk)k≥1 from (1.3) is p-multiply equidistributed, but it is
not p+1-multiply equidistributed; the multiplicatively generated sequence from
(1.4) is only simply equidistributed (see also Remark 2(c)). Section 2.1.3 serves
to point out that already in the linear setting, numerous examples of c.e.s. that
generalize the Weyl sequence in a natural way, can be easily constructed.
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Koksma’s numbers from (1.5) generally serve (see e.g. [Kn2, KN, TO, SP]) as
the prototype of a metric c.e.s. Most of the sequel is organized in connection to
this example. In particular, Section 2.4 gives a page-long proof of their complete
equidistribution, as an extension of the technique from Section 2.1 to the non-
linear setting. The discussion in Section 2.4.1 serves to put this into perspective
with respect to [Kok, Fr] and [NT1]. Section 3 recalls the main observations
made in this and the next section, and discusses several natural open problems.

2. Equidistribution via probabilistic reasoning

The purpose of this section is to describe the approach of [Li], as well as to put
it into perspective with respect to [Kok, Fr, NT1].

2.1. A lesson from the linear case

Consider the set of multi-indices m = (m1,m2, . . . ,md) ∈ Z
d. Let {xk : k ∈ N}

be a sequence of functions (soon taken to be linear) as in Definitions 1.1-1.2,
and let points βk ∈ D be defined by (1.6).

Define the sequence (νN )N of purely atomic finite (probability) measures on
[0, 1]d via

νN :=

N∑
k=1

1

N
δβk

, N ≥ 1, (2.1)

where the dependence in t ∈ G is implicit. Then clearly, the (simple) equidis-
tribution in [0, 1]d (1.2) is equivalent to the weak convergence of (νN )N to
the uniform law on [0, 1]d (denoted in (1.2) by λ), as N goes to ∞. This in
turn is equivalent to saying that for any polynomial p in d-variables we have
limN

∫
p(s)νN (ds) =

∫
[0,1]d

p(s)λ(ds).

From an analyst’s perspective, choosing the class of polynomials in the above
characterization of weak convergence is suboptimal. Indeed, if d = 1, the class
of complex exponentials t �→ {exp(2πim · t)}, m ∈ Z, is orthogonal (even
orthonormal) in L2[0, 1], and (due to the Stone-Weierstrass theorem) the al-
gebra they generate is dense in the (periodic) continuous functions on [0, 1],
with respect to the usual sup-norm. The same is true in the d-multiple setting,
this time with respect to the class of multi-dimensional complex exponentials
D 
 s �→ {exp(2πim · s)}, m ∈ Z

d, where · is the dot (or scalar) product.
In order to check that limN νN = λ in law, it is necessary and sufficient that

for each m ∈ Z
d

1

N

N∑
k=1

exp(2πim · βk) =

∫
D

exp(2πim · s)νN (ds)

converges as N → ∞ to∫
[0,1]d

exp(2πim · s)λ(ds) =
{

1, m = 0,
0, m �= 0.
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The just obtained characterization for equidistribution of (βk)k is the well-
known Weyl criterion [We]: consider the quantities

WN (β,m) :=
1

N

N∑
k=1

exp
(
2πim · βk

)
, (2.2)

then (βk)k is (simply) equidistributed in D if and only if WN (β,m) → 0 for
N → ∞ and each m �= 0. Recalling that in our setting each βk and therefore
νN is in fact a (measurable) function of t, the criterion reads

lim
N

WN (β,m) = 0, almost everywhere in G, for each m ∈ Z
d \ {0}. (2.3)

Denote by R
d 
 z �→ e(m, z) = exp(2πim · z). Due to (1.1), and the period-

icity of the complex exponential, we have the identity

WN (β,m) ≡ 1

N

N∑
k=1

e(m,xk). (2.4)

A crucial point is that if (xk)k is defined by (1.6), where the sequence of real
(measurable) functions (xk)k is given either in (1.3) or in (1.4), then the func-
tions Gd 
 t �→ e(m,xk(t)) form a bounded orthogonal sequence in L2(G,C).
Note that this is the first time that the linearity in t (resp. t) of the functions
in (1.3,1.4) (resp. (1.6)) is being called for.

Unlike [Li], we continue the discussion using probabilistic wording and nota-
tion. Given z ∈ C, denote by z its complex conjugate. For a fixed m ∈ Z

d \ {0}
and each k ∈ N, define Yk(m ; t) := e(m,xk(t)), t ∈ G. Then (Yk(m))k
is a sequence of complex-valued random variables on the probability space
(G,B, P ), where B is the Borel σ-field on G, and P (dt) = λ(dt)/λ(G), such
that EYk(m) = 0, for all k ≥ 1, and

E(Yk(m)Yl(m)) =

{
1, k = l,
0, k �= l,

l, k ∈ N. (2.5)

The standard proof of the strong LLN for i.i.d. variables with finite second
moment (see for example the exercise concluding [Du] Ch. I, Section 7) can
clearly be extended to sequences of pairwise uncorrelated centered random vari-
ables with constant (or uniformly bounded) variance. Anticipating some readers
with non-probabilist background, we include a sketch of the argument in points
LLN.(a)-LLN.(d) below. The above sequence (Yk(m))k has the just stated prop-

erties, and therefore if SN ≡ SN (m) :=
∑N

k=1 Yk(m), then

lim
N

SN

N
= lim

N

1

N

N∑
k=1

Yk(m) = 0, almost surely. (2.6)

Recalling (2.4) and the fact that m ∈ Z
d \ {0} was fixed but arbitrary, gives

(2.3) (λ-a.e. is the same as P -a.s,) and therefore the above stated (simple)
equidistribution in [0, 1]d of the sequence of vectors (βk)k.
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LLN.(a) Note that ESN = 0 and var(SN ) = O(N).

