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Abstract: This paper is an up-to-date introduction to the problem of
uniqueness versus non-uniqueness of infinite clusters for percolation on
Z

d and, more generally, on transitive graphs. For iid percolation on Z
d,

uniqueness of the infinite cluster is a classical result, while on certain other
transitive graphs uniqueness may fail. Key properties of the graphs in this
context turn out to be amenability and nonamenability. The same problem
is considered for certain dependent percolation models – most prominently
the Fortuin–Kasteleyn random-cluster model – and in situations where the
standard connectivity notion is replaced by entanglement or rigidity. So-
called simultaneous uniqueness in couplings of percolation processes is also
considered. Some of the main results are proved in detail, while for others
the proofs are merely sketched, and for yet others they are omitted. Several
open problems are discussed.
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1. Introduction

Percolation theory began in 1957, when Broadbent and Hammersley [18] intro-
duced the, now standard, iid bond percolation model on Z

d. They did this to
model a porous stone on a microscopic level in order to study the question of
whether the center of the stone gets wetted when it is immersed into a bucket of
water. Since then, percolation theory has attracted an enormous amount of in-
terest. This is partly because of its applicability: the independence in the model
makes it possible to handle, and still it is not too unrealistic for many random
media. It has also proved fruitful to use comparisons with iid percolation in
order to obtain results for various types of dependent percolation models. The
main reason, however, for the interest is the mathematical beauty of the topic
with its abundance of easily formulated conjectures of which many have proved
to be very difficult to settle and which have inspired the development of powerful
mathematical techniques.
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With the comme il faut slip of notation, we write Z
d for the graph whose

vertex set is Z
d and whose edge set consists of all pairs of vertices sitting at

Euclidean distance 1 from each other. While percolation theory began on Z
d,

the model makes perfect sense on any connected graph G = (V, E): Let each edge
be retained with probability p (and deleted with the remaining probability 1−p)
independently of all other edges. On Z

d in d ≥ 2 dimensions, it is a fundamental
fact, dating back to Broadbent and Hammersley, that the occurrence of an
infinite connected component – or an infinite cluster, as we will also call it – has
probability 0 or 1 depending on whether p is below or above a certain critical
threshold pc ∈ (0, 1). When there are infinite clusters one may ask how many,
and this is the topic of the present survey paper.

Let us briefly mention a motivational example from real life. Take G = (V, E)
be the graph whose vertex set consists of all mathematicians, and connect any
two of them by an edge e ∈ E if they have ever coauthored a mathematical pa-
per. The distance in this graph between a given mathematician v and Paul Erdős
is colloquially referred to as v’s Erdős number. If we define a mathematician to
be a person who has authored at least one piece of work that by May 2004 had
found its way into the MathSciNet database, and two such mathematicians to
be coauthors if they have a joint publication in that database, then the graph
consists of about 401 000 vertices, and a good deal of other interesting statistics
and graph characteristics are available; see Grossman [43, 44]. About 83 000
of the nodes are isolated, corresponding to mathematicians with no coauthors.
The largest connected component – the one containing Erdős – contains about
268 000 vertices; these are all the mathematicians that have finite Erdős num-
bers. The second largest connected component contains only 32 vertices. This
striking contrast between the size of the largest and the second largest con-
nected component may be phrased as uniqueness of the giant component, and
calls for our attention. Is this a special feature of social networks (as opposed
to graph structures arising in other applications) or even of the social structure
of mathematicians, or is it an instance of a much more general phenomenon?

Something similar happens in the well-known Erdős–Rényi random graph,
consisting of n vertices where each pair is linked by an edge with probability p,
independently of all other pairs. (Equivalently, the Erdős–Rényi random graph
can be seen as bond percolation with retention parameter p on the complete
graph with n vertices.) There is an enormous literature on this model; see, e.g.,
Bollobás [15] or Janson et al. [70]. The most natural way to scale p as n → ∞
is to fix c and let p = c

n , and the classical result going back to Erdős and Rényi
[30] is that the proportion of vertices sitting in the largest connected component
tends in probability to a constant, which is 0 when c ≤ 1 and strictly positive
when c > 1. On the other hand, it is fairly straightforward to show that for all
c, the proportion of vertices sitting in the second largest component, tends in
probability to 0. Hence, for c > 1 and n large, we obtain another instance of the
uniqueness of the giant component phenomenon.

In this paper, as in most of mathematical percolation theory, we will only
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be dealing with infinite graphs1, where the issue of uniqueness of the giant
component translates naturally into the question of whether there is a unique
infinite cluster. This has the advantage of always having a clear-cut yes/no-
answer, in contrast to the finite setting where it is not always totally obvious
what one really should mean by a giant component.

From now on, G = (V, E) will denote the underlying infinite graph on which
the percolation process takes place. G will always be assumed to be connected.
Some more terminology: An iid bond percolation with retention parameter p on
the graph G = (V, E) is a random element X of {0, 1}E whose distribution Pp

is product measure with marginals (1− p, p). We identify X with the subgraph
of G containing all vertices v ∈ V and precisely those edges e ∈ E taking value
X(e) = 1. When X(e) = 1 we speak of e as an open edge, whereas if X(e) = 0
we say that e is closed.

In the equally natural process of iid site percolation, it is the vertices, rather
than the edges, that are retained at random (independently, each with probabil-
ity p). As far as qualitative results are concerned, it is usually of little importance
whether bond or site percolation is considered. Here we will, with few excep-
tions, focus on bond percolation; most results and proofs have obvious analogues
for site percolation.

The most basic question to ask about X is whether it contains an infinite
cluster. Write C for this event, i.e., the event that X contains at least one
infinite cluster. It follows from the Kolmogorov 0-1-law that Pp(C) is either 0 or
1. Furthermore, it is intuitively obvious that Pp(C) should be non-decreasing in
p, since adding edges to X cannot destroy an infinite cluster. This intuition is
turned into mathematical rigor via the following coupling, which will be useful
to us several times later in this paper:

Coupling 1.1 The simultaneous coupling construction. Associate with
each edge e ∈ E a random variable Ue uniformly distributed on the unit interval.
For each p ∈ [0, 1], define Xp(e) = I[0,p)(Ue). Then, for any p, Xp = {Xp(e)}e∈E

is an iid bond percolation with retention parameter p, i.e., Xp has distribution
Pp.

For 0 ≤ p1 < p2 ≤ 1, we have in the simultaneous coupling construction that
Xp1

(e) ≤ Xp2
(e) for every e ∈ E, and consequently Pp(C) is non-decreasing in

p. Combined with the observation that Pp(C) must be 0 or 1, this implies the
existence of a critical probability pc = pc(G) ∈ [0, 1] such that

Pp(C) =

{

0, p < pc

1, p > pc .

For a given vertex v ∈ V , define θv(p) = Pp(v ↔ ∞), where {v ↔ ∞} is the
event that v is in an infinite cluster. In many cases, such as when G = Z

d

(and more generally when G is transitive; see Definition 1.2 below), θv(p) is

1However, in recent years, there have been some very interesting developments in the
project of bridging the infinite and the large-but-finite in percolation theory; see, e.g., [17]
and [16].



Häggström and Jonasson/Uniqueness in percolation 292

independent of the choice of v ∈ V , and we write θG(p) instead (or just θ(p) if
it is obvious which graph is meant). Clearly, Pp(C) = 0 implies that θv(p) = 0
for any v. Conversely, under our universal assumption that G is connected,
Pp(C) > 0 implies θv(p) > 0 for any v; this is easy to see, for instance using
Coupling 2.5 below. Hence, the following alternative characterization of the
critical value pc(G) holds: for any v ∈ V , we have

{

θv(p) = 0, p < pc

θv(p) > 0, p > pc .

When p < pc the percolation said to be subcritical while for p > pc it is said to
be supercritical, and for p = pc it is said to be critical. Whether Pp(C) is 0 or 1
at criticality depends on the choice of G. For G = Z

d with d ≥ 2, it is believed
that θG(pc) = 0. This is known only for d = 2, where it was established by
the work of Harris [62] and Kesten [76], and for d ≥ 19 due to Hara and Slade
[61]. The cases 3 ≤ d ≤ 18 are what remain of the most classical long-standing
open problem in percolation theory. Benjamini and Schramm [12] (we will soon
hear more about their paper) extended the conjecture θG(pc) = 0 to the class
of transitive graphs with pc < 1; this was later shown to be the case for a large
class of graphs by Benjamini et al. [9] – see Theorem 7.3 below – but the full
conjecture remains open.

We move on to the main topic of this paper: in supercritical percolation,
how many infinite clusters are there? A very brief history of this problem is as
follows.

In his classical 1960 paper, Harris [62] showed that on Z
2 one has pc ≥ 1/2,

and by combining this with the self-duality of Z
2 he was able to deduce that

for any supercritical p there is a.s. a unique infinite cluster. The world then had
to wait until 1987 before Aizenman et al. [3] were able to extend this to d ≥ 3
and thus establish uniqueness of the infinite cluster in all dimensions. A couple
of years later, Burton and Keane [19] obtained an alternative proof which is
much shorter and easier to comprehend, and more amenable to generalizations.
Consequently, the Burton–Keane proof has become the standard one to present
in textbooks and courses (see, e.g., Grimmett [37]), and we will follow suit.

Soon afterwards, the subject was given an additional spark in a paper by
Grimmett and Newman [42] who showed that there are interesting graphs for
which one has uniqueness of the infinite cluster for some p but not for others.
The specific example they used was the Cartesian product graph G = Td × Z

where Td is a regular tree of degree d + 1, and they showed that the desired
phenomenon occurs when d is large enough: when p is sufficiently close to pc,
there are infinitely many infinite clusters, while uniqueness holds when p is
sufficiently close to 1. The Grimmett–Newman paper can be seen as a forerunner
to the highly influential paper from 1996 by Benjamini and Schramm [12], who
suggested – correctly, as it turned out – that a fruitful generality in which to
study percolation would be the transitive and the quasi-transitive graphs; see
the following definition. A frenzy of activity and interesting results followed
upon the Benjamini–Schramm paper, including a number of results concerning
uniqueness versus non-uniqueness of infinite clusters.
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Definition 1.2 Let G = (V, E) be an infinite graph. A bijective map f : V →
V such that {f(u), f(v)} ∈ E if and only if {u, v} ∈ E is called a graph

automorphism for G. The graph G is said to be transitive if for any u, v ∈ V
there exists a graph automorphism mapping u on v. More generally, G is said
to be quasi-transitive if V can be partitioned into a finite number of vertex
sets V1, . . . Vk such that for any i ∈ {1, . . . , k} and any u, v ∈ Vi, there exists a
graph automorphism mapping u on v.

Heuristically, the graph G is transitive if and only if it “looks the same” as seen
from any vertex – examples include both the usual Z

d lattice and the Grimmett–
Newman example Td × Z – while quasi-transitivity means that there are only
finitely many “kinds” of vertices.

The topic of uniqueness (and non-uniqueness) of infinite clusters in percola-
tion theory was reviewed already in a 1994 paper entitled Uniqueness in percola-
tion theory by Meester [83], but the subject has, as we shall see, developed vastly
since then. The title of the present paper is meant as an allusion to Meester’s
paper, and as an indication of the shift in the subject’s center of mass that has
taken place during the last decade. See also Grimmett [39] for a more recent
treatment, with a somewhat different emphasis compared to ours.

The rest of this paper is organized as follows. In Section 2, we consider the
Z

d case, and give the uniqueness arguments of Harris [62] and Burton and
Keane [19]. In Section 3, we outline the more recent work concerning perco-
lation on more general transitive (and quasi-transitive) graphs following the
footsteps of Grimmett and Newman [42] and Benjamini and Schramm [12]. Sec-
tions 4–9 are then devoted to describing this work in more detail, including a
number of proofs. In particular, we will learn about the crucial role played by
the properties of amenability versus nonamenability of transitive graphs, and
the progress towards the still-open problem (see Conjecture 3.3) of establishing
whether nonamenability is equivalent to the existence of some p ∈ (0, 1) where
non-uniqueness holds.

Then, in Section 10, we move on to questions concerning so-called simultane-
ous uniqueness in coupling constructions such as the one in Coupling 1.1, and
in Section 11 we briefly mention similar issues for so-called dynamical percola-
tion. In Sections 12 and 13, we consider what happens when we let go of the iid
assumption in favor of dependent percolation models; prime examples are the
random-cluster model and uniform spanning trees. Some particular results for
dependent percolation on Z

2 are considered in Section 14. Finally, in Sections
15 and 16, we consider what happens if we focus not on connected components,
but rather on entangled or on rigid components.

Before moving on, let us finally emphasize that we make no claims at a com-
plete coverage of the topic of uniqueness vs non-uniqueness of infinite clusters
in percolation theory – the subject is much too large for that. In our choice of
material, we have (apart from some early fundamentals of the subject) mainly
been guided by our wish to include those topics that we feel have developed
most vigorously during the last decade, but the choices are of course open to
criticism. Two topics that were treated at some length by Meester [83] but are
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completely omitted here, are continuum percolation [84] and fractal percolation
[24].

2. Percolation on Z
d

We begin this section with Harris’ [62] proof of uniqueness of the infinite cluster
for iid bond percolation on Z

2. For this, we will need to consider the dual of
Z

2. For later use, we take the opportunity to define the dual graph of a planar
graph in general.

Definition 2.1 Let G = (V, E) be a planar graph with a specified embedding
in R

2. The dual graph G† = (V †, E†) is the graph in which V † is the set of faces
of G and for u, v ∈ V †, {u, v} ∈ E† iff the faces u and v share an edge in E.

For G = Z
2, it is natural to picture the dual as a copy of the original Z

2-lattice,
shifted in R

2 by the vector (1
2 , 1

2 ).
Now, if X is an iid bond percolation with retention parameter p on G, then

the dual percolation X† on G† is defined by letting a given edge in G† be open in
X† iff its crossing edge in G is closed in X . By this definition, X† is an iid bond
percolation on G† with retention parameter 1−p. The point of considering dual
percolation for Z

2 is that the connected component of a vertex v ∈ Z
2 is finite

iff v is surrounded by a circuit, i.e., a cycle of open edges, in X†. This statement
is easy to believe but cumbersome to prove in full rigor (see, e.g., Kesten [77]);
we state it here without proof.

Harris’ result on uniqueness is the following.

Theorem 2.2 (Harris [62]) The infinite cluster of supercritical percolation
on Z

2 is a.s. unique.

Proof. By an ingenious sequence of geometric arguments that we do not present
here, Harris showed that on Z

2 percolation does not occur for p = 1/2.2 The dual
of Z

2 is isomorphic to Z
2 itself, and if one takes p = 1/2, the dual percolation

X† has exactly the same probabilistic behavior as the original percolation X .
Let B be a large box in Z

2 centered at the origin. Since a.s. there is no infinite
path of open edges in X intersecting B, B is a.s. surrounded by a circuit in
X†. Thus B must also be surrounded by a circuit in X . Using Coupling 1.1, we
realize that this also holds for all higher values of p, in particular for all p for
which percolation occurs. This means that no two separate infinite clusters can
both intersect B, because they would then have to be be joined by the circuit.
Since the size of B was arbitrary, this shows that there can only be one infinite
cluster. 2

Harris’ argument, although beautiful, is obviously highly dependent on the pla-
nar structure of Z

2, and it would be a waste of time to try to generalize the

2Consequently pc ≥ 1/2. It quickly became a famous open problem to show that this
inequality for pc is in fact an equality. 20 years later, Kesten [76] proved that pc indeed equals
1/2.
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argument in order to prove, e.g., uniqueness of the infinite cluster for percolation
on Z

d for d ≥ 3. More than 25 years later, Aizenman et al. [3] were able to prove
uniqueness of the infinite cluster for percolation on Z

d in arbitrary dimension
d. Their proof was rather difficult, but a substantially simpler proof was soon
obtained by Burton and Keane [19]. The Burton–Keane proof exploits only two
aspects of the graph structure of Z

d: transitivity (recall Definition 1.2) and so-
called amenability. Amenability will continue to play an important role in later
sections, so we will state and prove the uniqueness result in that generality.

To define amenability, we first need a notion of isoperimetric constants. For
an infinite connected graph G = (V, E), define its edge-isoperimetric constant
as

κE(G) = inf
W

|∂EW |
|W | ,

where the infimum ranges over all finite connected subsets W of V , and ∂EW
is the set of edges with one end-vertex in W and one in V \W .

Definition 2.3 Take G to be a graph with edge-isoperimetric constant κE(G).
If κE(G) = 0 then G is said to be amenable, while if κE(G) > 0 then we say
that G is nonamenable.

We remark that it is equally natural to define the (inner) vertex-isoperimetric
constant as

κV (G) = inf
W

|∂V W |
|W |

where ∂V W is the set of vertices of W with at least one neighbor in V \W .
If G has bounded degree (in particular, if G is transitive), then κV (G) = 0 iff
κE(G) = 0, so that the notion of amenability is independent of whether it is
defined using the edge-isoperimetric or the vertex-isoperimetric constant.

