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Abstract: We survey a number of models from physics, statistical me-
chanics, probability theory and combinatorics, which are each described in
terms of an orthogonal polynomial ensemble. The most prominent exam-
ple is apparently the Hermite ensemble, the eigenvalue distribution of the
Gaussian Unitary Ensemble (GUE), and other well-known ensembles known
in random matrix theory like the Laguerre ensemble for the spectrum of
Wishart matrices. In recent years, a number of further interesting models
were found to lead to orthogonal polynomial ensembles, among which the
corner growth model, directed last passage percolation, the PNG droplet,
non-colliding random processes, the length of the longest increasing subse-
quence of a random permutation, and others.

Much attention has been paid to universal classes of asymptotic behav-
iors of these models in the limit of large particle numbers, in particular the
spacings between the particles and the fluctuation behavior of the largest
particle. Computer simulations suggest that the connections go even far-
ther and also comprise the zeros of the Riemann zeta function. The existing
proofs require a substantial technical machinery and heavy tools from var-
ious parts of mathematics, in particular complex analysis, combinatorics
and variational analysis. Particularly in the last decade, a number of fine
results have been achieved, but it is obvious that a comprehensive and
thorough understanding of the matter is still lacking. Hence, it seems an
appropriate time to provide a surveying text on this research area.

In the present text, we introduce various models, explain the questions
and problems, and point out the relations between the models. Further-
more, we concisely outline some elements of the proofs of some of the most
important results. This text is aimed at non-experts with strong background
in probability who want to achieve a quick survey over the field.
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1. Introduction

In the 1950ies, it was found that certain important real N-particle ensembles
(that is, joint distributions of N real random objects) can be described by a

*This is an original survey paper
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probability measure Py of the form

Py(dx) = —AN Hu dz;), x=(x1,...,2n) € Wn, (1.1)

on the set
Wy ={x=(z1,...,2n8) ERY 12y <23 <--- < an}, (1.2)

where Zy is the normalization, p some distribution on R having all moments,
and

Anv@) =[] (@—2)=det[(@] ijmr. ],  z=(21,...,2N),
1<i<j<N

(1.3)

is the well-known Vandermonde determinant. That is, Py is the transformed
configuration distribution of a vector of N particles, distributed independently
according to p under the influence of the mutually repelling density A%;, prop-
erly normalized to a probability measure on the so-called Weyl chamber Wy .
The most important and one of the earliest examples is the joint distribution
of the eigenvalues of a random matrix drawn from a Gaussian Unitary Ensem-
ble (GUE), in which case p is a Gaussian distribution, and Py is called the
Hermite ensemble. Also spectra of a couple of other types of random matrices
turned out to admit a description of the form ([[LT), among which the Wishart
matrices, where p is a Gamma distribution and Py the Laguerre ensemble. The
explicit form of ([[J]) served as a starting point for many deep investigations of
asymptotic spectral properties of random matrices. Furthermore, non-colliding
Brownian motions (sometimes called Dyson’s Brownian motions) could also suc-
cessfully be investigated in the early 1960ies using descriptions in the spirit of
([CT). Also variants of ([II) (e.g., with A% replaced by Ay or by A%) turned
out to have a significant relevance and could be treated using related methods.
For a long while, spectra distributions of certain random matrices (and the
closely related non-colliding Brownian motions) were the only known important
models that admit a description as in ([Il). However, in the second half of the
1990ies, the interest in non-colliding random processes was renewed and was put
on a more systematic basis, and other types of statistical physics models were
found to admit a description of the form (CIJ): certain random growth models
(equivalently, directed last passage percolation), polynuclear growth models,
the problem of the length of the longest increasing subsequence in a random
permutation, the Aztec diamond, and others. Furthermore, effective analytic
techniques for deriving asymptotic properties of Py, which were developed in
the early 1990ies, have recently been systematically extended and improved.
As a consequence, in recent years a lot of questions about these models could
be answered. The last ten years saw an exploding activity of research and an
enormous progress in the rigorous understanding of some of the most important
of these models, and the work is still going on with an increasing velocity. A
significant number of deep and important results on universality questions have
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recently been solved, building on work of the last 40 or so years. However, it
still seems as if a complete understanding of the phenomena has not yet been
achieved, since many of the existing proofs are still based on explicit calculations
and direct arguments. There seem some intricate mechanisms present which
have been understood only in special cases by formal analogies. It will be an
important and difficult task in future to find the essences of the phenomena in
general.

In view of the great recent achievements, and also in order to draw the at-
tention of non-experts to this field, it seems fruitful to write a comprehensive
survey on most of the models that can be described by an ensemble as in ([T]).
The present text is an attempt to explain the problems and questions of interest
in a unifying manner, to present solutions that have been found, to give a flavor
of the methods that have been used, and to provide useful guidelines to much of
the relevant literature. It is aimed at the non-expert, the newcomer to the field,
with a profound background in probability theory, who seeks a non-technical
introduction, heuristic explanations, and a survey. Our concern is to compre-
hensively summarize the (in our opinion) most important available results and
ideas, but not to lose ourselves in details or even technicalities. In the three
remaining sections, we give an account on the three research areas we consider
most important in connection with orthogonal polynomial ensembles: random
matriz theory, random growth models, and non-colliding random processes.