LLN.(b) Use the Chebyshev (or the Markov) inequality, and the Borel-Cantelli
lemma on the subsequence Nn = n2 to conclude that

∞∑
n=1

P (|Sn2 | > n2ε) =

∞∑
n=1

O(1/n2) < ∞, ∀ε > 0,

and therefore that SNn/Nn → 0, almost surely.

LLN.(c) Since E(
∑

N∈[n2+1,(n+1)2] |SN − Sn2 |2) =
∑

N∈[n2+1,(n+1)2] O(N −
n2) = O(n2), and therefore E(maxN∈[n2+1,(n+1)2] |SN − Sn2 |2) ≤ Dn2, another
application of the Markov inequality gives that with probability greater than
1− 2D

ε2n2

|SN − Sn2 | ∈ [−εn2, εn2], ∀N ∈ [n2 + 1, (n+ 1)2 − 1], (2.7)

and again by the Borel-Cantelli lemma, that (2.7) happens with probability 1
for all but finitely many n.

LLN.(d) Divide (2.7) by n2, noting that N = n2 + O(n). Use the fact ε > 0
was arbitrary, and the conclusion of (b).

Remark 2. (a) In our special setting, each member of the sequence (Yk)k is
uniformly bounded below (and above), so (2.7) could have been replaced by a
simpler estimate: with probability 1 for all n

|SN − Sn2 | ∈ [−(N − n2)c, ((n+ 1)2 −N)c], N ∈ [n2 + 1, (n+ 1)2 − 1].

(b) If r = d = 1, then (1.6) and (1.7) coincide, leading to the conclusion that
if (xk)k is again either from (1.3) or in (1.4), then the corresponding (βk)k is
simply equidistributed. The study of multiple equidistribution can be similarly
set up (see also Section 2.1.3 below): here (2.1) has the same form, but we take
d ≥ 2 and β := (βd

k)k defined as in (1.7) with (xk)k linear (as in (1.3,1.4)), and
study the averaged Weyl sums of terms Yk(m ; t) = e(xk(t),m), for t ∈ G, for
each m ∈ Z

d \ {0}.
(c) Recall the multiplicatively generated sequence from (1.4). To see that it

is not 2-multiply equidistributed, take m = (M,−1) �= (0, 0) and note that with
this choice of m the corresponding criterion (2.3–2.4) converges nowhere to 0.
Indeed, m1xk +m2xk+1 ≡ 0, for any k ∈ N.

Similarly, it is possible to find a non-trivial p+ 1-dimensional vector m such
that

m1k
p +m2(k + 1)p + . . .+mp(k + p− 1)p +mp+1(k + p)p is constant over k.

This amounts to solving a linear system Ax = 0, where A has p rows and p+1
columns. The corresponding criterion (2.3–2.4) applied to Weyl numbers (1.3)
will again converge nowhere to 0 (non-convergence to 0 on an event of positive
probability would already be sufficient).
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2.1.1. Equivalent formulations of complete equidistribution

Let d ≥ 1 be fixed. The d-dimensional (or multiple) discrepancy at level N is
defined by

Dd
N (t) := sup

A∈J

∣∣∣∣∣
∑N

k=1 1A(β
d
k(t))

N
− λ(A)

∣∣∣∣∣ , t ∈ G,

where J is the family of boxes as in definition (1.2). The d-dimensional “star”
discrepancy at level N is defined by

D∗,d
N (t) := sup

A∈J∗

∣∣∣∣∣
∑N

k=1 1A(β
d
k(t))

N
− λ(A)

∣∣∣∣∣ , t ∈ G,

where J∗ is the family of boxes in [0, 1]d as above, with lower left corner equal
to 0. Equivalently, the supremum above is taken over all boxes A of the form∏d

i=1(0, bi], where 0 ≤ bi ≤ 1, for each i. Note that we again deviate slightly from
the standard definitions (see Kuipers and Niederreiter [KN]), where discrepancy
sequences are defined for deterministic sets or sequences. Easy properties of
measurability of functions make each Dd

N and Dd,∗
N a random variable in the

current (stochastic a.s./metric) setting. Note that D∗,d
N is a direct extension of

the Kolmogorov-Smirnov statistic to the equidistribution setting.
Recall (2.1) with βk = βd

k, k ≥ 1. As any probabilist knows (think about cu-
mulative distribution functions), the weak convergence of the sequence of (ran-
dom) measures νN to the uniform law on [0, 1]d is, omega-by-omega (where
“omega” is typically denoted by t), equivalent to the convergence of (Dd

N )N (or

equivalently of (D∗,d
N )N ) to 0 (a clear generalization of the Glivenko-Cantelli

theorem). Let us paraphrase: (βk)k is d-multiply equidistributed in [0, 1] if and

only if limN Dd
N = limN D∗,d

N = 0, almost surely. In particular, a sequence (βk)k
is a c.e.s. in [0, 1] if and only if

lim
N

Dd
N = lim

N
D∗,d

N = 0, ∀d ∈ N, almost surely. (2.8)