To see that the Z
d lattice is amenable, it suffices to take Wn = {−n, . . . , n}d

and note that |∂EWn|
|Wn| tends to 0 as n → ∞. Thus, uniqueness of the infinite

cluster for percolation on Z
d is a special case of the following result.

Theorem 2.4 (Burton and Keane [19]) Assume that G is connected, tran-
sitive and amenable. Then, for any p ∈ (0, 1) such that Pp(C) > 0, we get
Pp-a.s. a unique infinite cluster.

Like many arguments in this field – we shall see a number of examples later
on in this paper – the Burton–Keane proof makes repeated use of a technique
colloquially known as local modification. Perhaps the clearest way to describe
the technique is via the following coupling.

Coupling 2.5 The local modifier. Fix p ∈ (0, 1) and an infinite graph
G = (V, E). Let E denote the set of all finite subsets of E. The set E is countable,
and it is therefore possible to find a probability measure on E which assigns
positive probability to all elements; let Q be such a probability measure. Two
{0, 1}E-valued random objects X and X ′, each having distribution Pp, may be
obtained as follows.
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1. Pick a finite edge set F ∈ E randomly with distribution Q.
2. Conditionally on Step 1, and for each edge e ∈ E \ F independently, set

X(e) = X ′(e) = 0 or 1 with respective probabilities 1− p and p.
3. Conditionally on Steps 1 and 2, and for each edge e ∈ F independently,

set X(e) = 0 or 1, and independently X ′(e) = 0 or 1, each with probability
p of taking value 1.

This coupling was explicitly introduced by Häggström [52], but arguments based
on variants of the coupling had appeared implicitly many times before. It may at
first sight look innocuous, but we shall soon see examples of its usefulness. The
randomization in Step 1 is, for many applications, not necessary, but we state
the coupling with this randomization in order to maximize its one-size-fits-all
quality.

An important preliminary step towards Theorem 2.4 is the following result
of Newman and Schulman [86].

Lemma 2.6 Fix p ∈ [0, 1] and a transitive graph G = (V, E). The number of
infinite clusters arising in iid bond percolation on G with retention parameter p
is an a.s. constant, taking one of the values 0, 1 and ∞.

Proof. Define the random variable N as the number of infinite clusters, and for
n ∈ {0, 1, 2, . . .} ∪ {∞} let Dn denote the event that N = n. We first show that
N is an a.s. constant. Here we may appeal to the shift-invariance of Dn and the
well-known fact that an iid process is ergodic – meaning that all shift-invariant
events have probability 0 or 1. Readers that are happy with this may fast-forward
to the paragraph containing eq. (2.4). Others are invited to the following more
explicit argument, which in fact is good enough to prove ergodicity (simply by
replacing Dn by an arbitrary shift-invariant event).

Assume for contradiction that there is an n such that

0 < Pp(Dn) < 1 , (2.1)

and fix such an n. For W ⊂ V , write X(W ) as shorthand for {X(v)}v∈W . For
v ∈ V and a positive integer k, let B(v, k) denote the set of vertices sitting
within (graph-theoretic) distance k from v, and define the analogous edge set

BE(v, k) = {e ∈ E : both endpoints of e are in B(v, k)} .

Define the random variable IDn
as the indicator of the event Dn. Furthermore,

for any integer k and v ∈ V , define In,v,k as “the best guess” of IDn
given

X(BE(v, k)), by which we mean that

In,v,k =

{

0 if Pp(Dn|X(BE(v, k))) ≤ 1/2
1 if Pp(Dn|X(BE(v, k))) > 1/2 .

It is an immediate consequence of Lévy’s 0-1-law (see, e.g., [27, Sect. 4.5]) that
for fixed v,

lim
k→∞

In,v,k = IDn
almost surely. (2.2)
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Next let w1, w2 . . . be a sequence of vertices such that for each k, wk sits at
distance at least 2k from v (the point of this being that BE(v, k) and BE(wk, k)
do not intersect). Clearly, the pair (IDn

, In,wk,k) has the same joint distribu-
tion as (IDn

, In,v,k), and we therefore get from (2.2) that In,wk,k converges in
probability to IDn

. Combining this with (2.2) again yields

lim
k→∞

Pp(In,wk,k = In,v,k = IDn
) = 1 . (2.3)

On the other hand, In,v,k and In,wk,k are independent, because they are defined
on disjoint edge sets, and it follows using the assumption (2.1) that

lim
k→∞

Pp(In,wk,k = 1 = 1− In,v,k) = Pp(Dn)(1 − Pd(Dn)) > 0

But this contradicts (2.3), so the assumption (2.1) must be false, and we have
shown that the number of infinite clusters N is an a.s. constant.

It remains to rule out that this a.s. constant equals some n ∈ {2, 3, . . .}. Fix
such an n, and also a vertex v ∈ V , and assume for contradiction that

Pp(N = n) = 1 . (2.4)

Then (since G is connected) there exists a k such that with positive probability
B(v, k) is intersected by all n infinite clusters. Now pick X, X ′ ∈ {0, 1}E and
F ∈ E according to the local modifier (Coupling 2.5). By the choice of k, we
have with positive probability that all infinite clusters in X intersect B(v, k).
Conditional on that event, we have with positive probability that F = BE(v, k)
and X ′(BE(v, k) ≡ 1). But if these things happen, then X ′ has a unique infinite
cluster, so that

Pp(N = 1) > 0

contradicting (2.4), as desired. Hence, N must be 0, 1 or ∞. 2

Proof of Theorem 2.4. We will essentially follow [37, Sect. 8.2]; the proof there
is on Z

d but is easily translated to the current setting. By Lemma 2.6 it suffices
to rule out the possibility that X contains infinitely many infinite clusters. First
note that it may be assumed that the degree of the vertices in G is at least 3
since otherwise G would be isomorphic to Z, a trivial case. We say that a vertex
v ∈ V is a trifurcation if

(a) v is in an infinite cluster,
(b) v is incident to exactly three open edges, and
(c) the removal of v divides its infinite cluster into exactly three disjoint infi-

nite cluster (and thereby no finite clusters).

Suppose that A is a finite set of trifurcations belonging to the same infinite
cluster K. Say that a member of A is an outer member if at least two of the
disjoint infinite clusters resulting from its removal contain no other member
of A. We claim that A must contain some outer member. To prove this, pick
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a member v1 of A. If v1 is not outer, then at least two of the disjoint infinite
clusters resulting from its removal contain other members of A. Let v2 and v3 be
such members. Now consider v3. If v3 is outer we are done. If not, the removal of
v3 results in three disjoint infinite clusters of which exactly one contains v1 and
v2, and one contains some other member, v4, of A. Now repeat for v4: If v4 is
outer we are done. If not, its removal results in three disjoint infinite clusters of
which exactly one contains v1, v2 and v3, and one contains some other member,
v5, of A. Keep repeating this procedure until an outer member is found. This
will happen sooner or later since A is finite.

Next we claim that if A is again a finite set of trifurcations in the same infinite
cluster, then the removal of all of them will divide the cluster into at least |A|+2
disjoint infinite clusters. We do this by induction on |A|. The claim is obviously
true when |A| = 1, so assume that it also holds for |A| = j and consider a set
A of j + 1 trifurcations in the same infinite cluster. Let v be an outer member
of A. Remove all vertices of A \ {v}. This divides the infinite cluster into at
least j + 2 disjoint ones. Now remove v. Since v is outer, this results in an extra
infinite cluster as desired.

Thus an infinite cluster with j trifurcations in a finite set W ⊂ V must
intersect ∂W in at least j + 2 vertices. Consequently, W cannot contain more
than |∂W | − 2 trifurcations. Now let t denote the probability that a vertex
v ∈ V is a trifurcation, and let T (W ) denote the number of trifurcations in
W . Since G is transitive, t does not depend on the particular vertex. Therefore
ET (W ) = |W |t. On the other hand, T (W ) is bounded by |∂W | − 2, and so

t ≤ |∂W | − 2

|W | .

Since G is amenable, the ratio on the right hand side can be made arbitrarily
small by a suitable choice of W . Thus t = 0.

For the punch-line, we use the local modifier again. Pick X, X ′ ∈ {0, 1}E and
C ∈ E according to Coupling 2.5. Assume for contradiction that N = ∞ with
Pp-probability 1. We can then find a finite connected vertex set W such that
with positive probability, at least three of the infinite clusters in X intersect
W . Conditional on this event, we have positive probability for the event that
F = EW , where EW is the set of edges e ∈ E whose endpoints are both in W .
Conditional on these events, each outcome of X ′(EW ) has positive probability,
and it is easy to see that some of them consist of three disjoint simple paths,
each emanating from one of these infinite clusters (a different one for each of
the three paths), that are disjoint except that they all end at the same vertex
v ∈ V . If X ′(EW ) happens to be such a configuration, then v is a trifurcation
for X ′. Hence, v has positive probability of being a trifurcation, so that t > 0,
which is a contradiction. 2
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3. Percolation on more exotic graphs

In this section, we briefly outline the history of uniqueness versus non-uniqueness
of infinite clusters for percolation beyond the classical Z

d setting, postponing
proofs and other details to Sections 4–9.

Having come as far as establishing uniqueness of the infinite cluster on Z
d

(and more generally on amenable transitive graphs), it is natural to ask how
much further this result extends. Perhaps to all (connected) graphs? The answer
is no, even if we restrict to transitive graphs, and the most straightforward way
to see this is to consider the case when G is a tree. Recall from Section 1 that Td

denotes the infinite tree of degree d + 1, i.e., for the (unique) connected acyclic
graph whose vertices all have degree d+1. The critical value pc(Td) for iid bond
percolation on Td satisfies pc(Td) = 1/d, which is easy to show using, e.g., a
branching process argument. It is then not a difficult task to deduce that for
d ≥ 2 and any p ∈ (1/d, 1), the number of infinite clusters is a.s. ∞.

Thus, we have established the existence of two types of transitive graphs:
those – such as Z

d with d ≥ 2 – for which percolation with p ∈ (pc, 1) al-
ways yields a unique infinite cluster, and those – such as Td with d ≥ 2 – for
which percolation with p ∈ (pc, 1) always yields infinitely many infinite clusters.
Lemma 2.6 leaves us with one more possibility: perhaps there are graphs which
yield a unique infinite cluster for some p ∈ (pc, 1), and infinitely many infinite
clusters for other values of p ∈ (pc, 1)?

Interestingly enough, it turns out that there do exist transitive graphs ex-
hibiting this considerably more intricate behavior. The first example was found
in a 1990 paper by Grimmett and Newman [42]. They considered the Cartesian
product graph G = Td × Z, where Cartesian products are defined as follows.

Definition 3.1 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The
Cartesian product G1 × G2 has vertex set V1 × V2 and {(u1, u2), (v1, v2)} is
an edge of G1 × G2 iff either u1 = v1 and {u2, v2} ∈ E2 or u2 = v2 and
{u1, v1} ∈ E1.

Thus a product graph G1×G2 has one “G1-dimension” and one “G2-dimension”,
and we refer to an edge {(u1, u2), (v1, v2)} as a G1-edge if u2 = v2 and a G2-edge
if u1 = v1. A basic example of a product graph is Z × Z, which is identical to
the square lattice Z

2.
Grimmett and Newman proved for d ≥ 6 that in iid percolation on Td × Z

in the supercritical phase p ∈ (pc, 1), the number N of infinite clusters satisfies
N =∞ a.s. for p sufficiently close to pc, and N = 1 for p sufficiently close to 1:

Theorem 3.2 (Grimmett and Newman [42]) Let d ≥ 6, let G = Td × Z,
and consider an iid bond percolation X on G with retention parameter p. We
then have pc < 1 and the existence of p1 and p2 such that pc < p1 ≤ p2 < 1
such that

• for p ∈ (pc, p1), X contains a.s. infinitely many infinite clusters, whereas
• if p ∈ (p2, 1], X contains a.s. a unique infinite cluster.
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The natural condition for this result is d ≥ 2 rather than d ≥ 6, and as later
remarked by Schonmann [94], it can in fact be shown to hold in that greater
generality using a combination of ideas from [94] and from Stacey [98]. The
result is easier to prove for large d; in Section 4 we will outline a proof for
d ≥ 65.

Given Theorem 3.2 and Lemma 2.6, it is natural to conjecture that it should
be possible in the statement of Theorem 3.2 to collapse p1 and p2 into a single
value, uniquely separating the N =∞ and the N = 1 parts of the supercritical
regime. This would rule out the unlikely-sounding alternative that N switches
back and forth between ∞ and 1 as p increases from p1 to p2. Letting

pu = pu(G) = inf{p : Pp(there is a unique infinite cluster) = 1},

one would thus believe that when p > pu, one has a.s. uniqueness of the infinite
cluster. This is called uniqueness monotonicity, and was established (in much
greater generality) in a pair of papers published back-to-back in the same journal
issue in 1999: Häggström and Peres [56] proved uniqueness monotonicity for
transitive (and quasi-transitive) graphs under the additional assumption of so-
called unimodularity (see Definition 5.2 below), and Schonmann [95] gave a
different proof where the unimodularity condition was shown to be superfluous.
See Section 5.

Thus for all G there exists a threshold pu ∈ [pc, 1] such that uniqueness of
the infinite cluster holds for all p > pu, but for no p < pu. At this point, a
number of natural questions arise: For which graphs do we have pu > pc? For
which graphs do we have pu < 1? And what happens at pu? (These questions
and others were asked, in the setting of transitive and quasi-transitive graphs,
in the 1996 paper by Benjamini and Schramm [12].)

For the regular tree Td we saw that pu = 1. The uniqueness results in Section
2 imply that pu = pc for G = Z

d in any dimension d, and more generally when G
is transitive and amenable. The Grimmett–Newman example exhibits the more
interesting behavior that pc < pu < 1. Benjamini and Schramm [12] conjectured
the following:

Conjecture 3.3 Let G be any infinite connected transitive graph. Then pu >
pc if and only if G is nonamenable.

The Burton–Keane argument (i.e., the proof of Theorem 2.4) took care of the
‘only if’ part, so if the conjecture is true, then the Burton–Keane argument is
in a rather deep sense sharp. If true, the conjecture would also provide a beau-
tiful percolation characterization of amenability (analogous characterizations in
terms of random walks and the Ising model have been obtained by, respectively,
Kesten [74, 75] and Jonasson and Steif [72]). The ‘if’ part of the conjecture
remains, in its full generality, open, but progress has been made in a number
of directions: Lalley [78] proved that pu > pc for certain planar Cayley graphs.
This was improved by Benjamini and Schramm [13] who verified the conjecture
for all planar graphs with the property of having one end (see the following
definition). In a different direction, Pak and Smirnova-Nagnibeda [88] proved
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that pu > pc for the Cayley graph of any nonamenable group provided the set
of generators is properly chosen. These results are discussed in further detail in
Sections 6 and 7. We consider proving (or disproving!) Conjecture 3.3 in its full
generality to be one of the main open problems in this area.

Moving on to the problem of determining when pu < 1, the following concept
turns out to be of some importance.

Definition 3.4 Let G = (V, E) be an infinite connected graph and for W ⊂ V
let NW be the number of infinite clusters the removal of W from G results in.
The number supW NW , where the supremum is taken over all finite W , is called
the number of ends of G.

For example, Z has two ends, Z
d for d ≥ 2 has one end, and the regular tree

Td with d ≥ 2 has infinitely many ends. The Grimmett–Newman example G =
Td × Z has one end. Babson and Benjamini [6] showed that pu < 1 holds on a
certain class of one-ended graphs; see Section 8. This contrasts with the situation
on a regular tree, where one has pu = 1 (but also infinitely many ends).

Finally, there is the issue of what happens at the uniqueness critical value pu;
this question is most pertinent when pc < pu < 1. Do we get N = 1 or N =∞?
Somewhat surprisingly, the answer turns out to depend on G. Schonmann [94]
proved that on Td×Z the number of infinite clusters at pu is ∞, and Peres [90]
generalized this by showing that for products G ×H of graphs where at least
one of G and H is nonamenable and both are infinite, the number of infinite
clusters at pu cannot be 1. In contrast, Benjamini and Schramm [13] showed
that for planar nonamenable graphs with one end, there is a unique infinite
cluster at pu. See Section 9 for further discussion of these results. To determine
in general for which nonamenable transitive graphs uniqueness holds at pu is a
highly interesting, but possibly quite difficult, open problem.

4. The Grimmett–Newman example G = Td × Z

In this section we outline a proof, under a stronger condition on d, of the
Grimmett–Newman result that the supercritical regime of iid percolation on
Td × Z has both a uniqueness and a non-uniqueness part:

Proposition 4.1 Let d ≥ 17, let G = Td × Z and consider an iid bond per-
colation X on G with retention parameter p. If p ∈ (1/d, 1/(4

√
d + 1)) then X

a.s. contains infinitely many infinite clusters, whereas if p > 1/2, then X a.s.
contains a unique infinite cluster.

Note, to understand the relevance of the d ≥ 17 condition, that d = 17 is the
smallest integer for which 1/d < 1/(4

√
d + 1).