Note that I∞ := [0, 1]N is a product of compact spaces, and therefore compact
itself. Let Bm be the Borel σ-field on [0, 1]m. Consider the cylinder sets C ⊂ I∞,
such that C = Cb× [0, 1]N, for some Cb ∈ Bm and m ∈ N. Let B∞ be the σ-field
on I∞ generated by the cylinders. Instead of d-dimensional vectors, one could
consider straight away the “∞-dimensional” (random) vector sequence

xk(t) = (xk(t), xk+1(t), xk+2(t), . . .), k ≥ 1, t ∈ G,

and its corresponding β∞
k := xk mod 1, where again “modulo” operation is

applied component-wise (a.s.). Let ν∞N be as νN in (2.1), but with β redefined
as β∞. Another formulation of complete equidistribution can be read off from
an “abstract fundamental theorem” (see e.g. [KN], Ch. 3, Theorem 1.2 and
the remark following it) or easily proved by approximating all closed sets in
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B∞ by closed cylinders: (βk)k is a c.e.s. in [0, 1] if and only if (ν∞N )N converges
weakly to the uniform law on I∞. A realization Γ from this limiting uniform law
(that is, the random object having that law) is also called the infinite statistical
sample or the i.i.d. family of uniform [0, 1] random variables (U1, U2, . . .). The
just made statement could also be reformulated as follows: (βk)k is a c.e.s. in
[0, 1] if and only if for any f bounded and continuous function on I∞ (equipped
with the product topology), we have

lim
N

1

N

N∑
k=1

f(β∞
k ) = E (f(Γ)), almost surely. (2.9)

As indicated in Section 1.1, another formulation/criterion of complete equidis-
tribution for a (deterministic) sequence of real numbers in [0, 1] was derived by
Knuth [Kn1, Kn2]. There is no doubt that this could also be turned into a
stochastic (a.s.) formulation for a sequence (1.1), the details are left to an in-
terested reader.

2.1.2. Why not simply take an i.i.d. family of uniforms?

The first author can guess that, especially on the first reading, a non-negligible
fraction of fellow probabilists could be asking the above or a similar question. It
is clear that an i.i.d. sequence Γ of uniform random variables is a c.e.s. in [0, 1]
in the sense of Definition 1.1, or any of its equivalent formulations described in
the previous section. Studying complete equidistribution, starting from i.i.d. (or
similar) random families is precisely what probability oriented works [Ho1, Ho2,
Lac, Lo] did. However, to most non-probabilist mathematicians this will not
mean much, especially due to the fact that the rigorous probability theory is
axiomatic, and the rigorous construction of Γ rather abstract.

More precisely, Γ is not presented in a neat (classical) functional format,
like any of the sequences (xk)k and their corresponding (βk) = (xk mod 1)k in
(1.3,1.4,1.5). Instead we usually start with an abstract infinite product space (or
more concretely, with [0, 1]N), and the kth uniform random variable equals the
identity map from the kth space to itself. This suffices for the most purposes
of modern probability theory, but may not seem very convincing to a non-
probabilist who wishes to “see a concrete example of” Γ. A related wish to “see
an explicit outcome from a concrete example of Γ” quickly leads to philosophical
discussions around the question “What is a random sequence?” (the reader is
referred to the section in [Kn2] carrying that very title).

The Kac [Ka1] approach to the i.i.d. discrete-valued sequence is also revo-
lutionary from the point of view of the just mentioned drawback. Indeed, an
infinite sequence of independent Bernoulli(1/2) random variables (also called
the Bernoulli scheme) can be explicitly constructed on Ω = [0, 1], with F equal
to the Borel σ-field B, and P equal to λ. This was done in [Ka1], by applying a
simple transformation to the classical Rademacher system. We leave on purpose
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the link with (1.4), and other details, to interested readers, as well as the dis-
covery of the related b-adic Rademacher system and its relation to the discrete
uniform law on {0, 1, . . . , b− 1}.

Given an infinite sequence X := (Xi)
∞
i=1, which has the Bernoulli scheme

distribution (take for example the one from the above recalled construction by
Kac), one can define Γ on the same (Ω,F , P ) by “redistributing the digits” via
a triangular scheme, for example U1 := X1/2 +X3/2

2 +X6/2
3 +X10/2

4 + · · · ,
U2 := X2/2+X5/2

2+X9/2
3+ · · · , U3 := X4/2+X8/2

2+ · · · , U4 := X7/2+ · · · ,
and so on, and finally Γ = (Ui)i. Is this asymptotic definition of Γ on ([0, 1],B, P )
sufficiently explicit? Or are the examples like (1.5,2.10,2.11) - all leading (after
mod 1 application) to c.e.s. but none to i.i.d. uniforms - more reassuring to think
about (more amenable to analysis)? The answer will likely vary from one peer
to another, depending not only on their mathematical background and research
interests, but also on their personal perception of randomness. Note that such
and related questions challenged the very founders of probability theory only
80 years ago (see e.g. the historical notes of Knuth [Kn2], Section 3.3.5, or
[Lam, Bu1, Bu2]).

For reader’s benefit, we mention in this paragraph two other prominent ap-
proaches to randomness, nowadays practically forgotten by the probability and
statistics communities: the von Mises collectives, and Martin-Löf sequences. The
original definition [Ms] of Kollektiv (or collective) is not transparent. Following
[Bu2] (e.g. page 49), a collective is an infinite sequence of observations such
that the relative frequency of an event converges to the same number along ev-
ery subsequence chosen without prophetic powers; this common limit is called
the probability of the event in the collective. For further interpretations, dis-
cussions and more see [Lam, Bu1, Bu2]. Continued search for (more concrete)
examples of mathematically generated randomness led to Kolmogorov’s com-
plexity [Kol2], and the Martin-Löf sequences (see [ML] and [Le1]). Informally
speaking, Martin-Löf [ML] proves existence of binary sequences that pass the
“super-test for randomness”. Any such sequence can be rightfully called random.
Concreteness of this definition is again relative, and therefore left to an individ-
ual appraisal (Burdzy gives an interesting commentary in [Bu2], pp. 77–78).