The proof requires a couple of lemmas, and for those we need some more
notation and background. For percolation on a graph G we denote for two
vertices u, v ∈ G by {u ↔ v} the event that there is a path of open edges
between u and v. For two disjoint vertex sets W, W ′ ⊂ V , we write W ↔ W ′

for the event that {u↔ v} occurs for some u ∈W and v ∈ W ′.
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An event A ⊂ {0, 1}E is said to be increasing if for all ξ, ξ′ ∈ {0, 1}E such
that ξ(e) ≤ ξ′(e) for every e ∈ E and ξ ∈ A, we also have ξ′ ∈ A. Recall the
Harris–FKG inequality (see, e.g., Harris [62] or Grimmett [37]), which says that
under the product measure Pp, the indicator functions of any two increasing
events are positively correlated.

Lemma 4.2 Suppose that for a given p, percolation on a transitive graph G
produces a unique infinite cluster. Then there exists an a > 0 such that Pp(u↔
v) ≥ a for every pair of vertices of G.

Proof. Obviously, θ(p) > 0. By the Harris–FKG inequality and the assump-
tion of uniqueness of the infinite cluster,

Pp(u↔ v) ≥ Pp({u↔∞} ∩ {v ↔∞})
≥ Pp(u↔∞)Pp(v ↔∞)

≥ θ(p)2 ,

so putting a = θ(p)2 proves the lemma. 2

Lemma 4.3 (Schonmann [95]) Suppose that iid percolation on a transitive
graph G for a given p behaves in such a way that for every a > 0 there is an
N sufficiently large so that Pp(B(u, N)↔ B(v, N)) ≥ 1− a for every u and v.
Then there is a.s. a unique infinite cluster.

This result is intuitively easy to believe: if, for fixed u, Pp(B(u, N)↔ B(v, N))
is bounded away from 0, then with positive probability B(u, N) is intersected
by an infinite cluster which is sufficiently “omnipresent” that it appears to rule
out the existence of other infinite clusters. Or to put it in another way: if the
a.s. number of infinite clusters is 0 or ∞, then some small parts of the graph
sitting sufficiently far from each other should have a very hard time connecting
to each other. But to prove this is fairly complicated, so the proof is omitted.

Proof of Proposition 4.1: Assume first that p ∈ (1/d, 1/(4
√

d + 1)). Since G
contains Td as a subgraph it is clear that pc(G) ≤ 1/d, so percolation occurs
at p. Suppose for contradiction that X contains a unique infinite cluster. Then
by Lemma 4.2 the probability that two vertices are connected via paths of open
edges is bounded away from 0. We will show that this is not the case for the
present value of p.

Fix a vertex t of Td. Then (t, z) is a vertex of G for every z ∈ Z. We will
prove that Pp((t, 0)↔ (t, k)) tends to 0 as k increases, by means of the following
path counting argument. In order for {(t, 0)↔ (t, k)} to occur, there must be a
path of open edges of some length n ≥ k between the two vertices. The number
of paths from (t, 0) to (t, k) of length n is bounded by

4n(d + 1)n/2 ,

where the factor 4n is a bound for the number of ways of specifying for each
edge in the path whether it goes up or down in the Z-direction or away from or
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towards t in the Td-direction, and the (d + 1)n/2 is for specifying where the at
most n/2 edges leading away from t in Td are heading. The probability that a
given path of length n is open is pn, and so

Pp((t, 0)↔ (t, k)) ≤
∞
∑

n=k

(4p
√

d + 1)n ,

which tends to 0 as k →∞, as desired.
Next we move to the second part of the theorem, so assume now that p > 1/2.

We will use Lemma 4.3. Let u = (tu, zu) and v = (tv, zv) be two arbitrary
vertices of G. We need to show that for any a > 0 we can pick N so large that
B(u, N) is connected to B(v, N) with probability at least 1−a. Pick a bi-infinite
path Q in Td passing through tu and tv. Then H := Q × Z is a subgraph of
G isomorphic to Z

2 and both u and v belong to H . Since p > pc(Z2) we know
that the percolation restricted to H will a.s. contain an infinite cluster and
by Theorem 2.4 it will be unique. Put Av(N) and Av(N) for the events that
B(u, N) and B(v, N) respectively intersect the infinite cluster of the percolation
restricted to H . When N is large enough Pp(Au(N)) = Pp(Av(N)) > 1 − a/2
and so by Bonferroni’s inequality

Pp(B(u, N)↔ B(v, N)) ≥ Pp(Au(N) ∩Av(N)) > 1− a ,

and the proof is complete. 2

An alternative proof of the p > 1
2 part of Proposition 4.1, not using Lemma

4.3 but instead the notion of cluster frequency of Lyons and Schramm [82],
will be outlined in Section 8. This part of Proposition 4.1 was generalized by
Häggström et al. [57] to a result that states that if G is the product of d infinite
connected graphs then pu(G) ≤ pc(Zd). The proof in [57] is a similar application
of Lemma 4.3 as the one given here, but can, if one so wishes, be replaced by
the cluster frequency technique in Section 8.

5. Uniqueness monotonicity

This section is devoted to the result that percolation on transitive graphs with
p > pu a.s. produces a unique infinite cluster. First we need to define a few
concepts and we begin with Cayley graphs.

Definition 5.1 Let H be a countable group and suppose that S is a finite
symmetric set of generators. Define a graph G = G(H, S) with vertex set H
such that {u, v} is an edge iff there exists an element s ∈ S such that u = vs.
The graph G is called a (right) Cayley graph of H.

Recall from Definition 1.2 the notion of automorphisms of a graph G. The
set of all such automorphisms is denoted Aut(G), and constitutes a group under
the operation of composition. A subgroup H of Aut(G) is said to act transitively
on V if for all two vertices u and v there is an element h ∈ H taking u to v. All
Cayley graphs G are transitive since the underlying group H itself can via left
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multiplication be identified with a subgroup of Aut(G) acting transitively on
G. Most transitive graphs one comes across in the literature, including all the
examples seen so far in this paper, are Cayley graphs. However not all transitive
graphs are Cayley graphs; we will shortly give an example of such a graph.

A slightly larger class of transitive graphs is the class of unimodular transitive
graphs, defined as follows.

Definition 5.2 Let G = (V, E) be a transitive graph and let Aut(G) denote
the group of automorphisms of G. Let H be a closed subgroup of Aut(G). For
v ∈ V , define the stabilizer of v with respect to H as the subgroup StabH(v) =
{h ∈ H : hv = v}. Then H is said to be unimodular if for every u, v ∈ V

|StabH(u)v| = |StabH(v)u|.

The graph G is said to be unimodular if there exists a unimodular closed
subgroup H of Aut(G) that acts transitively on V .

A Cayley graph G of a countable group H is always unimodular: it is trivial
that H itself represents a unimodular closed subgroup since |StabH(u)v| = 1
for all u and v. In fact the whole automorphism group Aut(G) is then also
unimodular, see [10, Sect. 6]. On the other hand, there are unimodular transitive
graphs that are not Cayley graphs: it is fairly easy to verify that all planar
biregular3 graphs are unimodular, while Chaboud and Kenyon [22] showed that
a planar biregular graph with degree d and dual degree k is a Cayley graph iff
i|k for some i ∈ {2, 3, . . . , d}. For instance, no planar biregular graph where k
is prime and d < k is a Cayley graph.

The following simple example of a graph which is transitive but not uni-
modular (and therefore not a Cayley graph) is due to Trofimov [102]. In the
binary tree T2, pick a directed bi-infinite path. For a vertex on the path, call its
neighbor in the direction of the path its parent. From this one can in a natural
way identify any pair of neighboring vertices of T2 as the parent and the child.
Now create a new graph G by adding, for every vertex, an edge between that
vertex and its grandparent. Then G is clearly transitive. However Aut(G) is
not unimodular: If u is a vertex and v its parent, then |Stab(u)v| = 1 whereas
|Stab(v)u| = 2.

Next we discuss the important mass-transport principle, which is due to Ben-
jamini et al. [10]. Consider an automorphism invariant random process X as-
signing values from some finite set F to the edges of the graph G = (V, E);
automorphism invariance means that for any edge set {{x1, y1}, . . . , {xk, yk}}
and any automorphism f of G, the distribution of

(X({x1, y1}), . . . , X({xk, yk}))

is the same as that of

(X({f(x1), f(y1)}), . . . , X({f(xk), f(yk)})) . (5.1)

3A planar graph is said to be biregular if it is regular and moreover all faces have the same
number of edges.
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(The basic example of such a process is when X is an iid bond percolation.)
Let m : V × V × FE → R+ be a function which is invariant under the diagonal
action of Aut(G), i.e. such that for every automorphism g and every u, v ∈ V
and every ω ∈ FV one has m(u, v, ω) = m(gu, gv, gω). Intuitively we think of
m(u, v, ω) as the amount of mass that is transported from u to v when X = ω.

Theorem 5.3 (The mass-transport principle) If G is transitive and uni-
modular, then the expected amount of mass transported out of a vertex equals
the expected amount of mass transported into it, i.e. for any vertex u

E

∑

v∈V

m(u, v, X) = E

∑

v∈V

m(v, u, X).

In fact, the statement of the theorem holds in greater generality; it suffices
that X is invariant under the action of a closed transitive subgroup H ⊆ Aut(G).
The mass-transport principle as formulated here fails on non-unimodular graphs,
although a variant involving a certain “re-weighting” of mass does hold; see [10].
The proof of Theorem 5.3 gets considerably simpler if one restricts to the case
of Cayley graphs, so we will settle for that; for a proof in the general case we
again refer to [10].

Proof of Theorem 5.3 for Cayley graphs: This is straightforward: If u and v
are vertices, then they are also members of the underlying group H and there
is a unique element h = vu−1 ∈ H such that v = hu. Thus

∑

v∈V

Em(u, v, X) =
∑

h∈H

Em(u, hu, X) =
∑

h∈H

Em(h−1u, u, h−1X)

=
∑

h∈H

Em(h−1u, u, X) =
∑

v∈V

Em(v, u, X)

where the third equality follows from the automorphism invariance of X . 2

Theorem 5.4 (Häggström and Peres [56]) Let G be a unimodular transi-
tive graph. Consider iid bond percolation on G and let N denote the number of
infinite clusters. If p1 < p2 and Pp1

(N = 1) = 1, then also Pp2
(N = 1) = 1.

Proof. Let p2 > p1 > pc(G). Pick Xp1
, Xp2

∈ {0, 1}E according to the
simultaneous coupling construction (Coupling 1.1), so that in particular Xp1

has distribution Pp1
and Xp2

has distribution Pp2
. The theorem follows if we

can show that a.s. every infinite cluster of Xp2
contains an infinite cluster of

Xp1
. Since Xp2

(e) ≥ Xp1
(e) for every e, it suffices to show that every infinite

Xp2
-cluster intersects an infinite Xp1

-cluster.
For each vertex u define

D1(u) = inf{dist(u, v) : v is in an infinite cluster of Xp1
},

where dist(u, v) is the graph-theoretical distance between u and v. Put C(u, Xpi
)

for the connected component of u in the open subgraph given by Xpi
. Let A(u)

be the event {D1(u) = minv∈C(u,Xp2
) D1(v) > 0}. In words A(u) is the event

that u is not in an infinite Xp1
-cluster, but no vertex in u’s Xp2

-component is
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closer to an infinite Xp1
-cluster than u itself. Now if Xp2

contains an infinite
cluster that intersects no infinite cluster of Xp1

, then that cluster must contain
a vertex u closest to an infinite Xp1

-cluster and so for this vertex the event
B(u) := A(u) ∩ {|C(u, Xp2

)| =∞} occurs. Thus we will be done as soon as we
have established that

P (B(u)) = 0. (5.2)

Write M(u) for the number of vertices of u’s infinite Xp2
-cluster that are closest

to an infinite Xp1
-cluster, and partition B(u) as B(u) = B∞(u)∪Bf (u), where

B∞(u) is B(u) intersected with the event that M(u) = ∞ and Bf (u) is B(u)
intersected with the event that M(u) <∞. Equation (5.2) will be verified when
we have shown that P (B∞(u)) = P (Bf (u)) = 0. For Bf (u) we use the mass-
transport principle. On this event, let m(x, y, X) = 1/M(x) if y is a vertex
in C(x, Xp2

) that is closest to an infinite cluster of Xp1
, and m(x, y, X) =

0 otherwise. Since the outgoing mass from any vertex is bounded by 1, the
expected incoming mass to a vertex is also bounded by 1 by the mass-transport
principle. However on Bf (u) the incoming mass to some vertices will be infinite,
and so we must have P (Bf (u)) = 0.

It remains to prove that P (B∞(u)) = 0. Write B∞(u) = ∪∞k=1B
∞
k (u) where

B∞
k (u) = B∞(u) ∩ {D1(u) = k}. That B∞

k (u) has probability 0 can be seen by
looking at the whole situation the following way: First condition on Xp1

and
then condition on Xp2

(e) for all edges e not incident to vertices within distance
k−1 from infinite Xp1

-clusters. The conditional distribution on these remaining
edges is then iid, with probability (p2 − p1)/(1 − p1) for an edge to be open in
Xp2

. But if B∞
k (u) occurs then infinitely many disjoint paths of length k of such

edges can tie the infinite Xp2
-cluster of u to an infinite Xp1

-cluster and so this
will a.s. happen. This proves that P (B∞

k (u)) = 0 for every k and thereby also
that P (B∞(u)) = 0. We have thus established (5.2), and the proof is complete.
2

Our next task is to prove Schonmann’s generalization of Theorem 5.4; see
Theorem 5.6 below. The following lemma (Lemma 1.1 of [95]) states that an
infinite cluster a.s. contains arbitrarily large balls.

Lemma 5.5 (Schonmann [95]) Suppose that the iid bond percolation X on a
transitive graph G = (V, E) a.s. contains an infinite cluster and let M be an
arbitrary positive integer. Then a.s. every infinite cluster of X contains a ball
of radius M .

Proof. Fix a vertex u and let A = A(u) be the event that u is in an infinite
cluster that does not contain a ball of radius M . We want to prove that P (A) =
0. For all positive integers k, put Ak for the event that u is connected to a vertex
at distance 2kM from u and that the restriction of X to the ball of radius 2kM
centered at u does not contain a ball of radius M in its open subgraph. Clearly
Ak ↓ A so that P (Ak) ↓ P (A). If it can be shown that for some constant
a = a(M) > 0 we have P (Ak+1|Ak) < 1 − a, then it will thus follow that
P (Ak) ↓ 0 as desired.
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Suppose that η is a configuration in Ak+1. Then there is a vertex x at distance
2kM + M from u that is connected to u. Pick the first such x (according to
some arbitrary ranking of the vertices) and map η to the configuration η′ which
agrees with η outside the ball of radius M centered at x and for which all edges
of that ball are open. Clearly η′ ∈ Ak \ Ak+1 and since G has bounded degree
there is a bounded number of configurations that are mapped to the same η′.
Therefore P (Ac

k+1|Ak) > a for some a > 0, as desired. 2

In the proof of the general result we will also need the concept of “growing the
cluster of a vertex u” which is an iterative process designed to find the cluster
of u by looking at the edges one by one in the following way: Suppose that u is a
vertex of a transitive graph G on which a bond percolation process takes place.
Order the edges of G is some arbitrary way, put C0(u) = {u} and ∂C0(u) = ∅.
Then given Cn−1(u) and ∂Cn−1(u), check if there is an edge that goes between
a vertex in Cn−1(u) and V \Cn−1(u) that is not in ∂Cn−1(u). If there is no such
edge the process stops and we get C(u) = Cn−1(u) and ∂C(u) = ∂Cn−1(u).
If there is such an edge, look at the smallest one, e, and check if it is open or
closed in X . If e is open then let Cn(u) be Cn−1(u) with the end vertex of e
outside Cn−1(u) added and ∂Cn(u) = ∂Cn−1(u) ∩ ∂ECn(u). If e is closed then
Cn(u) = Cn−1(u) and ∂Cn(u) = ∂Cn−1(u) ∪ {e}. Note that if the cluster of u
is infinite then the process never terminates, whereas if the cluster of u is finite
the final Cn(u) consists of the vertices in this cluster and ∂Cn(u) coincides with
its edge boundary.

Theorem 5.6 (Schonmann [95]) Let G be a transitive graph. Consider iid
bond percolation on G and let N denote the number of infinite clusters. If p1 < p2

and Pp1
(N = 1) = 1, then also Pp2

(N = 1) = 1.

Proof. Use the same notation as in the proof of Theorem 5.4. The present
situation differs from the one of Theorem 5.4 in that we do not assume that G
is unimodular and that we therefore do not have access to the mass-transport
principle. However, since mass-transport was not used to show that P (B∞(u)) =
0, it suffices to prove that P (Bf (u)) = 0.