2.1.3. Novel classes of examples of c.e.s.

Define

xk(t) = kk t, t ∈ G := (0, 1), k ≥ 1. (2.10)

and

xk(t) = k! t, t ∈ G := (0, 1), k ≥ 1. (2.11)

We claim that (1.1) defined using either (2.10) or (2.11) is completely equidis-
tributed in the sense of Definition 1.1.

Let us take (2.11) for example. Simple equidistribution can be quickly de-
duced as in the previous section (see Remark 2(b) in particular). Now fix some
d ≥ 2 and m ∈ Z \ {0}. WLOG we can assume that the Weyl criterion (2.3)
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has been shown for the (d − 1)-multiply case. Moreover, due to symmetry, we
can and will assume md > 0. We have

Yk(t) ≡ Yk(m ; t) := e(m,xk(t)), (2.12)

which in this special case reads Yk(t) = exp(2πi t
∑d

i=1 mi(k + i − 1)!), t ∈
[0, 1]. It is clearly true that E(Yk) = 0, and E|Yk|2 = 1, for each k ∈ N. It
is furthermore easy to see that whenever k − l > c(m) for some c(m) ∈ N,
then

∑
i mi[(k + i− 1)!− (l + i− 1)!]) is a strictly positive integer, and due to

the periodicity of sine and cosine, we have again E(YkYl) = E(YkYl) = 0 (or
equivalently, Yk and Yl are uncorrelated). Moreover, |Y |s are uniformly bounded
by 1. Therefore

var

(
N∑

k=1

Yk

)
= N +

N∑
k=1

k−1∑
l=k−c(m)

1 = N(1 + c(m)),

and again the argument LLN.(b)-LLN.(d) (using the simplification from Re-
mark 2(a)) applies. By induction on d, we obtain the above stated complete
equidistribution. The proof for (2.10) follows the very same steps. The reader
is undoubtedly able to construct further new examples of c.e.s. for which the
elements of (Yk)k are pairwise uncorrelated (except for nearby indices).

2.2. The Weyl variant of the SLLN and generalizations

It is easy to see that the steps in LLN.(a)-LLN.(d) could be applied to show
simple equidistribution in [0, 1] of (1.1), whenever xk(t) := akt, k ≥ 1 and (ak)k
is a sequence of distinct integers, yielding an alternative derivation of [KN] I,
Theorem 4.1. This result is already due to Weyl [We], and its original proof made
a profound impact on the development of (analytic) number theory. Indeed, in
the above and analogous situations (see e.g. [KN, MF, DT], as well as [Ho1],
Theorem 2), it is standard to apply the following variant of the SLLN, due to
Weyl [We]: since E|SN |2 = O(N), then

∑
n

E

(
|Sn2 |
n2

)2

< ∞,

and therefore by Tonelli’s theorem
∑

n
|Sn2 |
n2 < ∞ almost surely, and in partic-

ular Sn2/n2 → 0, as n → ∞. Finally use Remark 2(a) to get (2.6).
The Weyl variant of the SLLN has the following important extension, due to

Davenport, Erdös and LeVeque [DELV], that has been since used extensively in
number theoretic studies (see e.g. [KN] I, Theorem 4.2):

if
∑
n

1

n
E

(
|Sn|
n

)2

< ∞ then (2.6). (2.13)
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Its proof strongly relies on the uniform boundedness of the individual random
variables Y , but not at all on their particular (complex exponential) form (see
Lyons [Ly], Theorem 1). Lyons [Ly] takes moreover general complex-valued se-
quence (Yk)k, and derives different generalizations of the above SLLN criterion
of [DELV], where the uniform boundedness condition is replaced by various
bounded moment conditions.

Remark 3. In view of the SLLN stated here, the fact that the sequences of
functions from Section 2.1.3 generate c.e.s. is again trivial. Just like with the
usual SLLN (of LLN.(a)-(d) and Remark 2(a)), it is important here that all the
covariances can be computed or adequately (uniformly) estimated.

2.3. Weyl-like criterion for weakly c.e.s.

Recall the (random) discrepancy sequences introduced in Section 2.1.1. Owen
and Tribble (e.g. [OT] Definition 2 or [TO] Definition 5) define weak complete
equidistribution (aka WCUD) in terms of the weak(er) convergence of the dis-

crepancy sequence as follows: (βk)k is WCUD if and only if D∗,d
N ⇒ 0, or equiva-

lently (since the limit is deterministic), ifD∗,d
N → 0 in probability, for each d ≥ 1.

The following “a.s.-convergence along subsequences” characterization is well-
known: a sequence of random variables (Xn)n converges in probability to X,
if and only if for any subsequence (nk)k, one can find a further subsequence
(nk(j))j such that Xnk(j)

converges to X almost surely. Let us apply it to the
discrepancy sequences, and conclude (due to the countability of N, and the
Arzelà-Ascoli diagonalization scheme) that for any subsequence (nk)k one can
find a further subsequence (nk(j))j and a single event (Borel measurable set)
Gf of full probability such that

D∗,d
nk(j)

(t) → 0, for all d ≥ 1, and all t ∈ Gf ⊂ G.