Put Bf (u) = E(u) ∪E′(u) where E′(u) = Bf (u) ∩ {D1(u) ≥ 2} and E(u) =
Bf (u) ∩ {D1(u) = 1}. We claim that if P (E(u)) > 0, then also P (E′(u)) > 0
and so it suffices to show that P (E′(u)) = 0. To prove the claim, assume that
P (E(u)) > 0 and let EM (u) be the event that E(u) occurs and that all the
vertices of u’s infinite Xp2

-cluster that are incident to an infinite Xp1
-cluster are

within distance M from u. Since EM (u) ↑ E(u), we have for M large enough
that P (EM (u)) > 0. Now changing any X-configuration by changing the state
of (Xp1

(e), Xp2
(e)) to (0, 0) for every e within distance M from u only changes

its probability by a bounded constant factor; cf. Coupling 2.5. But this change
maps any configuration in EM (u) to a configuration where E′(v) happens for
some vertex v (in one of the infinite clusters that remain from u’s infinite Xp2

-
cluster).

To prove that P (E′(u)) = 0 we fix an arbitrary a > 0 and show that
P (E′(u)) < a. To this end, pick an integer M so large that a given ball of
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radius M intersects an infinite cluster of Xp1
with probability exceeding 1− a.

In order to make things work out smoothly we use what Schonmann refers
to as a “duplication trick”: Let Z ′ = (Z ′

p1
, Z ′

p2
) and Z ′′ = (Z ′′

p1
, Z ′′

p2
) be two

independent ({0, 1}E)2-valued random objects with the same distribution as
X = (Xp1

, Xp2
). We start by growing the cluster of u in Z ′

p2
as defined before

the statement of the theorem, with the small adjustment that we stop the process
if we find ourselves in a situation where Cn(u) contains a ball of radius M . By
Lemma 5.5 this will a.s. happen if the cluster of u is infinite.

Put I for the random time when the process stops. In words, I is the first
time when we have either found that the Z ′

p2
-cluster of u is finite and contains

no ball of radius M or when we have found that it contains such a ball. If we
find ourselves in the latter situation we say that the event F1 has occurred.
It was just noted that E′(u) is up to a set of measure 0 contained in F1. On
F1, put Y for the center of this ball. (If there is more than one possible such
center, then pick one according to some arbitrary ranking of the vertices.) Define
Z = (Zp1

, Zp2
) ∈ ({0, 1}E)2 by putting Z = Z ′ on all internal edges of CI(u)

and all edges of ∂CI(u) and putting Z = Z ′′ on all other edges. Clearly Z has
the same distribution as X so it will be sufficient to prove that E′(u) cannot
happen for Z. (Note that the way Z is obtained from Z ′′ is similar to the local
modifier (Coupling 2.5), except that here Q is deterministic.)

Let F2 be the sub-event of F1 where the ball at Y intersects an infinite
Z ′′

p1
-cluster and note that on F2 we have, by the construction of Z, that the

Zp2
-cluster of u is within distance 1 from an infinite Zp1

-cluster, in particular
E′(u) does not occur. We have shown

P (E′(u)) ≤ P (F1 ∩ F c
2 ).

Since F1 is measurable with respect to Z ′, and since Z ′′ is independent of Z ′,
we have by the choice of M that

P (F2|F1) ≥ 1− a.

It follows that P (E′(u)) ≤ P (F1 ∩ F c
2 ) ≤ P (F c

2 |F1) < a, as desired. 2

Before moving on in the next two sections to the problem of determining when
pc < pu, we end the present section with briefly mentioning a tantalizing open
problem concerning the infinite clusters in the non-uniqueness regime (pc, pu):
that of so-called cluster repulsion. Suppose for some p in the non-uniqueness
regime of a transitive nonamenable graph G that we can find two infinite clusters
C1 and C2 that come within distance 1 from each other in infinitely many places.
Call two such infinite clusters strongly neighboring. By the same reasoning as
in the last paragraph of the proof of Theorem 5.4, it is easy to see that a.s. in
the simultaneous coupling construction, C1 and C2 will have merged at level
p+ ǫ for any ǫ > 0. It seems intuitively plausible that, already at level p, C1 and
C2 ought to have merged, so that in other words the existence of two strongly
neighboring infinite clusters has probability 0. If this is the case for any p, then G
is said to exhibit cluster repulsion. Häggström et al. [57] conjectured that cluster
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repulsion holds for any transitive graph, and supplemented their conjecture
with a non-transitive counterexample. Very recently, Timár [101] proved the
conjecture under the additional assumption of unimodularity, by means of an
ingenious mass-transport argument. The nonunimodular case remains open.

6. The non-uniqueness phase for Cayley graphs

In this section and the next, we prove the two most general results known today
on the existence of a non-uniqueness phase for nonamenable transitive graphs:
The case of Cayley graphs with a suitably chosen set of generators of Pak and
Smirnova-Nagnibeda [88] which is treated in this section, and the case of planar
graphs with one end of Benjamini and Schramm [13], which we defer to Section
7. We begin with some preliminaries.

Let G = G(H, S) be the nonamenable Cayley graph of the countable group
H with the symmetric set S of generators. Let d = |S| be the degree of G. Put
φ = φ(G) = φ(H, S) = κE(G)/d. Clearly, φ < 1, and since G is nonamenable
φ > 0. For two vertices u and v, let p(n)(u, v) denote the probability that
simple random walk on G started at u is at v after n steps. Put ρ = ρ(G) =
ρ(H, S) = lim supn→∞[p(n)(u, v)]1/n, the spectral radius of G. This quantity
is independent of u and v, and since G is nonamenable, ρ < 1, see [74]. In fact,
the statement ρ < 1 is equivalent to nonamenability of G, and one can quantify
the relation between φ and ρ, see [85]:

φ ≥ d(1 − ρ)

d− 1
. (6.1)

From (6.1) it follows that if {Gn} is a sequence of Cayley graphs such that
ρ(Gn)→ 0, then φ(Gn)→ 1. This fact is all that we will need from (6.1).

The following two lemmas can be found in [12]:

Lemma 6.1 Let G be a nonamenable graph with isoperimetric constant κE.
Then

pc(G) ≤ 1

κE + 1
.

Proof. Consider percolation with p > 1/(1 + κE). Fix a vertex u and grow
the cluster of u as described in the previous section. If p < pc then the process
will a.s. eventually terminate with a finite Cn(u) such that all edges of its edge
boundary ∂ECn(u) have been found to be closed. The number of open edges
found in the process will then be |Cn(u)| and the number of closed edges will be
at least |∂ECn(u)|. In other words, the fraction of the edges that will be found
to be open will be at most

|Cn(u)|
|∂ECn(u)|+ |Cn(u)| ≤

1

1 + κE
.
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However, the states of the edges looked at in the process form an iid sequence
{Xi} where P (Xi = 1) = p > 1/(1 + κE) and so by standard large deviation
theory there is a positive probability that there is no positive integer n such that
the fraction of the first n Xi’s exceeds 1/(1 + κE). In other words, there is a
positive probability that the process of growing the cluster at u never terminates,
which is exactly what we wanted to prove. 2

Lemma 6.2 If G is a transitive graph with degree d for which

ρ(G)pc(G)d < 1,

then pc(G) < pu(G).

Proof. The idea is the same as in the proof of Proposition 4.1: Let p < 1/(dρ)
and show that Pp(u ↔ v) becomes arbitrarily small when u and v are far
enough apart. The result then follows from Lemma 4.2. Here we will again use a
duplication trick: Consider two independent copies X1 and X2 of the percolation.
If for some ǫ > 0 we can find vertices u and v arbitrarily far apart such that u
is connected to v in X1 with probability at least ǫ, then the event

B(u, v) := {u is connected to v in both X1 and X2}
has probability at least ǫ2. Thus it suffices to prove that Pp(B(u, v)) → 0 as
dist(u, v)→∞.

Fix u and let a be a constant larger than but close enough to 1 so that
ap < 1/(dρ). For n ∈ Z+ put Nn(u) for the number of paths of length n from
u to itself, i.e. Nn(u) = p(n)(u, u)dn. By definition of ρ, there exists an n0 such
that n ≥ n0 implies that p(n)(u, u) ≤ (aρ)n, whence Nn(u) ≤ (adρ)n. Fix a
vertex v at distance k ≥ n0 from u.

Now, for B(u, v) to occur, it is necessary that there exists a self-avoiding path
of edges open in X1 from u to v and one such path of edges open in X2. If we
concatenate these two paths we get a path of some length n ≥ 2k from u to itself
that passes v once, such that the edges before v are open in X1 and the edges
after v are open in X2. For a given path from u to itself passing v once of length
n, the probability that its edges are open in this way is pn. Thus the expected
number of such open paths is bounded by Nn(u)pn ≤ (apdρ)n. Consequently

Pp(B(u, v)) ≤
∞
∑

n=2k

(apdρ)n → 0

as k →∞. 2

We are now ready to deal with the Pak–Smirnova-Nagnibeda result. What
we will show is that with any given symmetric set S of generators, pc(H, Sk) <
pu(H, Sk) for k large enough. Here Sk is the multiset of elements of H of the
type s1s2 . . . sk, s1, s2, . . . , sk ∈ S, where each element that can be so produced
is taken with multiplicity equal to the number of ways that it can be written
this way. Thus, to be entirely correct, Gk := G(H, Sk) is a Cayley multigraph
rather than a Cayley graph. Note that the degree of Gk is |S|k = dk.
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Theorem 6.3 (Pak and Smirnova-Nagnibeda [88]) With Gk as above and
k large enough,

pc(Gk) < pu(Gk).

Proof. By the definition of ρ(H, S) = ρ(G1) the probability that simple
random walk on G1 started at u is at v after n steps, decays like e−ρ(G1)n. Since
n steps of random walk on Gk is the same as kn steps of random walk on G1 it
thus follows that ρ(Gk) ≤ ρ(G1)k; in particular ρ(Gk)→ 0. As observed above,
this also entails that φ(Gk)→ 1.

If we can show that ρ(Gk)pc(Gk)dk → 0, then the result follows from Lemma
6.2. However, by Lemma 6.1,

ρ(Gk)pc(Gk)dk ≤ ρ(Gk)
1

κE(Gk)
dk =

ρ(Gk)

φ(Gk)
→ 0.

2

7. The non-uniqueness phase for planar graphs

In this section we prove the result of Benjamini and Schramm [13] on the ex-
istence of a non-uniqueness regime for percolation on nonamenable transitive
planar graphs:

Theorem 7.1 (Benjamini and Schramm [13]) Let G be a nonamenable pla-
nar transitive graph with one end. Then pc(G) < pu(G).

An important ingredient in the proof is planar duality, so this is a good place
to recall some basic facts about planar duals.

In general, the planar dual G† of an infinite planar graph G is a multigraph
and may have finite vertex set, but when G is infinite with degree at least 3, as
will always be the case here, G† is an infinite graph.

Transitivity of G does not guarantee the same for G†; in fact G† may not
even be regular as many of the standard planar lattices reveal. However, if G† is
regular (in which case one says that G is biregular) then it is also transitive. This
is a well-known fact, but the only written proof we are aware of can be found in
[54]. More generally: G is quasi-transitive if and only if G† is quasi-transitive.
(Recall that a graph is said to be quasi-transitive if its automorphism group
partitions its vertex set into finitely many orbits, instead of only one as in the
transitive case.)

The dual of a planar transitive graph G may not have bounded degree (con-
sider e.g. G = T2) but if G is assumed to have one end, then G† has bounded
degree and also one end. This is so because if G† has vertices of infinite degree,
then every vertex u of G is incident to a face with infinitely many boundary
edges, and exactly two neighbors of u are incident to the same infinite face;
clearly, the removal of u plus a neighbor of u that is not incident to the same
infinite face partitions G into at least two infinite subgraphs, contradicting that
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G has one end. Thus since G† is quasi-transitive it has bounded degree. Also,
since G† has bounded degree, any finite set W of its vertices is connected to
the rest of the graph by only finitely many edges. Thus W is surrounded by
a cycle of edges in G. This cycle is in turn surrounded by a cycle in G†. This
means that the removal of W does not partition G† into more than one infinite
subgraph and so G† has one end.

An important observation is the following. Any finite connected set of vertices
in G is surrounded by a cycle in G† and if G has one end, then also every finite
connected set of vertices in G† is surrounded by a cycle in G.

The Benjamini–Schramm result that is the topic of this section is concerned
with nonamenable transitive planar graphs with one end. By [13, Prop. 2.1] such
graphs are always unimodular and, in fact, the conclusion holds with transitivity
weakened to quasi-transitivity as shown in Lyons and Peres [80, Sect. 7]. We are
thus free to use mass-transport ideas to prove the result. Our first step towards
Theorem 7.1 is a generalization of Lemma 6.1 to percolation processes that
are not necessarily iid but only automorphism invariant. Suppose that X is an
invariant bond percolation on a unimodular graph G = (V, E) and assume that
X a.s. contains no infinite clusters. Put p for the probability that a given edge is
open. For all vertices u let, as above, C(u, X) be the cluster of u in X . Define a
mass-transport function m by letting m(u, v, X) = 1/(|C(v, X)| − |∂V C(v, X)|)
if u ∈ ∂V C(v, X) and v 6∈ ∂V C(v, X). Otherwise let m(u, v, X) = 0. In other
words all vertices that are in the boundary of a cluster distribute unit mass
among all the “inner” vertices of that cluster. The probability that a given
vertex is an inner vertex of a cluster is bounded from below by the probability
the all edges incident to it are open, which in turn is, by Bonferroni’s inequality,
at least 1 − d(1 − p). Since X contains only finite clusters a.s., the expected
incoming mass to a vertex is thus at least

(1 − d(1− p))κV

1− κV
.

On the other hand, the expected outgoing mass from a vertex is bounded from
above, by the probability that the vertex is in the boundary of a cluster, which
is in turn bounded by the probability that at least one edge incident to it is
closed, i.e. by d(1− p). By the mass-transport principle we get

d(1 − p) ≤ (1 − d(1− p))κV

1− κV

which entails

p ≤ 1− κV

d
.

Consequently,

Lemma 7.2 (Benjamini et al. [10]) Let X be an automorphism invariant
bond percolation on a unimodular transitive graph G with degree d such that the
probability that a given edge is open exceeds 1 − κV (G)/d. Then, with positive
probability, X contains infinite clusters.
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If G is nonunimodular and Aut(G) is nonamenable, then Lemma 7.2 also
holds, in the sense that there exists an η > 0 such that if edges are open with
probability at least 1− η, then X contains infinite clusters with positive prob-
ability. However, it is important to be aware that nonamenability of G does
not imply nonamenability of Aut(G). The converse, however, is true. Further-
more, for a unimodular graph, amenability of the graph itself and its autom-
rophism group are equivalent. See [10] for more details, including the definition
of amenability for groups.

We will need the following result, which is of course highly interesting also
in its own right.

Theorem 7.3 (Benjamini et al. [9]) Let G = (V, E) be a unimodular nona-
menable transitive graph and let X be a critical iid bond percolation on G. Then
X a.s. contains no infinite clusters.

Removing the unimodularity condition in this result seems at present like a
tough nut to crack, although see Peres et al. [91] and Timár [100] for some
progress in this direction.

Proof of Theorem 7.3. First we rule out the possibility of having a unique
infinite cluster. Assume that X a.s. contains a unique infinite cluster U . For
v ∈ V let U(v) be the set of vertices u of U such that dist(v, u) = dist(v, U),
i.e. the set of vertices of U that are closest to v.

Let a > 0 be a small number and let Ya be an iid bond percolation on G with
retention parameter a, independent of X . Put X \Ya for the percolation process
one gets by taking an edge to be open if it is open in X and closed in Ya. Then
X \ Ya is iid percolation with parameter pc(G)− a and thus sub-critical.

Now define another percolation process Za by declaring each edge e = {u, v} ∈
V to be open in Za if dist(u, U) < 1/a, dist(v, U) < 1/a and U(u) ∪ U(v) is
contained in a connected component of X \ Ya. Then a.s.

lim
a↓0

P (Za(e) = 1|X) = 1 ,

so by the Dominated Convergence Theorem

lim
a↓0

P (Za(e) = 1) = 1.

Thus a may be picked so small that P (Za(e) = 1) > 1 − κV (G)/d, so by
Lemma 7.2, Za with positive probability contains an infinite cluster. However,
if v1, v2, v3, . . . are the vertices of an infinite self-avoiding open path in Z and
ui ∈ U(vi) then by the definition of Za all the ui’s are in the same cluster of
X \ Ya, and the sequence {ui} contains infinitely many distinct vertices. This
contradicts the sub-criticality of X \ Ya.

Now assume that X contains infinitely many infinite clusters. Recall from the
proof of Theorem 2.4 the definition of a trifurcation: a trifurcation is a vertex
such that exactly three of the edges incident to it are open and the removal of
it splits an infinite cluster into three infinite clusters. In the proof of Theorem
2.4 it was argued that the set T of trifurcations is with positive probability
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nonempty iff X contains infinitely many infinite clusters a.s. It follows from
ergodicity (cf. the proof of Lemma 2.6) that indeed T will a.s. be nonempty
in this case. Furthermore we claim that if a trifurcation v is removed from the
open subgraph of X , then each of the three infinite clusters that this results in,
contains another trifurcation. To prove this define a mass-transport function m
by putting m(u, v, X) = 1 if v is the unique trifurcation that is closest in the open
subgraph of X to u, and m(u, v, X) = 0 otherwise. Then the expected outgoing
mass from a vertex v is bounded by 1. However if v is a trifurcation where one
of the three infinite clusters its removal results in has no other trifurcation, then
v would get unit mass from all vertices in that cluster. Thus, a.s., this cannot
happen.