But now we recall (as in Section 2.1.1) that the above convergence is equivalent
(t-by-t) to the simultaneous (for each d ∈ N and on the full probability event
Gf ) weak convergence of the random sequence (νdnk(j)

)j to the corresponding

uniform law λ on [0, 1]d, where

νdN :=
N∑

k=1

1

N
δβd

k

, d ∈ N.

The last made claim is in turn equivalent (recall the reasoning of Section 2.1
and definition (2.12)) to the statement

lim
j

1

nk(j)

nk(j)∑
k=1

Yk(m) = 0, on Gf , for each m ∈ Z
d \ {0}, and each d ∈ N.

(2.14)
This leads to the following conclusion: for each subsequence (nk)k one can find a
further subsequence (nk(j))j such that for each m ∈ Z

d \ {0} the rescaled Weyl



146 V. Limic and N. Limić

sums indexed by m converge to 0 along that sub(sub)sequence, almost surely.
In other words, for each d and m ∈ Z

d \ {0}, instead of (2.6) we arrived to

lim
N

SN

N
= lim

N

1

N

N∑
k=1

Yk(m) = 0, in probability. (2.15)

Finally recalling that, in our special setting, |SN |/N is uniformly bounded by 1,
the (adaptation of) Lebesgue dominated convergence theorem says that (2.15)
is equivalent to

lim
N

E
SN

N
= lim

N
E
|SN |
N

= 0. (2.16)

We record the above sequentially made equivalences as

LEMMA 2.1 (Sufficiency and necessity for weak c.e.s. (aka WCUD)). Let (xk)k
be a sequence of random variables (or measurable functions on G), Yk(m) be
defined by (2.12), and (βk)k by (1.1). Then (βk)k is weakly completely equidis-
tributed in [0, 1] if and only if (2.16) is valid for each d and m ∈ Z

d \ {0}.
In view of Lemma 2.1, the claim from [TO] that WCUD sequences are hard

to construct seems rather surprising.

2.4. Extensions to the non-linear setting

As already noted, the reasoning of Section 2.1 is crucially connected to linearity
only through (2.5). In particular, if we were to take (1.5) or some other sequence
of functions, then apply (1.7) to obtain d-dimensional vector sequences, and plug
them into (2.2,2.4,2.12), the criterion (2.3), to be verified through (2.6), would
stay the same. Note however that the correlation structure may (and typically
does) become much more complicated than that given in (2.5) or in Section
2.1.3. For a detailed discussion of problems with non-linearity see [Ai].

In the special case of Koksma’s numbers, the probability P is set to λ renor-
malized by (a−1) on [1, a], or equivalently, P is the uniform law on [1, a]. Before
considering covariance, one could already note that Yk may not (necessarily) be
even centered. Since Yk(t) ≡ Yk(m ; t) := e(m,xk(t)), t ∈ [1, a], we have that

E(Yk) =
1

a− 1

[∫ a

1

cos(2πm · xk(t)) dt+ i

∫ a

1

sin(2πm · xk(t)) dt

]
. (2.17)

The non-zero expectation does not matter much, if one could show that the long
term average of (Y·) is approximately centered, or equivalently, that

lim
N

1

N

N∑
k=1

EYk = 0.

The covariance analysis to be done below will imply an even stronger esti-
mate E(|SN |) = O(N1−1/d), but already from Jensen’s inequality we get that
if E(|SN |2) = o(N2), then E|SN | = o(N), which would be sufficient.
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The argument LLN.(a)-LLN.(d) will continue to work for the sequence (Yk−
EYk)k, and will imply (2.6) for (Yk)k, even in the presence of correlation, pro-
vided that the total covariance

n∑
k=1

n∑
l=k+1

|E(YkYl) + E(YlYk)|

grows sufficiently slowly in N . Indeed, a little thought is needed to see that if

|E(YkYl+YlYk)| =
1

a− 1

∣∣∣∣∣
∫
[1,a]

cos(2πm · (xk(t)− xl(t)) dt

∣∣∣∣∣ ≤ c|k− l|−δ, k �= l,

(2.18)
for some c = c(a,m, d) < ∞, δ = δ(a,m, d) > 0, then the conclusion (2.6)
remains (this time choose Nn = �n2/δ�, and then apply the sandwiching argu-
ment). Alternatively, this can be immediately deduced form the SLLN criterion
(2.13).

We record the just made observations in form of a lemma.

LEMMA 2.2 (Sufficiency for complete equidistribution I). Let (xk)k be a se-
quence of random variables (or measurable functions on G), Yk(m) be defined
by (2.12), and (βk)k by (1.1). If for each m, |E(Yk(m)Yl(m)+Yl(m)Yk(m))| =
O(|k−l|−δ), for some δ(m) > 0, then (βk)k is completely equidistributed in [0, 1].

Deriving (2.18) is a longer calculus exercise, sketched here for reader’s benefit.
Fix d ≥ 1, m ∈ Z

d \ {0}, and consider βd
k = (βk1, . . . , βkd) defined in (1.7).

Recalling that xk(t) = tk we have m · (xk(t)− xl(t)) =
∑

i mi(t
k+i−1 − tl+i−1).

If p(t) ≡ p(t;m) =
∑

i mit
i−1 and g(t) ≡ g(t; k, l) = tk − tl, then

m · (xk(t)− xl(t)) = p(t)g(t), t ∈ G = [1, a]. (2.19)

One can assume WLOG that k > l, so that g(t) is non-negative on G, with
a single zero t = 1. Let d∗ equal to the maximal index i such that mi �= 0. The
polynomial p does not depend on k, l. It has degree d∗−1 and therefore at most
d∗− 1 ≤ d− 1 real zeros, each of which may fall into G. Therefore p(·)g(·) takes
value 0 at 1, and at most d− 1 other points in G. Let us denote these zeros by
(zj)

r
j=1, where 1 =: z0 ≤ z1 < . . . < zr ≤ a =: zr+1. For j = 1, . . . , r, let lj

be the multiplicity of zj for p. Extend this definition to l0 = 0 if z1 > 1, and
lr+1 = 0 if zr < a. Define

b1 := max
t∈[1,a]

|p′(t)|, b2 := max
t∈[1,a]

|p′′(t)|.

Keeping in mind that r ≤ d− 1, we now let Ii := [zi, zi+1], and estimate∣∣∣∣
∫
Ii

cos(2π g(t)p(t)) dt

∣∣∣∣ (2.20)

separately for each i = 0, . . . , r. The non-zero polynomial p does not change sign
on Ii, so WLOG we can assume that it takes positive values in the interior of
Ii. Moreover

min
z∈Ii

p(z)/((z − zi)
li(zi+1 − z)li+1) =: ci > 0. (2.21)
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If zi+1− zi ≤ 3
(k−l)1/d

then (2.20) is clearly bounded by 3/(k− l)1/d. Otherwise,

define I ′i := [zi +
1

(k−l)1/d
, zi+1 − 1

(k−l)1/d
]. Split the domain of integration in

(2.20) into three disjoint pieces: [zi, zi +
1

(k−l)1/d
), I ′i and (zi+1 − 1

(k−l)1/d
, zi+1].

The integral of cos(·) over the first and the final piece is again trivially bounded
above by 1/(k − l)1/d. For the middle piece, it suffices to show that:

(a) (pg)′(zi +
1

(k−l)1/d
) ≥ c̄i|k − l|1/d, where c̄i > 0 and that

(b) (pg)′′(t) = g′′(t)p(t) + 2g′(t)p′(t) + g(t)p′′(t) > 0 on I ′i.

Indeed, (a)-(b) would imply that 2πg(·)p(·) increases more and more rapidly
on I ′i, and in turn that cos(2π g(t)p(t)) makes shorter and shorter “excursions”
of alternating sign, away from 0. This would yield an upper bound for the
integral over I ′i in terms of t∗i − (zi +

1
(k−l)1/d

) where t∗i is the second zero of

cos(2π g(·)p(·)) in [zi +
1

(k−l)1/d
,∞]. From (a) and (b) one could easily conclude

that t∗i − (zi +
1

(k−l)1/d
) ≤ (2c̄i)

−1(k − l)−1/d. The just made reasoning justifies

the upper bound (2+(2c̄i)
−1)(k− l)−1/d, which in turn implies the upper bound

(2.18) with δ = 1/d and c(a,m, d) :=
∑r

i=0(2+(2c̄i)
−1). Alternatively, one could

use [KN] I, Lemma 2.1.

To show (b), note that g′′(t) = k(k − 1)tk−2 − l(l − 1)tl−2 is greater than
(k2 − l2 +O(k+ l))tk−2. We also have g′(t) = ktk−1 − ltl ≤ ka · tk−2 and g(t) ≤
a2 · tk−2. Due to (2.21) and the fact li + li+1 ≤ d∗ − 1 ≤ d− 1, the leading term
of (pg)′′(t) is positive and bounded below by ci|k− l|1/d(k+ l)tk−2 on I ′i, while
the two other terms are bounded above by b1kat

k−2 and b2a
2tk−2, respectively,

yielding (b). We leave to the reader a similar (and easier) argument for (a).

Finally note that the derivation of the bound in (2.18) applies also to esti-
mating both the real and the imaginary part of (2.17), and leads to an analogous
bound EYk = O(k−1/d).

2.4.1. Koksma’s numbers have even stronger properties

Koksma’s derivation [Kok] of the simple equidistribution of Koksma’s numbers
was similar to that included above (see also [KN] I, Theorem 4.3), and easier
due to the fact that a simpler polynomial m · g replaces p · g in (2.19). As
already mentioned in the introduction, Franklin [Fr] found a way (again similar
to the calculus exercise above) of building on Koksma’s analysis, without directly
applying Weyl’s criterion for multiple equidistribution.

Koksma [Kok] showed in addition a stronger type of equidistribution: sup-
pose that (ak)k is a sequence of positive distinct integers, and consider the re-
ordering (with possible deletion) of Koksma’s numbers obtained via (1.1) from
(xak

)k≥1 defined as in (1.5), the obtained sequence is again simply equidis-
tributed. Niederreiter and Tichy [NT1] proved that the above arbitrarily per-
muted (sub)sequence of Koksma numbers is in fact completely equidistributed,
thus confirming a guess of Knuth’s [Kn2], who called the above property pseudo-
random of R4 type. As it turns out, the arguments in [NT1] are equally based
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on probabilistic reasoning (using the [DELV] variant (2.13) of the SLLN and
covariance calculations). For the benefit of the reader we sketch it next.

Suppose initially that, for each m �= 0, |E(Yk(m)Yl(m) + Yl(m)Yk(m))| is
bounded by c(m)/ log2 N , unless |k − l| ≤

√
N or min{k, l} ≤

√
N . Then it is

easy to see that E|SN |2 ≤ N+2
∑N

k=1

√
N+

∑N
k=

√
N

∑N
l=k+

√
N c(m)/ log2 N =

N + N3/2 + N2/ log2 N which is O(N2/ log2 N). The criterion (2.13) implies
the required convergence in the Weyl criterion. We again record the just made
observations in form of a lemma.