We shall now construct a forest (i.e. a graph whose connected components
are trees) F = F (X) with T as vertex set in such a way that the distribution of
F is automorphism-invariant: First assign to each v ∈ T a random variable ξ(v)
that is uniformly distributed on [0, 1] and independent of X and {ξ(u) : u 6= v}.
Then for a given v ∈ T , let X1, X2 and X3 denote the three infinite sub-clusters
of X that the removal of v results in. For each i put an edge between v and
the one among the trifurcations, t, in Xi that are closest in X to v that has the
smallest ξ(t). The graph F constructed in this way is clearly automorphism-
invariant and it is also a forest. To see the latter, assume for contradiction that
F contains a cycle (v0, v1, v2, . . . , vk), v0 = vk. Then by the construction of F
we must have that dist(vi, vi+1) is the same for all i. Therefore ξ(v0) > ξ(v1) >
. . . > ξ(vk) = ξ(v0), a contradiction.

Note that every component of F is contained in an infinite cluster of X .
Again we will use an iid bond percolation Ya as above, independent of X .

Define a percolation Za on F by letting an edge be open if its two end-vertices
are in the same cluster of X\Ya. Since X\Ya contains no infinite clusters, neither
does Za. For v ∈ T let K(v) denote the cluster of v in Za and let ∂F K(v) denote
K(v)’s vertex-boundary in F . Since the components of F are binary trees, at
least half of the vertices of K(v) are in ∂F K(v). Therefore, for a given vertex
v ∈ V ,

P (v ∈ T, v ∈ ∂F K(v)) ≥ 1

2
P (v ∈ T ).

However, the probability that an edge in F is closed in Za tends to 0 as a tends
to 0, whence the left-hand side tends to 0. On the other hand, the right-hand
side is nonzero and independent of a, a contradiction. 2

Note that for the first part of the proof (no unique infinite cluster at crit-
icality), the fact that X is iid percolation was only used through its property
of automorphism invariance. Thus, the same proof yields the following more
general result, which will serve as one more ingredient in the proof of Theorem
7.1.

Corollary 7.4 Let X be an automorphism invariant bond percolation on a
unimodular transitive nonamenable graph such that X a.s. has a unique infinite
cluster, C. Then a.s. pc(C) < 1.
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The following lemma is from [13, Lem. 3.3].

Lemma 7.5 Let X be an iid bond percolation on a nonamenable planar transi-
tive graph G with one end and let X† be the dual percolation on G†. Then a.s.
at least one of X and X† contains infinite clusters.

Proof. If X as well as X† contain only finite clusters a.s. then, since G and
G† both have one end, every cluster of X is surrounded by a circuit in X† and
vice versa. Define the rank of a cluster of X as follows. First say that a cluster
has rank 0 if it does not contain a circuit that surrounds a cluster of X† that
in turn contains a circuit that surrounds a cluster of X . Then recursively set
the rank of a cluster C of X as one plus the maximum rank of clusters that are
surrounded by a circuit of a cluster of X† that is surrounded by a circuit of C.
Define the rank of a vertex v to be the rank of its cluster.

Now define an automorphism-invariant percolation Y on G by saying that an
edge is open if the rank of neither of its end-vertices exceeds a given number R.
Clearly the probability that an edge is open tends to 1 as R → ∞, so we can
let R be chosen so that this probability exceeds 1− κV (G)/d. Then by Lemma
7.2, Y must contain infinite clusters. On the other hand, since every cluster in
X is surrounded by clusters of arbitrarily large rank, Y cannot contain infinite
clusters, and we have a contradiction. 2

Theorem 7.6 Let G be a nonamenable planar transitive graph with one end,
let X be iid bond percolation on G and let X† be the dual percolation on G†.
Then a.s. either X and X† both contain infinitely many infinite clusters or one
of them contains a unique infinite cluster and the other contains no infinite
clusters.

Proof. By Lemma 7.5 at least one of X and X† must contain infinite clusters.
If X contains infinitely many infinite clusters, these must be separated by some
infinite cluster of X† and vice versa. Also if X a.s. contains infinitely many
infinite clusters, then pick a finite connected subgraph H of G so large that H
with positive probability intersects two infinite clusters in G \ H . Since there
is also a positive probability that all edges of H are open in X we find that
with positive probability X† contains at least two infinite clusters. Hence if X
contains infinitely many infinite clusters, the so does X† and vice versa.

It remains to rule out the possibility that X and X† both contain a unique
infinite cluster. In order to obtain a contradiction, consider the graph H formed
by letting the vertices of H be the union of V , V † and the points where an
edge of G crosses an edge of V † (considering a fixed given embedding of G in
the plane). The edges of H are the “half egdes” of G and G†, i.e. formally the
pairs {c, v} where c is a crossing and v is one of the end vertices of one of the
two edges that cross at c. Note that H is quasi-transitive. Define an invariant
percolation, Y , on H by declaring an edge {c, v} to be open iff {u, v} is open (in
X or X†), where u is the other end-vertex (in G or G†) of the edge in G or G†

that has a crossing in c. Now if X and X† both have a unique infinite cluster
a.s. then Y has a.s. exactly two infinite clusters. It is now tempting to refer to
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Lemma 2.6 to make the conclusion that this is impossible. However, Y is not an
iid percolation and therefore we cannot do so. Luckily we have other means to
deal with this situation: Assume that Y a.s has two infinite clusters. Pick one
of the clusters, C, uniformly at random, and put W for the set of edges of H
connecting V (C) to the vertices of the component of G\C containing the other
infinite cluster. Put W † for the set of edges in the dual of H crossing edges of
W . Then W † is an invariant percolation on the dual of H and by planarity it
consists of a infinite path. Hence pc(W †) = 1, a contradiction to Corollary 7.4.
2

Proof of Theorem 7.1: First we claim that pu(G) = 1 − pc(G†): Let X be
percolation on G with retention parameter p and and let X† be the dual perco-
lation. If p < pu(G) then by Theorem 7.6, X† contains (infinitely many) infinite
clusters and so 1− p ≥ pc(G

†). On the other hand if p > pu(G) then the same
theorem tells us that X† does not contain infinite clusters and so 1−p ≤ pc(G

†).
Next we claim that pc(G) + pc(G†) < 1 for if this had not been the case then

with p = pc(G), by Theorem 7.3, none of X or X† contains an infinite cluster,
another contradiction to Theorem 7.6.

Putting this together yields

pc(G) < 1− pc(G†) = pu(G)

as desired. 2

8. Uniqueness for p close to 1

When is pu < 1? On the tree Td, d ≥ 2, one has pu = 1 even though pc < 1.
This phenomenon also occurs on any transitive graph G with more than one
end for which pc(G) < 1, since the removal of a finite set of edges splits the
graph into at least two infinite connected graphs and there is always a positive
probability that all edges of that set are closed. So in order to have any hopes
for proving uniqueness for some p < 1, one-endedness needs to be assumed. We
shall start by returning to the p > 1

2 half of Proposition 4.1 in the Grimmett–
Newman example Td × Z (which is obviously one-ended). Here we restate that
half (with a weaker condition on d, but note that the d ≥ 17 condition there
was not necessary for the p ≥ 1

2 part):

Proposition 8.1 Let d ≥ 2, and let G = Td × Z. For iid bond percolation on
G with p > 1

2 , we get a.s. a unique infinite cluster.

Let us sketch an alternative proof of this result based on the notion of cluster
frequency, invented by Lyons and Schramm [82], rather than on Lemma 4.3.
(An ancestor of cluster frequency for the Z

d setting is cluster density, for which
an analog of Theorem 8.4 below was established by Burton and Keane [19].)
Let G = (V, E) be a transitive graph, and let Z(0), Z(1), . . . be a simple ran-
dom walk on G starting from some fixed vertex. If now Y is a {0, 1}V -valued
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random object satisfying automorphism invariance (the obvious analog of (5.1)
with bonds replaced by sites), then Y (Z(0)), Y (Z(1)), . . . becomes a stationary
process. Thus, the ergodic theorem tells us that the limit

lim
n→∞

1

n

n−1
∑

i=0

Y (Z(i)) (8.1)

exists. Furthermore, we have the following.

Lemma 8.2 Let G = (V, E), Z(0), Z(1), . . . and Y be as above. Then the limit
in (8.1) depends a.s. only on Y (and not on the random walk).

Proof. Fix a c ∈ [0, 1], and write L for the limit in (8.1). By Lévy’s 0-1-law, we
have a.s. that

lim
m→∞

P (L ≤ c |Z(0), . . . , Z(m), Y ) = I{L≤c} .

Hence, for any ǫ > 0, we can find an M <∞ such that with probability at least
1− ǫ we have

P (L ≤ c |Z(0), . . . , Z(M), Y ) ∈ [0, ǫ] ∪ [1− ǫ, 1] . (8.2)

We clearly have

lim
n→∞

1

n

M+n−1
∑

i=M

Y (Z(i)) = L ,

and substituting in (8.2) gives

P

(

lim
n→∞

1

n

M+n−1
∑

i=M

Y (Z(i)) ≤ c

∣

∣

∣

∣

∣

Z(0), . . . , Z(M), Y

)

∈ [0, ǫ] ∪ [1− ǫ, 1] ,

where the left-hand side depends on Z(0), . . . , Z(M) only via Z(M), so that

P

(

lim
n→∞

1

n

M+n−1
∑

i=M

Y (Z(i)) ≤ c

∣

∣

∣

∣

∣

Z(M), Y

)

∈ [0, ǫ] ∪ [1− ǫ, 1] . (8.3)

Due to automorphism invariance of Y in conjuncion with Z(M) being indepen-
dent of Y , we have that the left-hand side in (8.3) has the same distribution as
P (L ≤ c |Y ). Since ǫ > 0 was arbitrary, this means that P (L ≤ c |Y ) ∈ {0, 1}
a.s., and since c ∈ [0, 1] was arbitrary the proof is complete. 2

Lemma 8.2 motivates the following definition.

Definition 8.3 Let G = (V, E) be a transitive graph, and fix y ∈ V as well
as a bond percolation configuration ξ ∈ {0, 1}E, and write Cy for the cluster of
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ξ containing y. Let Z(0), Z(1), . . . be simple random walk on G starting from
some fixed vertex. The cluster frequency of Cy is defined as

lim
n→∞

1

n

n−1
∑

i=0

I{Z(i)∈Cy} ,

provided that the limit exists a.s. and is independent of the random walk.

Lyons and Schramm [82] established the following.

Theorem 8.4 For iid bond percolation4 on a transitive graph G = (V, E), we
get with probability 1 that every cluster has a well-defined cluster frequency.

Proof. We shall employ a coupling idea that yields a different, and in our
opinion even more instructive, proof than the one in [82]. Fix y ∈ V , pick the
bond percolation process X ∈ {0, 1}E according to Pp, and pick Y ∈ {0, 1}V as
follows: for each cluster C of X independently, let all vertices of C take value
0, or let them take value 1, with probability 1/2 each. The distribution of Y is
obviously automorphism invariant, and we get that

lim
n→∞

1

n

n−1
∑

i=0

Y (Z(i)) (8.4)

exists, and by Lemma 8.2 it is independent of the random walk.
Next, pick Y ′ ∈ {0, 1}V by setting

Y ′(x) =

{

1− Y (x) if x ∈ Cy

Y (x) otherwise,

and note that Y ′ has exactly the same distribution as Y . Hence, also

lim
n→∞

1

n

n−1
∑

i=0

Y ′(Z(i)) (8.5)

exists and is independent of the random walk. Combining what we know about
the limits in (8.4) and (8.5), we get that

lim
n→∞

1

n

n−1
∑

i=0

(Y (Z(i))− Y ′(Z(i))) (8.6)

exists and is independent of the random walk, and the same thing for

lim
n→∞

1

n

n−1
∑

i=0

|Y (Z(i))− Y ′(Z(i))| (8.7)

4We focus here on the iid setting, but in fact the result as well as its proof go through
without change in the more general setting of automorphism invariant percolation.
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because all terms in (8.6) have the same sign (positive if Y (y) = 1 and negative
otherwise). But

|Y (Z(i))− Y ′(Z(i))| = I{Z(i)∈Cy}

so that the limit in (8.7) is in fact the cluster frequency of Cy. 2

Proof of Proposition 8.1: Write θZ2(p) for the probability in iid bond perco-
lation on Z

2 that the origin is in an infinite cluster, and recall from Section 1
that θZ2(p) > 0 when p > 1

2 . By the same token as in the proof of Lemma 4.2,
we get that

Pp(u↔ v) ≥ θZ2(p)2 (8.8)

for any u, v ∈ Z
2.

Switching to percolation on Td × Z, recall from Section 4 that for any two
vertices u and v in this graph there is a subgraph of Td × Z isomorphic to Z

2,
and that we can therefore conclude that (8.8) holds for any u, v ∈ Td × Z as
well.

Fix a vertex y in Td×Z and then pick a p′ ∈ (1
2 , p). It follows from (8.8) that

with positive Pp′ -probability, the cluster Cy has a cluster frequency freq(Cy)
satisfying

freq(Cy) ≥ θZ2(p′)2

> 0 ,

and note that if so happens, then Cy must be infinite. But the existence of some
infinite cluster C with freq(C) > 0 is a tail event, so that by Kolmogorov’s
0-1-law

Pp′(∃ an infinite cluster C with freq(C) > 0) = 1 . (8.9)

The sum of freq(C) over all clusters C is easily seen to be bounded by 1. Hence,
using (8.9), we get with Pp′ -probability 1 that there exist finitely many infinite
clusters maximizing cluster frequency (among all clusters in the particular perco-
lation configuration that we happened to get); call such a frequency-maximizing
cluster special.

Now consider the usual enhancement from p′ to p, so that in other words
Xp′ , Xp ∈ {0, 1}E are picked jointly as in Coupling 1.1. We saw in Theorem 5.4
that a.s. any infinite cluster in Xp will contain some infinite cluster in Xp′ . But
an inspection of the proof of Theorem 5.4 shows that it goes through virtually
unchanged to show that any infinite cluster in Xp contains a special infinite
cluster in Xp′ . Hence Xp has a.s. only finitely many infinite clusters, and by
Lemma 2.6 it therefore has only one. 2

We next move on from the Grimmett–Newman example to more general one-
ended transitive graphs and a result of Babson and Benjamini [6] in the direction
of establishing a uniqueness phase for p close to 1. First we note that when G
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is planar with one end it was shown in the proof of Theorem 7.1 that pu(G) =
1− pc(G†) and since G† has bounded degree, pc(G

†) > 0 and hence pu(G) < 1.
Thus the planar case is already settled. But in fact the assumption of planarity
can be removed, provided that the group is taken to be finitely presented:

Theorem 8.5 (Babson and Benjamini [6]) Let G = (V, E) be a one-ended
nonamenable Cayley graph of a finitely presented group. Then pu(G) < 1.

The assumption of nonamenability is not essential in any other respect than
that it ensures that pc(G) < 1. The result also trivially holds for amenable
graphs with one end provided that pc(G) < 1.

We will be content with sketching some of the ideas behind Theorem 8.5.
Define a cutset to be a set F of edges such that with F removed the graph
(V, E \ F ) has at least two infinite connected components. Note that since G
has one end a cutset must be infinite. If X is an iid bond percolation on G with
more than one infinite cluster, then the set of closed edges X must contain a
cutset, so if we can show that for p large enough the probability for this is 0,
then we will be done.

For that we use the fact that there exists a number D <∞ such that a cutset
on G must contain an infinite set {f1, f2, f3, . . .} of distinct edges such that
dist(fi, fi+1) ≤ D for all i, where the distance between two edges is the minimal
distance between two of their end-vertices. This fact is a direct consequence of
[6, Cor. 4] whose proof we omit; a simpler proof by Timár (also omitted here)
can be found in [99] and in [80, Sect. 6.6].

Now let d be the degree of G. The probability that there exists set of edges
{f1, f2, . . .} of the kind just described with the first n of the fi’s closed in X , is
bounded by (2dD(1 − p))n. Hence the probability that X contains a cutset of
closed edges is 0 when p ≥ 1− 1/(2dD), implying Theorem 8.5.

9. The situation at pu

The question in focus in this section is what happens when p = pu. In the case
of percolation on planar graphs with one end the answer is more or less already
given by the results of Section 7:

Theorem 9.1 (Benjamini and Schramm [13]) Let G = (V, E) be a planar
unimodular transitive graph with one end. Then percolation at pu(G) a.s. pro-
duces a unique infinite cluster.