LEMMA 2.3 (Sufficiency for complete equidistribution II). let (xk)k be a se-
quence of random variables (or measurable functions on G), Yk(m) be defined
by (2.12), and (βk)k by (1.1). If for each m, |E(Yk(m)Yl(m)+Yl(m)Yk(m))| =
O(1/ logN2), whenever min{l, k − l} ≥

√
N , then (βk)k is completely equidis-

tributed in [0, 1].

The proof in [NT1] uses Lemma 2.3 with a small (and natural) twist: instead
of the original indexing/ordering, for each N , m, to each k ∈ {1, . . . , N} one
assigns b(k) := maxdj=1{ak+j : mj �= 0}, and then estimates |E(Yk(m)Yl(m) +

Yl(m)Yk(m))| whenever min{|b(k)−b(l)|, b(k), b(l)} ≥
√
N . The rest of the argu-

ment is exactly as described above (without the probabilistic rescaling by a−1).
Further qualitative and quantitative improvements and extensions, to be re-

called soon, were done in the late 1980s by Niederreiter and Tichy [NT2], Tichy
[Ti], Drmota, Tichy and Winkler [DTW], and Goldstern [Go] (see also [DT], Sec-
tion 1.6). And yet, interesting non-trivial open problems remain, as indicated
in the next section.

3. Concluding remarks with open problems

The main theorem of [Li] also yields novel generators of (stochastic a.s.) com-
pletely equidistributed sequences in the non-linear setting, of which the proto-
type is xk(t) = (t(log t)rk)wk , k ≥ 1, where (rk)k (resp. (wk)k) are sequences of
positive (resp. natural) numbers satisfying certain hypotheses. This may not be
so interesting (even though there is no obvious reduction of such sequences to ex-
ponential sequences of Section 2.4.1) in view of the main theorem of Niederreiter
and Tichy [NT1, NT2]. However, the approach to (complete) equidistribution,
implicit in [Li] and made explicit in Section 2, is interesting. In particular, it
leads to the realization that [NT1] is based on probability arguments.

A careful reader must have noticed that (2.13) is only a sufficiency condi-
tion for the SLLN (2.6). Davenport, Erdös and LeVeque also state (in [DELV],
main/only Theorem) “On the contrary...”, however these counter-examples do
not either imply nor disprove the necessity of assumption

∑
n

1

n
E

(
|Sn|
n

)2

< ∞,

for the SLLN of the corresponding Weyl sums. Indeed, it could be that xk are
purely constant (random variables), and such that for some m ∈ Z

d \0 we have
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that E|Sn(m)|2
n2 = |Sn(m)|2

n2 is both Ω(1/logn) and o(1) (Korobov [Kr4] guarantees
that such examples exist), so that the SLLN happens even though the series in
the criterion diverges. However, here we would trivially have, for the same d and
m ∈ Z

d \ {0}, that

∑
n

1

n
var

(
|Sn(m)|

n

)
< ∞, and lim

n

E|Sn(m)|2
n2

= 0. (3.1)

While the above example is arguably contrived, it already illustrates the fol-
lowing straight-forward consequence of (2.13) (or more precisely, of its gener-
alization [Ly], Theorem 1): (3.1) is a (strictly) stronger sufficiency criterion for
the SLLN of the corresponding (indexed by m) Weyl sums, than that given
in [DELV] (see (2.13)). Is it necessary? If not, is the whole d-dimensional col-
lection of them (meaning that (3.1) is true for all m ∈ Z

d \ {0}) necessary
for d-multiple equidistribution of the corresponding β? If not, is the complete
collection of them (meaning that (3.1) is true for all m ∈ Z

d \ {0} and all
d ∈ N) necessary for complete equidistribution of the corresponding β? If not,
are there natural additional (easy to check) hypotheses on (xk)k under which
these families of criteria become necessary (they are always sufficient)?

As pointed out in Section 2.4.1, we know from [NT1] that Koksma’s numbers
are of R4 type and that the same is true, as shown in [NT2], for a large class of
other exponentially generated sequences. A trivial example of a c.e.s. which is
also R4 (and even R6 in Knuth’s terminology) is the infinite statistical sample Γ,
but as explained in Section 2.1.2, this is likely not considered sufficiently explicit
from a non-probabilist’s perspective. The examples from Section 2.1.3 must have
been known to the modern analytic number theory community, in particular as
examples of so-called lacunary sequences. We could not find them on the list
of c.e.s. in any the standard references, however (2.11) was studied by Korobov
[Kr3] in connection to an explicit example of a simply equidistributed sequence.
They seem amenable to analysis, and natural for continuing the investigation
in Knuth’s framework, who anticipated the result of [NT1], but at the time
knew only the work of Franklin and Koksma about Koksma’s numbers (and
variations thereof) [Kok, Fr]. Are linear c.e.s. from Section 2.1.3 also of R4
type? Is it possible that any sufficiently random c.e.s. (e.g. var(βk1 [c,d]) > 0 for
all k and and all 0 ≤ c < d ≤ 1) is of R4 type? If not, is there a natural and
easy to check characterization of when the complete equidistribution (type R1)
implies R4? By the way, note that if an infinite sequence of random variables
(βk)k on ([0, 1],B, λ) is both completely equidistributed in [0, 1] (that is, of type
R1) and exchangeable (see e.g. [Du], Example 5.6.4), then it must be equal in
law to Γ. Is there a natural exchangeability-like property (clearly stronger than
R4 type), though weaker than exchangeability, that would jointly with c.e.s. still
imply that the sequence (βk)k has the law of Γ? Is there a natural condition
(stronger than c.e.s. but weaker than i.i.d.) that would imply, jointly with R4
type, that the sequence (βk)k has the law of Γ?