Proof. Let X be an iid bond percolation on G with p = pu(G) and let as usual
X† denote the dual percolation on G†. By the proof of Theorem 7.1, pu(G) +
pc(G

†) = 1 so X† is critical percolation on G†. The graph G† is unimodular
(this was discussed in Section 7) and we may therefore apply Theorem 7.3 to
deduce that X† contains no infinite clusters. Hence, by Theorem 7.6, X contains
a unique infinite cluster. 2

The behavior on planar graphs is not general. The next result of Schonmann
shows that for the Grimmett–Newman example of Section 4 the situation is the
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opposite.

Theorem 9.2 (Schonmann [94]) Let G = Td × Z. Then a.s. percolation at
pu(G) does not produce a unique infinite cluster. In particular if d is chosen so
that pc < pu, e.g. if d is sufficiently large, then percolation at pu a.s. produces
infinitely many infinite clusters.

Schonmann’s result was soon afterwards generalized by Peres to the following,
while Lyons and Schramm [82] proved that uniqueness of the infinite cluster at
pu is a.s. impossible for Caley graphs of so-called Kazhdan groups.

Theorem 9.3 (Peres [90]) Let G = (VG, EG) and H = (VH , EH) be two
infinite connected transitive graphs and assume that G is nonamenable and uni-
modular. Then iid bond percolation on G×H at pu(G×H) a.s. does not produce
a unique infinite cluster.

Actually, as consequence of the remark after Lemma 7.2, the condition that
G is nonamenable and unimodular can be replaced by the weaker assumption
that Aut(G) is nonamenable. Recall, however, that when G is nonunimodular,
this does not automically follow from G itself being nonamenable.

Since Theorem 9.3 is more general and has a proof that is not harder to follow
than the original proof of Theorem 9.2, we present only the proof of Theorem
9.3. Note that Theorem 9.3 implies that pu < 1, a special case of the result from
[57] mentioned at the end of Section 5.

Proof of Theorem 9.3. Assume that p0 is such that percolation on G × H
with retention parameter p0 a.s. produces a unique infinite cluster. We will
show that then there exists p∗ < p0 such that percolation with retention p∗
also produces a unique infinite cluster. We will do this by showing that for
some p∗ < p0 it is the case that for any a > 0 one can pick N so large that
Pp∗

(B(u, N) ↔ B(v, N)) > 1 − a for any u, v ∈ VG × VH . The theorem then
follows from Lemma 4.3.

We use the simultaneous coupling construction (Coupling 1.1) of percolation
processes for all p: Assign to the edges, e, independent uniform [0,1] random
variables U(e) and denote the underlying probability measure by P . For p ∈ [0, 1]
put O(p) for the set of edges e with U(e) ≤ p and note that O(p) has the
distribution of the open edges of iid percolation with retention p. Put C(u, p)
for the connected component of the vertex u in (VG × VH , O(p)) and for a set
W of vertices put C(W, p) = ∪u∈W C(u, p).

Since G is nonamenable there exists, by Lemma 7.2, a number η > 0 such
that any invariant site percolation process on G, for which a given vertex, is
open with probability at least 1− η, with positive probability produces infinite
clusters. Fix such an η.

Now put C∞(p0) for the unique infinite cluster in (VG×VH , O(p0)) and define

A1 = A1(r) = {u ∈ VG × VH : B(u, r) ∩ C∞(p0) 6= ∅}.
Fix r so large that P (u ∈ A1(r)) ≥ 1− η/6. Next define

A2 = A2(r, n) = {u ∈ VG×VH : ∀v, w ∈ B(u, r+1)∩C∞(p0) : dist(v, w; O(p0)) < n}.
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Here dist(v, w; O(p)) refers to the distance between v and w in (VG×VH , O(p)).
Now fix n so large that P (u ∈ A2(r, n)) ≥ 1− η/6.

Let d = dG + dH denote the degree of G×H and fix p1, p2 and p∗ so that

p0 −
η

6dr+n
< p1 < p2 < p∗ < p0.

Now define

A3 = A3(r, n, p1) = {u ∈ VG×VH : U(e) 6∈ [p1, p0] for all edges e in B(u, r + n)}.
Then P (u ∈ A3) ≥ 1 − η/6. Put A = A1 ∩ A2 ∩ A3 and note that P (u ∈ A) ≥
1− η/2. Fix two vertices h1, h2 ∈ VH and let

B = {g ∈ VG : (g, h1) ∈ A ∧ (g, h2) ∈ A}.
Then B is the set of open vertices of an invariant site percolation on G such
that P (g ∈ B) ≥ 1 − η for any given vertex g and hence B, with positive
probability, has infinite clusters. Since the event that B contains infinite clusters
is automorphism invariant and determined by the iid random variables U(e), B
in fact contains an infinite clusters with probability 1.

Consider an infinite path (g1, g2, g3, . . .) in B. Since (gj , h1) ∈ A1, there is a
vertex uj ∈ C∞(p0) in B((gj , h1), r). Since (gj , h1) ∈ A2 ∩A3 for all j, there is
a path from uj to uj+1 of length at most n in O(p1). Concatenating these paths
for j = 1, 2, 3, . . . gives an infinite path in O(p1) that comes within distance r
from (gj , h1) for every j. By an analogous argument there is an infinite path
(v1, v2, . . .) in O(p1) that comes within distance r from (gj , h2) for every j. Thus
for any vertex g ∈ VG we have

P (B((g, h1), r)↔ B((g, h2), r) in O(p2)) | |C(g, B)| =∞) = 1. (9.1)

This is so because there is an infinite number of edge-disjoint paths that can
join the two paths above in O(p1) and all of these have a positive probability of
being open at level p2 whatever their status at level p1. Similar arguments were
used in Section 4.

Now pick R0 so large that the probability that for g ∈ VG the ball B(g, R0)
in G intersects an infinite cluster of B is at least 1− a/2, and put R = r + R0.
Taking (9.1) into account together with the triangle inequality shows that

P (B((g, h1), R)↔ B((g, h2), R) in O(p2)) ≥ 1− a

2
. (9.2)

Fix two vertices u = (gu, hu) and v = (gv, hv) of G × H . For h ∈ VH put
Fh for the event that B(u, R) ↔ B((gv, h), R) and B(v, R) ↔ B((gv, h, R).
By (9.2), Fh has probability at least 1 − a for any h. Therefore, Fh occurs
for infinitely many h with probability at least 1 − a. However, on this event
the sets C(B(u, R), p2) and C(B(v, R), p2) come infinitely often within distance
2R + dist(gu, gv; EG) of each other. Thus, since p∗ > p2,

P (B(u, R)↔ B(v, R) in C(p∗)) ≥ 1− a

as desired. 2
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10. Simultaneous uniqueness

Consider the simultaneous coupling construction (Coupling 1.1) of iid bond
percolation on Z

d for all p ∈ [0, 1]. We know from the results in Section 2
(Theorem 2.4, say) that for each p > pc

P (Xp has a unique infinite cluster) = 1 .

Since there are uncountably many such p’s, it is not a priori obvious whether or
not the order of the quantifiers can be exchanged in this statement, i.e., whether

P (for all p > pc, Xp has a unique infinite cluster) = 1 . (10.1)

This question of simultaneous uniqueness was first posed by Matthew Penrose,
and appeared in print in Grimmett [35], where it was pointed out that (10.1)
holds for d = 2. This follows easily from the contour argument in the proof of
Theorem 2.2.

Soon thereafter, Alexander [4] established (10.1) for d ≥ 3 as well as for a
wider class of percolation processes in d-dimensional Euclidean space.

The issue of simultaneous uniqueness in the more general context of transitive
graphs was later considered by Häggström and Peres [56] and Häggström et al.
[57]. In that setting, (10.1) of course needs to be replaced by

P (for all p > pu, Xp has a unique infinite cluster) = 1 .

This was established under the unimodularity assumption in [56] and without
that condition in [57]. In fact, the results in [56] and [57] have implications for
the non-uniqueness phase (pc, pu) as well. The general result is the following.

Theorem 10.1 Consider the simultaneous coupling construction of iid bond
percolation for all p ∈ [0, 1] on a transitive graph. With probability 1, we have
for all p1, p2 such that pc < p1 < p2, that any infinite cluster in Xp2

contains
an infinite cluster in Xp1

.

In other words, when we gradually raise p in the simultaneous coupling con-
struction, the only thing that ever happens to infinite clusters after p = pc is
that they grow and merge – no new infinite clusters are ever born.

To prove Theorem 10.1 is a matter of modifying the proof of Theorem 5.6 in
such a way that the order in which edges are searched in the procedure exploring
a cluster is based not on a pre-fixed ordering but on the uniform [0, 1] variables
of Coupling 1.1, turning in effect the exploration procedure to so-called invasion
percolation [23]. See [57] for the details.

11. Dynamical percolation

Similar in spirit to the question of simultaneous uniqueness considered in the
previous section, is the study of so-called dynamical percolation (Häggström et
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al. [58]). Here the percolation process evolves in continuous time in the follow-
ing manner. Fix G = (V, E) and the parameter p ∈ (0, 1). Each edge e ∈ E
independently flips between states 0 (closed) and 1 (open) according to a two-
state continuous time Markov chain whose flip rate is p when in state 0, and
1− p when in state 1. The unique stationary distribution for this Markov chain
places mass 1− p on state 0 and mass p on state 1. Hence, if we take the entire
{0, 1}E-valued process (X(t))t≥0 to begin with X(0) chosen according to prod-
uct measure Pp on {0, 1}E, then X(t) has distribution Pp for all t. Thus, for
any fixed t ≥ 0,

P (X(t) has an infinite cluster) =

{

0 if p < pc

1 if p > pc .

Analogously to the simultaneous uniqueness issue in Section 10, we have a non-
trivial task if we wish to strengthen this statement by interchanging the order
of the quantifiers, i.e., by saying that

P (for all t, X(t) has no infinite cluster) = 1 if p < pc (11.1)

and

P (for all t, X(t) has an infinite cluster) = 1 if p > pc . (11.2)

It turns out (see [58]) that (11.1) and (11.2) hold for dynamical percolation on
arbitrary graphs, whereas the situation at p = pc is considerably more intricate:
there exist graphs G such that at the critical value there is Ppc

-a.s. no infinite
cluster, while in the dynamical percolation process an infinite cluster shows up
in X(t) at some random exceptional times t; likewise there are graphs G which
Ppc

-a.s. have an infinite cluster, yet in the corresponding dynamical percolation
process there is at certain exceptional times no infinite cluster. See Schramm
and Steif [96] for a recent breakthrough amounting to that critical dynamical
site percolation on the two-dimensional triangular lattice exhibits exceptional
times.

Concerning uniqueness of the infinite cluster for supercritical percolation on
Z

d, Peres and Steif [92] showed that this can be strengthened to a “for all t”
statement in dynamical percolation. More precisely, for G = Z

d and p > pc,
they demonstrated that the dynamical percolation process (X(t))t≥0 satisfies

P (for all t, X(t) has a unique infinite cluster) = 1 .

The same paper offers a detailed and beautiful analysis of the somewhat ex-
otic ways in which the number of infinite clusters may vary in time in critical
dynamical percolation on certain non-homogeneous trees.

12. Dependent percolation

Generally speaking, one of the most obvious (and, indeed, most-studied) direc-
tions for extending the iid bond percolation model studied in previous sections
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is to relax the iid assumption and allow for (various kinds of) dependence be-
tween edges. Such processes can be of great interest in themselves (as will be
amply exemplified in the next section), or sometimes (as we saw in the proof of
Theorem 7.3) even serve as tools in the analysis of iid percolation.

To work with arbitrary probability measures on {0, 1}E would, however, be
to take things a bit too far, as not much of interest can be said in such a general
setting. So we still need some conditions.

For percolation on Z
d, translation invariance is an extremely natural (and, in

the percolation literature, almost universally employed) condition. A probability
measure ν on {0, 1}E (where E is the edge set of the Z

d lattice) is said to be
translation invariant if a {0, 1}E-valued random object with distribution ν has
the following property: for any finite edge set {{x1, y1}, . . . , {xk, yk}} ⊂ E and
any z ∈ Z

d, the distribution of

(X({x1, y1}), . . . , X({xk, yk}))

is the same as that of

(X({x1 + z, y1 + z}), . . . , X({xk + z, yk + z}))

(cf. the definition (5.1) of automorphism invariance).
Translation invariant percolation on Z

d does not in general inherit the unique-
ness of the infinite cluster property of iid percolation. For a trivial example,
consider the percolation process on Z

2 where all vertical edges are a.s. open,
while all horizontal edges are a.s. closed; clearly, this results in an infinite num-
ber of infinite clusters. A more challenging task is to construct, given a finite
k ≥ 2, a translation invariant percolation process resulting a.s. in precisely k
infinite clusters. But it can be done, as shown by Burton and Keane in the very
interesting follow-up paper [20] to their famous breakthrough [19] discussed in
Sections 1 and 2.

So more conditions are needed in order to deduce uniqueness of the infinite
cluster. A striking sufficient condition (in the setting of translation invariance)
is the notion of finite energy, dating back to Newman and Schulman [86]:

Definition 12.1 For an arbitrary graph G = (V, E), a probability measure ν
on {0, 1}E is said to have finite energy5 if it admits conditional probabilities
such that for a {0, 1}E-valued random object X with distribution ν, any e ∈ E,
and any ξ ∈ {0, 1}E\{e}, we have

0 < ν(X(e) = 1 |X(E \ {e}) = ξ) < 1 . (12.1)

In fact, the uniqueness result of Burton and Keane [19] (earlier quoted as Theo-
rem 2.4) was originally stated in the setting of finite energy percolation processes
on Z

d:

5Lyons and Schramm [82] found it fruitful to distinguish between insertion tolerance
(meaning that the first inequality in (12.1) holds), and deletion tolerance (ditto for the second
inequality). If the probability in (12.1) is bounded away from 0 and/or 1, then we speak of
uniform finite energy, uniform insertion tolerance and uniform deletion tolerance.



Häggström and Jonasson/Uniqueness in percolation 326

Theorem 12.2 (Burton and Keane [19]) Any finite energy translation in-
variant bond percolation process on Z

d produces a.s. at most one infinite cluster.

To adapt the proof of Theorem 2.4 to this non-iid setting, let us first inspect
where in the proof of Theorem 2.4 the iid assumption is actually used. This
happens in two places, namely,

(a) to deduce in Lemma 2.6 that the number of infinite clusters is an a.s.
constant, and

(b) in the application of the local modifier (Coupling 2.5) to produce trifurca-
tions.

Now, the a.s. constance of the number of infinite clusters in (a) is no longer
true under the conditions of Theorem 12.2, but this is easily taken care of by
ergodic decomposition of the probability measure in question. (Here one should
verify that the finite energy property is preserved under ergodic decomposition,
a detail that Burton and Keane slipped in [19] but which has been clarified
several times later, e.g., in [32, Lem. 1] and [82, Lem. 3.6].)

As to (b), consider the following generalization of Coupling 2.5 to the non-iid
setting.

Coupling 12.3 The local modifier in a non-iid setting. Let G = (V, E)
be an infinite graph, and let ν be a probability measure on {0, 1}E. A coupling
of two {0, 1}E-valued random objects X and X ′, both with distribution ν, can be
obtained as follows. Let Q be a probability distribution on the set E of all finite
subsets of E such that Q assigns positive probability to each element of E.

1. Pick F ∈ E according to Q.
2. Pick X(E\F ) according to the distribution prescribed by ν, and set X ′(E\

F ) = X(E \ F ).
3. Pick X(F ) according to the conditional distribution that ν prescribes, given

X(E \ F ).
4. Independently of Step 3, pick X ′(F ) according to the conditional distribu-

tion that ν prescribes, given X ′(E \ F ).

Note that if ν equals product measure Pp, then Coupling 12.3 reduces to Cou-
pling 2.5. We may furthermore note in the more general setting where ν has
finite energy, all outcomes of X(F ) and X ′(F ) have positive conditional proba-
bility given Steps 1 and 2. Therefore, we may for the construction of trifurcations
in the proof of Theorem 12.2 proceed just as in the proof of Theorem 2.4, only
replacing Coupling 2.5 by Coupling 12.3. The rest of the proof is identical to
that of Theorem 2.4, so Theorem 12.2 is established.

13. Dependent percolation: examples

As elsewhere in mathematics, extending percolation-theoretic results to more
general settings would be of questionable value unless these settings are shown
to include some interesting concrete examples. For the theory of dependent
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percolation that we began to discuss in the previous section, there is no shortage
of such examples.

One of the most important examples is the random-cluster model, introduced
in a 1972 paper by Fortuin and Kasteleyn [31]. After a relatively calm period,
interest in the model caught on again around 1990 following contributions by
Edwards and Sokal [28], which clarified the model’s intimate relation to Ising and
Potts models, and Aizenman et al. [1], which initiated a modern probabilistic
analysis of the model using stochastic domination and correlation inequality
techniques. The level of activity has since then remained high, with a vast
number of papers on applications to Ising and Potts models as well as studies
of the random-cluster model as an object worthy of attention in its own right.
This work has been surveyed in, e.g., Georgii et al. [34], Grimmett [38], and the
recent book by Grimmett [40].

On a finite graph G = (V, E), the random-cluster measure φG
p,q with param-

eters p ∈ [0, 1] and q > 0 is defined as the probability measure on {0, 1}E which
to each ξ ∈ {0, 1}E assigns probability

qk(ξ)

ZG
p,q

∏

e∈E

pξ(e)(1− p)1−ξ(e) , (13.1)

where k(ξ) is the number of connected components (including isolated vertices)
of the graph Gξ = (V, {e ∈ E : ξ(e) = 1}), and ZG

p,q is a normalizing constant.
Note that taking q = 1 reduces to iid percolation with retention parameter p,
whereas taking q 6= 1 in general leads to dependence between edges. Single-edge
conditional distributions are easy to compute from (13.1): if X ∈ {0, 1}E is
taken to have distribution φG

p,q, then we have for any edge e = {x, y} ∈ E and

any ξ ∈ {0, 1}E\{e} that

φG
p,q(X(e) = 1 |X(E \ {e}) = ξ) =

{

p if x↔ y in ξ
p

p+(1−p)q otherwise,
(13.2)

where “x↔ y in ξ” means that there exists a path from x to y only using edges
e with ξ(e) = 1.

It is not immediately clear how one should extend the notion of random-
cluster measures to the case where G = (V, E) is infinite; note that {0, 1}E is
then uncountable, so that each ξ ∈ {0, 1}E ought to receive probability 0, and
a direct definition like (13.1) clearly will not do. Instead, two approaches have
been proposed, namely (a) using DLR (Dobrushin–Lanford–Ruelle) equations,
and (b) taking weak limits of finite-graph random-cluster measures.

In approach (a), originally considered in the 1960’s for Gibbs measures in
infinite volume, the idea is that single-edge conditional probabilities (and more
generally conditional distributions on finite sets) should behave as on finite
graphs. Thus, for an infinite graph G = (V, E), we call a probability measure
φ on {0, 1}E a DLR random-cluster measure for G with parameters p and q if
(13.2) holds for all e ∈ E and φ-almost all ξ ∈ {0, 1}E\{e}. The corresponding
agreement of conditional distributions on arbitrary finite edge sets follows easily
(see, e.g., [34, Lem. 6.18]).
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In approach (b), we first define a sequence (Gn)n≥1 of finite subgraphs of G
such that

(i) V1 ⊆ V2 ⊆ · · · ,
(ii) each x ∈ V is in all but at most finitely many Vn’s,
(iii) each e = {x, y} ∈ E is in En if and only if x and y are both in Vn,

and call such a sequence an exhaustion of G. Consider now the sequence (φGn
p,q )n≥1

of random-cluster measures for the graphs (Gn)n≥1. It may happen that these
converge weakly (in the sense of convergence of probabilities of all cylinder
events) to a probability measure φ on {0, 1}E, in which case we call φ a limiting
random-cluster measure for G with parameters p and q. A standard compact-
ness argument shows that such a limit can always be obtained by passing to a
subsequence if necessary.

For q ≥ 1 more can be said. Then the right-hand side of (13.2) becomes in-
creasing in ξ, an observation that opens up the door to a wonderful machinery of
stochastic domination (much of it based on the so-called Holley Inequality, see,
e.g., [34] for a detailed introduction to how this works) which among other things

shows that, for any n, the projections on {0, 1}En of the measures (φ
Gn+m
p,q )m≥0

is stochastically increasing in m. It follows that the sequence φG1
p,q, φ

G2
p,q, . . . con-

verges (without passing to a subsequence) to a probability measure on {0, 1}E
which thereby qualifies as a limiting random-cluster measure for G with param-
eters p and q; we denote it by

φG,free
p,q

where “free” is short for “with free boundary condition”, a notion that will
be clarified through contrast to its “wired” counterpart in the next paragraph.
Another consequence of the stochastic domination machinery is that φG,free

p,q is
independent of the choice of exhaustion (Gn)n≥1. For the case where G is the
Z

d lattice, we therefore get that φG,free
p,q is translation invariant.

An alternative limiting procedure (still when q ≥ 1) is to replace φG1
p,q, φ

G2
p,q, . . .

by the measures φG1,wired
p,q , φG2,wired

p,q , . . . defined by modifying φGn
p,q in such a way

that k(ξ) in (13.1) counts only those connected components that do not intersect
the boundary ∂V Vn (recall that ∂V Vn is defined as the set of all x ∈ Vn that
have at least one neighbor in V \Vn). This is tantamount to viewing all vertices
of the boundary ∂V Vn as a single one, or in other words to “wiring” them to
each other. The same stochastic domination arguments as those alluded to in
the previous paragraph (except that the stochastic monotonicity goes in the
other direction) yield convergence to a probability measure

φG,wired
p,q

where “wired” is short for “with wired boundary condition”.
So far we have been silent on the issue of existence of DLR random-cluster

measures. Avoiding the issue for just a few more lines, let us remark that it is
straightforward to show that (still for q ≥ 1) any DLR random-cluster measure
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for G with parameters p and q must be sandwiched between φG,free
p,q and φG,wired

p,q

in the sense of stochastic domination.
For the case where G equals the Z

d lattice (or more generally an amenable
transitive graph), Grimmett [36], and independently Pfister and Vande Velde
[93], found the following elegant solution to the problem of existence of DLR
random-cluster measures. The first key observation is that the single-edge con-
ditional probabilities in φGn

p,q are bounded away from 0 and 1 uniformly in n
(by (13.2), they are in fact always between p

p+(1−p)q and p). This can be shown

to imply the finite energy property of the limiting measure φG,free
p,q , to which

Theorem 12.2 therefore can be applied to deduce the φG,free
p,q -a.s. uniqueness of

the infinite cluster. Considering for a moment what it means to have an infinite
cluster, we see that for any {x, y} ∈ E we can φG,free

p,q -a.s. find some sufficiently
large finite subgraph of G containing x and y, such that by looking in the box
we can verify either that x and y are in the same cluster, or that (at least) one of
them is in a finite cluster not equal to the cluster containing the other. This last
property is a kind of a.s. continuity in ξ of the event x↔ y showing up in (13.2),
and this turns out to be sufficient for establishing the DLR equation (13.2) for
φG,free

p,q . The same argument applies to φG,wired
p,q , so we have the following.

Theorem 13.1 (Grimmett [36], Pfister and Vande Velde [93]) For the
random-cluster model on an amenable transitive graph G with parameters p ∈
(0, 1) and q ≥ 1, we have that φG,free

p,q and φG,wired
p,q are both DLR random-cluster

measures, and that they both put full measure on the event of having at most
one infinite cluster.

Combining this result with the aforementioned sandwiching relation, shows that
uniqueness of DLR random-cluster measures for an amenable transitive graph
G with parameters p and q ≥ 1 is equivalent to having

φG,free
p,q = φG,wired

p,q .

This last equality is known to hold, loosely speaking, for “most” but not all pairs
(p, q). For such a result, the amenability condition is essential; see Häggström
[46] and Jonasson [71]. See also Grimmett [36, 38, 40] for more on this fascinating
problem in the Z

d setting.
So what about DLR properties of φG,free

p,q and φG,wired
p,q on nonamenable

graphs, where the uniqueness device Theorem 12.2 is not available? The problem
was settled to the following unexpected answer by Jonasson [71] and Georgii et
al. [34]: For q ≥ 1 and an arbitrary graph G, φG,free

p,q is always a DLR random-

cluster measure, whereas φG,wired
p,q need not be. Instead, φG,wired

p,q satisfies the
modified DLR equation

φG
p,q(X(e) = 1 |X(E \ {e}) = ξ) =

{

p if x
C←→ y in ξ

p
p+(1−p)q otherwise,

(13.3)

where “x
C←→ y in ξ” is short for the event that

either x↔ y in ξ, or x and y are both in infinite clusters.
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We may think of the definition of x
C←→ y as a kind of “compactification of

G at infinity” of the graph: to walk from one vertex x to another vertex y, it
is allowed to walk from x “to infinity”, and then back from infinity to y. This
alternative definition of DLR random-cluster measures goes back to Häggström
[46], who studied such measures on trees, where the older choice (13.2) of DLR
equation reduces, somewhat boringly, to iid percolation. Note that for graphs
exhibiting φG,wired

p,q -a.s. uniqueness of the infinite cluster, the right-hand sides of
(13.2) and (13.3) coincide, so that this later development does not conflict with
Theorem 13.1. Examples of graphs where φG,wired

p,q fails to exhibit uniqueness of
the infinite cluster are studied in [46] and in Häggström et al. [54].

As a further application of the aforementioned stochastic domination ma-
chinery, we have for fixed q ≥ 1 and any infinite G that φG,free

p,q is stochastically

increasing in p, and likewise for φG,wired
p,q . The measures can be shown to satisfy

a 0-1-law for the existence of infinite clusters, whence there exist critical values
0 ≤ pc,wired ≤ pc,free ≤ 1 (depending on G and q) such that

φG,free
p,q (∃ an infinite cluster) =

{

0 if p < pc,free

1 if p > pc,free
(13.4)

and

φG,wired
p,q (∃ an infinite cluster) =

{

0 if p < pc,wired

1 if p > pc,wired .
(13.5)

For transitive graphs, Lyons [79] proved a random-cluster analog of the unique-
ness monotonicity results in Section 5, thereby establishing the existence of
critical values 0 ≤ pu,wired ≤ pu,free ≤ 1 satisfying analogs of (13.4) and (13.5)
for the existence of a unique infinite cluster. We thus have four critical values
pc,wired, pc,free, pu,wired and pu,free (depending on G and q) for the random-
cluster model on a transitive graph. As to the ordering of these values, there
is – besides determining when the inequalities are strict – only one nontriv-
ial case, namely the ordering between pc,free and pu,wired. These problems are
treated in some detail in [54], where among other things it is shown that both
pc,free < pu,wired and pu,wired < pc,free can happen.

Let us now return to the more familiar situation where G is the Z
d lattice.

Even in this case, however, much less is understood about the random-cluster
model for q < 1 compared to q ≥ 1, due to the absence of various stochastic
monotonicities. One interesting case, however, which nevertheless is fairly well-
understood, is when p and q are sent to 0 simultaneously in such a way that
q
p → 0. Then, as shown by Häggström [45], any sequence of random-cluster

measures (either in sense (a) or sense (b) above) converges weakly to the so-
called uniform spanning tree measure of Pemantle [89]. This measure arises also
(and is in fact defined) by the following limiting procedure: Let (G1, G2, . . .)
be an exhaustion6 of Z

d, let µn denote the measure on {0, 1}En corresponding
to picking a spanning tree for Gn at random, uniformly. The limiting measure

6In addition to conditions (i)–(iii) above, we now also need to take each Gn to be connected.
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µ = limn→∞ µn on {0, 1}E exists in the usual sense of convergence of cylinder
probabilities.

Inspecting the properties of µ, we find that it is translation invariant, but
that it fails to satisfy the finite energy condition. Hence, the usual argument
for uniqueness of the infinite cluster no longer works. But this couldn’t possibly
matter, we would like the reader to interject at this point, because surely a limit
of spanning trees for Gn will be a spanning tree for Z

d (and therefore connected)?
Well, not always. In the beautiful main result of [89], it is shown that µ yields
a.s. a spanning tree when d ≤ 4, whereas for d ≥ 5 an infinite collection of
infinite trees is a.s. obtained. See Benjamini et al. [11, 8] for some subsequent
fascinating work on the topic of these uniform spanning tree measures, on Z

d

as well as on more general graphs.
On the topic of limits of random spanning trees as percolation-theoretic ob-

jects, we would like to mention that the other canonical way to choose a spanning
tree for a finite graph at random – so-called minimal spanning trees – allows the
same kind of infinite-volume limit. For a finite graph G = (V, E), the minimal
spanning tree arises by first assigning iid weights to the edges according to some
continuous distribution (the precise choice of this distribution is inconsequen-
tial, so one usually takes it to be uniform on [0, 1] as in Coupling 1.1), and then
picking the spanning tree for G whose total edge-weight is minimized (note that
there will be no tie a.s.). The limit along an exhaustion (G1, G2, . . .) of Z

d yields
a measure on {0, 1}E that is closely related to invasion percolation. It is natural
to ask whether connectivity in this limiting object depends on the dimension d
in similar fashion as the corresponding uniform spanning tree objects. Newman
and Stein [86] gave heuristic arguments for getting a single spanning tree for
Z

d when d ≤ 7, and an infinite collection of such trees when d ≥ 9 (the case
d = 8 appears to be “the critical dimension” and even harder to decide), but so
far this has been rigorously established only for d = 2 (Alexander [5]). See also
Lyons et al. [81] for a study of these objects beyond the Z

d setting.

14. Dependent percolation on Z
2

In this section, we will continue our study of dependent percolation, but restrict
to the Z

2 lattice, which has some particular geometric features not exhibited in
transitive graphs more generally. The key feature appears to be the combina-
tion of planarity and amenability, and the arguments of this section go through
mutatis mutandis for other (reasonable) planar lattices in two-dimensional Eu-
clidean space.

We switch in this section to site percolation rather than bond percolation, thus
considering a {0, 1}Z2

-valued random object X . Similarly to bond percolation,
we are interested in clusters of 1’s, or 1-clusters, for short, meaning connected
components in the subgraph of Z

2 obtained by removing all vertices x such that
X(x) = 0 and all edges incident to such vertices. The main novel feature of the
present section (compared to previous sections) is that we will simultaneously
be interested in 0-clusters, defined in the same way as 1-clusters but with the
roles of states 0 and 1 interchanged.
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Rather than ask, as usual, for uniqueness of the infinite 1-cluster, we can be
even more ambitious and ask for uniqueness of the infinite cluster in the setting
where both 1-clusters and 0-clusters are considered simultaneously.

The uniqueness results of Section 2 (in particular Theorem 2.4) are straight-
forward to adapt to the setting of site percolation. Thus, for iid site percolation
on Z

2, we know that there is a.s. at most one infinite 1-cluster, and likewise a.s.
at most one infinite 0-cluster. The question at hand is therefore whether or not
an infinite 1-cluster and an infinite 0-cluster can coexist.

Another known fact of iid site percolation on Z
2 is that the critical value pc for

emergence of an infinite connected component exceeds 1
2 (the strict inequality

was first obtained by Higuchi [63], while the weaker statement pc ≥ 1
2 is ancient –

viewed on the time-scale of the history of percolation – and follows by combining
the results of Harris [62] and Hammersley [60]). It follows that for no value of the
retention parameter p do an infinite 1-cluster and an infinite 0-cluster coexist.

We may now note that such a strong uniqueness result does not extend to
the Z

3 setting; this follows from the result of Campanino and Russo [21] that
the critical value for site percolation on Z

3 is strictly less than 1
2 , so that at the

symmetry point p = 1
2 (as well as in a nontrivial interval around it) we have

a.s. coexistence of an infinite 1-cluster and an infinite 0-cluster. Coexistence of
infinite clusters of both categories can happen also for planar lattices in the hy-
perbolic plane, as can easily be deduced from the results in Section 7. (However,
Corollary 7.4 can be used to show that in the hyperbolic plane, coexistence of
a unique infinite 1-cluster and a unique infinite 0-cluster a.s. does not happen,
analogously to Theorem 7.6.)

On the other hand, the Z
2 lattice does feel a bit narrow for encompassing

a unique infinite 1-cluster together with a unique infinite 0-cluster, and results
on the impossibility of such coexistence on Z

2 ought to be available beyond the
iid setting. An early result in this direction was obtained by Cognilio et al. [26]
in the setting of Gibbs measures for the ferromagnetic Ising model. For more
general results, conditions will be needed, and translation invariance alone will
not do as shown, e.g., by counterexamples of Burton and Keane [19]. In the
seminal paper by Gandolfi et al. [33], the notion of positive correlations was
identified as being of central importance in this setting. Recall the following
definition.

Definition 14.1 For a finite or countable set V , a function f : {0, 1}V → R is
said to be increasing if it is increasing in each of its coordinates. A probability
measure ν on {0, 1}V is said to exhibit positive correlations if for any bounded
increasing f, g : {0, 1}V → R we have

µ(fg) ≥ µ(f)µ(g) .

(In parts of the probability literature, this is also known as positive associa-
tions.) Positive correlations holds for product measures – a result that goes
back to Harris’ classical paper [62] – while extremely useful criteria for posi-
tive correlations in dependent settings are provided by (various versions of) the
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FKG (Fortuin–Kasteleyn–Ginibre) inequality; see, e.g., [34]. The main result of
Gandolfi et al. is the following.

Theorem 14.2 (Gandolfi, Keane and Russo [33]) If µ is a translation

invariant probability measure on {0, 1}Z2

satisfying (a) positive correlations, (b)
invariance under interchange of or reflection in coordinate hyperplanes, and (c)
ergodicity under horizontal translations and under vertical translations sepa-
rately, then the number of infinite 1-clusters plus the number of infinite 0-clusters
is µ-a.s. at most 1.

This generalizes the Ising model result of Cognilio et al. [26], and has later found
interesting applications in – and adaptations to – the study of a wide variety
of two-dimensional systems including the Potts model (Chayes [25], Häggström
[49]), the hard-core model (Häggström [48]), the beach model (Hallberg [59]),
and the random triangle model (Häggström and Jonasson [53]), plus an appli-
cation to rigidity percolation that we will talk about in Section 16.