Once equidistribution is established, it is natural to ask about the rate of
convergence in (1.2), or in analogous multi-dimensional expressions that corre-
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spond to Definitions 1.1-1.2. The discrepancy sequences (as recalled in Section
2.1.1) seem to be the principal object for this analysis, already in the focus of
classical studies by the founders of analytic number theory (see [KN], Chap-
ter 2 and [DT] Sections 1.1–1.2). From the stochastic point of view, it seems
more interesting to study discrepancy as a random variable. In particular, the
well-known Erdős-Turán-Koksma inequality (see e.g. [DT], Theorem 1.21) can
be restated in the present setting as follows: if H is a positive integer and, for
m ∈ Z

d, we let r(m) :=
∏d

i=1 max{1, |mi|}, then it is true (t-by-t) that

D∗,d
N ≤

(
3

2

)d
⎛
⎝ 2

H + 1
+

∑
0<‖m‖∞≤H

1

r(m)

∣∣∣∣∣ 1N
N∑

k=1

Yk(m)

∣∣∣∣∣
⎞
⎠.

Substantial work by the “Tichy school” has been done on multi-dimensional dis-
crepancy estimation of Koksma’s numbers and variations. In particular, Tichy
[Ti] obtains, in the context of [NT2] (more precisely, xk(t) = tak , t > 1, for some
ak ∈ R, and the minimal distance between different powers is bounded below by
δ > 0), bounds on D∗,d

N of the form O(N−1/2+η) for any η > 0, even if the multi-
plicity d is not fixed but diverges as logN raised to a small power; and Goldstern
[Go] extends these to the setting where the replication between the exponents
an is possible but infrequent, and the minimal distance between the exponents
may slowly converge to 0 (see also notes on the literature in [DT], Section 1.6).

Recall that already in the setting of linear generators, the random vari-
ables Yk(m) are not mutually independent, however they do have other nice
properties. For concreteness, one could take the two examples of completely
equidistributed sequences from Section 2.1.3. Is there a central limit theorem,
or another type of concentration result that would apply, and give good esti-
mates on d-dimensional (star) discrepancy of these sequences, with or without

modifications related to R4 type of randomness? When is
√

N/ log logND∗,d
N a

tight sequence of random variables? The above LIL-type result for the simple
(1-multiple) discrepancy sequences (D∗,1

N )N is well-known (see e.g. [DT] Sec-
tion 1.6.2 or [AB2]) in the context of lacunary sequences, and in particular for
(2.10,2.11), even if permuted (without possible deletion), as shown by Aistleit-
ner et al. [ABT]. But as soon as one starts increasing the multiplicity d, no
specific study of the corresponding LIL seem to exist.

In view of (2.9) and Remark 1(d), most probabilists and statisticians would
likely ask if any of the following is true for any (or all) of the c.e.s. discussed
here: given any d ≥ 1 and any f : R

d → R a nice enough function, define
f(β∞

k ) := f(βd
k) and f(Γ) := f(U1, U2, . . . , Ud). Are the sequences of random

variables (recall (1.8))

√
N

(
1

N

N−1∑
k=0

f(β∞
kh+1)−E (f(Γ))

)
, N ≥ 1, where h ≥ d, (3.2)

and/or

√
N

(
1

N

N∑
k=1

f(β∞
k (t))−E (f(Γ))

)
, N ≥ 1, (3.3)
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tight? Do they converge in law to a centered Gaussian random variable? These
questions are similar in spirit to those of the preceding paragraph, but not
quite the same (see [AB3] for a functional CLT for 1-dimensional discrepan-
cies). In particular, the well-known Koksma and Koksma-Hlawka inequalities
(see e.g. [KN], Ch. 2, Section 5 or [DT], Theorem 1.14) serve to give universal
bounds on the error in (MC) numerical integration in terms of the discrepancy
of the sequence and (a multi-dimensional extension of) the bounded variation of
the integrand. Though essential in various applications, they are too crude for
studying weak convergence properties (3.2,3.3). In the one-dimensional setting,
again a substantial progress has been made for lacunary sequences, starting
from the classical work of Salem and Zygmund [SZ], and ending in the recent
studies by Aistleitner et al. [AB1, ABT] (see also [Ai, AB2]). Satisfying the CLT
analogues (3.2,3.3) (with permutations and possible deletions permitted) would
undoubtedly be a strong “evidence of randomness”. How is it (or is it) related
to the strongest Knuth’s [Kn2] R6 type of pseudo-randomness?
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[DELV] H. Davenport, P. Erdős, and W.J. LeVeque, On Weyl’s crite-
rion for uniform distribution. Michigan Math. J., 10, 3:311–314, 1963.
MR0153656

[DT] M. Drmota and R.F. Tichy, Sequences, Discrepancies, and Appli-
cations. Lecture Notes in Mathematics 1651, Springer, Berlin, 1997.
MR1470456

[DTW] M. Drmota, R.F Tichy, and R. Winkler, Completely uni-
formly distributed sequences of matrices. In: Number-Theoretic Anal-
ysis. Lecture Notes in Math. 1452, pp. 43–57, Springer, 1990.
MR1084637
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