Here, instead of the somewhat involved geometric arguments needed to prove
Theorem 14.2, we will settle for a shorter and remarkably elegant proof of the
following variant of the result, where the condition of finite energy is added
(which allows a slight weakening of the ergodicity assumptions). The finite en-
ergy condition holds in several (but not all) of the aforementioned applications.
Other variants exist, including Sheffield’s [97, Thm. 9.3.1] recent improvement
where condition (b) of Theorem 14.3 is shown to be superfluous.

Theorem 14.3 If µ is a translation invariant probability measure on {0, 1}Z2

satisfying (a) positive correlations, (b) invariance under interchange of or re-
flection in coordinate hyperplanes, (c’) ergodicity, and (d) finite energy, then
the number of infinite 1-clusters plus the number of infinite 0-clusters is µ-a.s.
at most 1.

Proof. Following Georgii et al. [34], we will employ a beautiful geometric argu-
ment originally due to Yu Zhang [104]. First note that Theorem 12.2 adapts
with zero additional complication to the setting where bond percolation is re-
placed by site percolation, so that we know that there is a.s. at most one infinite
1-cluster and at most one infinite 0-cluster.

Writing A (resp. B) for the event that there is a unique infinite 1-cluster
(resp. 0-cluster), we may thus assume, for contradiction, that µ(A∩B) > 0. By
ergodicity, we then have

µ(A ∩B) = 1 . (14.1)

Take Λn to denote {−n, . . . , n}2, i.e., Λn is the box of side-length 2n+1 centered
at the origin. Defining An (resp. Bn) as the event that the unique infinite 1-
cluster (resp. 0-cluster) intersects Λn, we have from (14.1) that we can find an
n sufficiently large so that

µ(An ∩Bn) ≥ 0.999 .

Take AL
n (resp. AR

n , AT
n , AB

n ) to denote the event that for some vertex x on the
left (resp. right, top, bottom) side of the boundary of Λn we can find an infinite
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self-avoiding path of 1’s starting at x but not containing any other vertex in Λn.
Define BL

n , BR
n , BT

n and BB
n analogously, and write ¬AL

n for the complement of
the event AL

n , etc. Note that

An = AL
n ∪AR

n ∪AT
n ∪AB

n ,

and also that all four events on the right-hand side are increasing. Now we use
the usual square root trick. By the assumed positive correlations property (a),
we thus have

µ(An) = µ(AL
n ∪AR

n ∪AT
n ∪AB

n )

= 1− µ(¬AL
n ∩ ¬AR

n ∩ ¬AT
n ∩ ¬AB

n )

≤ 1− µ(¬AL
n )µ(¬AR

n )µ(¬AT
n )µ(¬AB

n ) .

By condition (b) all four events on the last line have the same µ-probability,
and we can deduce that

µ(¬AL
n ) ≤ (1− µ(An))1/4

and that

µ(AL
n ) = µ(AR

n ) ≥ 1− (1 − µ(An))1/4

≥ 1− 0.0011/4

> 0.82 . (14.2)

By the same token, we get

µ(BT
n ) = µ(BB

n ) > 0.82 . (14.3)

Finally, we define the event D = AL
n ∩AR

n ∩BT
n ∩BB

n , and use (14.2) and (14.3)
to conclude that

µ(D) ≥ 1− 4(1− 0.82)

= 0.28 (14.4)

> 0 . (14.5)

Now consider the geometry of the infinite clusters on the event D. The path
witnessing the event AL

n must of course be in an infinite 1-cluster, and likewise
for the path witnessing AR

n . But by uniqueness of the infinite 1-cluster these
infinite clusters must be one and the same. Note, crucially, that this infinite
1-cluster blocks the two infinite 0-clusters witnessing BT

n and BB
n from merging,

so that there must be at least two infinite 0-clusters. Hence, (14.5) contradicts
the a.s. uniqueness of infinite 0-clusters, and we are done. 2

15. Entanglement

Consider iid bond percolation on Z
3. For p ∈ (0, 1), we may imagine the occur-

rence of disjoint connected components that can nevertheless not be separated



Häggström and Jonasson/Uniqueness in percolation 335

or “pulled apart”. As a concrete example, consider two connected components
each consisting of a circuit of eight vertices, the first one going through the
vertices

(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 2), (0, 2, 2), (0, 2, 1), (0, 2, 0), (0, 1, 0)

and back to (0, 0, 0), while the second goes through

(−1, 1, 1), (0, 1, 1), (1, 1, 1), (1, 1, 2), (1, 1, 3), (0, 1, 3), (−1, 1, 3), (−1, 1, 2)

and back to (−1, 1, 1). These two connected components form a single entangled
component.

In entanglement percolation – studied first in the physics literature by Kantor
and Hassold [73] and later in mathematics by Aizenman and Grimmett [2],
Holroyd [65, 67], Grimmett and Holroyd [41] and Häggström [50] – the model is
the usual iid bond percolation, but focus is shifted from connected components
to entangled components. The phenomenon of entanglement is (like knot theory)
intrinsically three-dimensional, and for this reason the study of entanglement
percolation has so far dealt exclusively with the Z

3 lattice.
Before we can proceed with the results, a series of definitions is needed.

By a sphere in R
3, we mean a subset of R

3 homeomorphic to the unit sphere
{x ∈ R

3 : ‖x‖ = 1}, where ‖ · ‖ denotes Euclidean norm; for technical reasons,
we also need to impose the condition that a sphere is a compact union of a
finite number of polyhedral pieces. The complement of a sphere S has precisely
two connected components, called the inside and the outside (in the obvious
way). For a sphere S and an arbitrary set A ⊂ R

3, S is said to separate A if A
intersects both the inside and the outside of S, but not S itself.

We will identify any edge in Z
3 with the unit length closed line segment

connecting its endpoints. For a subset F of the edges of Z
3, write [F ] for the

union of the corresponding line segments.
For F finite, it is now clear what we ought to mean for F to be entangled,

namely that no sphere exists which separates [F ]. Extending this to infinite
F can be done in several reasonable but non-equivalent ways; see [41]. For
definiteness, we settle here for the following. An infinite edge set F is said to be
entangled if for every finite F ′ ⊂ F there exists another finite set F ′′ such that
F ′ ⊆ F ′′ ⊂ F and F ′′ is entangled.

For iid bond percolation on Z
3 there exists (by the same arguments as those

in Section 1 for the critical value pc) a critical value pe ∈ [0, 1] such that

Pp(an infinite entangled component exists) =

{

0 if p < pe

1 if p > pe .
(15.1)

Obviously, since a connected subgraph of Z
3 is automatically entangled, we have

pe ≤ pc. Aizenman and Grimmett [2] strengthened this to the strict inequality
pe < pc, and later Holroyd [65] obtained the (surprisingly difficult, although see
[29] for a striking example of a similar and “equally obvious” statement that
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turns out to be false) result that pe is strictly positive. Combining these results,
we thus get

0 < pe < pc .

Numerical simulations (see [73]) suggest a rather narrow gap between pe and
pc:

pc − pe ≈ 1.8 · 10−7 . (15.2)

As to the issue of uniqueness of the infinite entangled component, Grimmett
and Holroyd [41] demonstrated that

Pp(∃ a unique infinite entangled component) = 1 (15.3)

for all p > pc. Häggström [50] then improved this by showing that (15.3) holds for
all p > pe. In view of (15.2), this sounds like a rather unimpressive improvement,
but it is in line with the general (and well-justified) obsession among percolation-
theorists to prove properties of supercritical percolation not just for p large but
all the way down to the critical value.

A few words about the proof techniques employed for the uniqueness results
in [41] and [50] are in order. The Burton–Keane trifurcation argument outlined
in Section 2 is an extremely powerful idea, and would certainly be a very natural
first attempt at proving (15.3). Difficulties arise, however, when trying to carry
out the local modifications that form a central ingredient in the Burton–Keane
approach. This is due to the highly erratic and non-local7 character of entan-
glement (compared to connectivity). For instance, removing a single edge can
cause an infinite entangled component to fall apart into infinitely many finite
entangled components; see [65] or [41] for striking examples.

In order to prove (15.3) for p > pc, Grimmett and Holroyd [41] instead
chose to exploit a beautiful result of Barsky et al. [7] to the effect that, when
p > pc(Z3), an infinite connected component arises even when restricting the
percolation process to the upper half-space in Z

3. A kind of sequential explo-
ration (not entirely unlike the one in the proof of Theorem 5.6) of the entangled
component containing a given vertex x is defined, and every time this explo-
ration process enters a hitherto untouched half-space, it has a fresh non-zero
probability of hitting an infinite connected component of this half-space. It fol-
lows that if the entangled component containing x is infinite, then it must a.s.
intersect the infinite connected component in Z

3 (which we know from Sec-
tion 2 is unique), and therefore contain it. But obviously only one entangled
component can do so, whence (15.3) follows.

This approach obviously does not work for p ∈ (pe, pc) since then there is no
infinite connected component to hit. Häggström [50] instead found an elaborate
way to overcome the difficulties with adapting the Burton–Keane approach.
A bird’s-eye view of his proof is as follows. First, a uniqueness monotonicity

7The entanglement concept considered here should of course not be confused with the one
in quantum mechanics, despite the fact that the term “non-local” comes up in both contexts.
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result for infinite entangled components was obtained, borrowing ideas from
[56] (see Section 5). It follows that if uniqueness fails somewhere on (pe, 1],
it must do so on an interval of nonzero length. Assuming (for contradiction)
that uniqueness fails, we can therefore find two different values p1 < p2 at
which it fails. An easy adaptation of Lemma 2.6 shows that there must be
infinitely many infinite entangled components at p = p1. Using Coupling 1.1
and a suitable way of merging entangled components in Xp1

depending on what
happens in Xp2

(defined as a kind of “interpolation between connectivity and
entanglement”, specifically designed to avoid the non-local behavior mentioned
above) yields a configuration whose components exhibit analogs of trifurcations,
and a contradiction can be deduced as in the original Burton–Keane argument.
See [50] for the details.

16. Rigidity

Yet another physically interesting property of percolation configurations, be-
sides entanglement and connectivity, is rigidity. While entanglement is a weaker
notion than connectivity (a connected graph is automatically entangled), rigid-
ity is stronger. Imagine each edge in a graph as a hard rod; roughly speaking,
the graph is rigid if it cannot be deformed via smooth movements of its vertices.

Rigidity is a dimension-dependent concept. Consider for instance four vertices
in generic position in R

2 or R
3, connected to each other in a cycle. The resulting

structure is non-rigid, because two non-adjacent vertices may be pulled apart
or pushed towards each other. Adding a diagonal to the four-cycle makes the
graph rigid in two dimensions, but not in three dimensions where it can still be
bent (a bit like opening a book) along the diagonal edge.

For a rigorous definition, we proceed as follows (see, e.g., Holroyd [64] for
more detail). Let G = (V, E) be a finite graph, and fix d ≥ 2. An embedding
of G in R

d is a map r : V → R
d, and the pair (G, r) is called a framework.

A d-dimensional motion of (G, r) is a differentiable family {rt : t ∈ [0, 1]} of
embeddings of G in R

d such that for all x, y ∈ V sharing an edge {x, y} ∈ E,
and all t, we have

‖rt(x) − rt(y)‖ = ‖r(x) − r(y)‖ . (16.1)

The motion is rigid if (16.1) holds for all x, y ∈ V (not just those pairs sharing
an edge), and the framework (G, r) is said to be (d-dimensionally) rigid if all its
(d-dimensional) motions are rigid.

Whether the framework (G, r) is rigid turns out to depend not only on G but
also on the embedding r. The good news, however, is that either almost all or
almost no (with respect to |V |d-dimensional Lebesgue measure) embeddings are
rigid, and we say that G is d-dimensionally rigid if almost all its embeddings in
R

d are rigid.
As with entanglement, there are some options in how to extend the notion

of rigidity to infinite graphs. Analogously to what we did in Section 15, we opt
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for the following. An infinite graph G = (V, E) is said to be rigid if every finite
subgraph of G is contained in some rigid finite subgraph of G.

Rigidity in the context of percolation was first studied by Jacobs and Thorpe
[68, 69]. In two dimensions, it is pointless from a rigidity point of view to work
with the Z

2 lattice, which is in itself non-rigid (and contains no rigid subgraphs
with more than a single edge); more interesting is the triangular lattice T,
which is rigid. For iid bond percolation on T, we have, analogously to (15.1),
the existence of a rigidity critical value pr ∈ [0, 1] such that

Pp(an infinite rigid component exists) =

{

0 if p < pr

1 if p > pr .

Obviously, pc ≤ pr ≤ 1. Holroyd improved this in both ends, to

pc < pr < 1 ,

and in fact showed this for a large class of other lattices in two and higher
dimensions; the main proviso is that the lattice itself is rigid. Unlike for en-
tanglement (recall (15.2)), the gap pr − pc appears (for T) to be substan-
tial: pc(T) = 2 sin(π/18) ≈ 0.347 [103], while simulations in [69] suggest that
pr(T) ≈ 0.660.

Concerning uniqueness of the infinite rigid component, Holroyd [64] showed
for iid percolation on T that

Pp(∃ a unique infinite rigid component) = 1

for all p ∈ (pr, 1] with at most countably many exceptional p. This may to the
inexperienced reader sound like a rather bizarre result, but in fact results with
precisely this kind of proviso are not uncommon in statistical mechanics; see,
e.g., [14, Thm 4.1] or [55, Thm 1.2]. And it does sound less strange with the
following clarification: Write θr(p) for the Pp-probability that the origin is in
an infinite rigid component. Holroyd established uniqueness of the infinite rigid
component for all p > pr such that θr(p) is continuous at p. Note now that
θr(p) is obviously increasing, and that an increasing function can have at most
countably many discontinuities.

Holroyd’s uniqueness result involved an adaptation of the Burton–Keane tri-
furcation approach. Similarly to the case of entanglement percolation in the
previous section, the adaptation was a highly non-trivial task, stemming from
the fact that rigidity, like entanglement, behaves in a highly non-local manner:
local changes to a configuration can have global effects in terms of rigidity that
are far more difficult to control than those of connectivity.

Using planarity ideas based on the Gandolfi–Keane–Russo [33] uniqueness
result that we discussed in Section 14, Häggström [51] was able to remove the
possible countable exceptional set in Holroyd’s result, and establish uniqueness
of the infinite rigid component for all p (although the setting was still restricted
to the triangular lattice T).

In fact, both Holroyd’s and Häggström’s approaches involved specifically pla-
nar features. The question of how to establish uniqueness of the infinite rigid
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components in higher dimensions (or even for non-planar lattices in dimension
d = 2) therefore remained open for a couple of years, until Häggström in his
next paper [52] on rigidity found a way to prove the desired uniqueness for all
p > pr(G) on any d-dimensional lattice G (suitably defined) that is in itself rigid.
The overall approach in [52] is similar to that for entanglement percolation in
[50] outlined at the end of Section 15 – first obtain a uniqueness monotonicity
result along the lines of Section 5, and then, assuming non-uniqueness happens
for some p, look at percolation at two different such parameter values p1 and p2

simultaneously in order to construct an “intermediate” configuration to which
a Burton–Keane-type argument can be used to establish a contradiction – but
the overall implementation of this program turns out to be a bit of a rough ride.

One shortcoming, finally, of the general result in [52] is that it is silent on
what happens at the critical value p = pr, in contrast to the earlier result in
[51] for T where having more than one infinite rigid component at criticality is
ruled out. (For rigidity as well as entanglement, the nonexistence of an infinite
component at criticality is far less confidently expected compared to the classical
conjecture of nonexistence of infinite connected components at p = pc for Z

d,
mentioned in Section 1.)
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http://www.ams.org/mathscinet-getitem?mr=0426745
http://www.ams.org/mathscinet-getitem?mr=1068527
http://www.ams.org/mathscinet-getitem?mr=0965465
http://www.ams.org/mathscinet-getitem?mr=0914911
http://www.ams.org/mathscinet-getitem?mr=0120167
http://www.ams.org/mathscinet-getitem?mr=0359655
http://www.ams.org/mathscinet-getitem?mr=1169017
http://www.ams.org/mathscinet-getitem?mr=0942759
http://www.ams.org/mathscinet-getitem?mr=2014386
http://www.ams.org/mathscinet-getitem?mr=1283176
http://www.ams.org/mathscinet-getitem?mr=1379156
http://www.ams.org/mathscinet-getitem?mr=1707339
http://www.ams.org/mathscinet-getitem?mr=2023651
http://www.ams.org/mathscinet-getitem?mr=2243761
http://www.ams.org/mathscinet-getitem?mr=1770617
http://www.ams.org/mathscinet-getitem?mr=1064560
http://www.ams.org/mathscinet-getitem?mr=1985159
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[46] Häggström, O. (1996) The random-cluster model on a homogeneous tree,
Probab. Th. Rel. Fields 104, 231–253. MR1373377
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