A probability measure Py of the form () is called an orthogonal polyno-
mial ensemble. The theory of orthogonal polynomials is a classical subject, and
appears in various parts of mathematics, like numerics, combinatorics, statistics
and others. The standard reference on orthogonal polynomials is [Sz75]. How-
ever, the term ‘orthogonal polynomial ensemble’ is relatively recent and may be
motivated by the following. Let (7n)nen, denote the sequence of polynomials
orthogonal with respect to the inner product on the space L?(y). The polynomi-
als are unique by the requirement that the degree of mx is IV, together with the
normalization my(x) = ¥ + O(z¥~1). They may be obtained from the mono-
mials z — 27 via the well-known Gram-Schmidt algorithm. A nice relationl]
between the orthogonal polynomials and the ensemble Py in ([[Il) now is the
fact that mn may be seen as the ‘expected polynomial’ of the form vazl (x—x;)

with (z1,...,2zx) distributed according to Py, i.e.,
N
7wy (x) = H(m—xi)IP’N(dxl---dacN). (1.4)
W =1

2. Random matrix theory

In spite of the appearance of various random matrix distributions in several
areas of mathematics and physics, it has become common to use the term ran-
dom matriz theory exclusively for those matrix distributions that are used, since

LFurther connections will be exploited in Section EZ7] below.
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Wigner’s introduction to physics in the 1950ies, as models for energy levels in
slow nuclear reactions. Measurements had already given rise to a hope that the
energy levels follow a universal picture. Wigner’s hope was that the eigenvalues
of appropriate classes of random matrices would be mathematically tractable
and would reflect this universality in the limit of unbounded matrix size. Based
on Wigner’s early work, Dyson [Dy62a], [Dy62d) argued on physical grounds
that three certain matrix classes be relevant for the description of energy lev-
els, the by now famous orthogonal, unitary and symplectic Gaussian ensembles.
It soon turned out that their eigenvalue distributions are given in terms of cer-
tain orthogonal polynomial ensembles. In the mid-nineties, seven more Gaussian
random matrix ensembles were introduced [Ve94], [AZ96], [AZ97), [Zi97], and it
was argued that these in total ten classes form a complete classification of the
set of random matrix ensembles that are physically relevant in a certain sense,
subject to some symmetry constraints.

In the last decades, random matrix theory became a major mathematical and
physical research topic, and more and more exciting phenomena were found. In
the last decade, universality of many aspects could be proven for large classes
of models, and the research is going on increasingly fast.

The standard reference on the mathematical treatment of random matrices is
[Me9T]). Authored by a physicist with strong mathematical interest, it explains
the physical relevance of a host of random matrix models and provides a great
amount of relevant formulas and calculations. A recent historical survey on the
field from a physicist’s point of view in [ESV03] (see the entire volume), which
contains a vast list of references, mostly from the physics literature. A thorough
summary of the proofs of some of the most important results on random matrix
theory from the viewpoint of Riemann-Hilbert theory is in [De98]. Further sur-
veying and appetizing texts on random matrix theory are [I'W93D] and [Di03].
When the present text is being written, some (teams of) authors are preparing
monographs on random matrix theory, among which [Fo054].

In the present section we first introduce to some of the above mentioned
matrix ensembles and their eigenvalue distributions in Sections EZTHZA present
the famous Wigner semicircle law in Section EZA discuss correlation functions
in Section X8l and introduce the important method of orthogonal polynomials
in Section 7 Afterwards, we present the most important asymptotic results
on eigenvalues, the bulk limits in Section and the edge asymptotics in Sec-
tion Z3 The main proof method, the Riemann-Hilbert theory, is outlined in
Section EZT0 Finally, in Section EZTT] we explain some relations to the zeros of
the famous Riemann zeta function.

2.1 The questions under interest

Consider a random Hermitian N x N-matrix, M, and denote its eigenvalues
by My < Ay < --- < An. Hence, A = (A1,...,An) is a random element of
the closure of the Weyl chamber Wy in (CZ). Among others, we shall ask the
following questions:

(i) What is the distribution of A for fixed N € N?



W. Koénig/Orthogonal polynomial ensembles in probability theory 389

(ii) What is the limiting scaled distribution of A as N — oo, in terms of the
empirical measure % Zivzl &X_, for an appropriate scaling Xz of \;?

(iii) What is the limiting behavior of the largest eigenvalue, Ay, as N — oo?
(Or of the smallest, A1, or the joint distribution of a few of the smallest, say
(M, ..., Am) for some m.) More precisely, what is the right normalization
for a law of large numbers, and what is the right scaling for a limit law, if
present?

(iv) What are the limiting statistics of the spacings between neighboring eigen-
values? How many gaps are there with a given maximal length? What is
the average distance between Aoy _,y and Aeyyry for some ¢ € (0,1) and
some ry — oo such that ry /N — co?

Question (iii) refers to the edge of the spectrum, while (iv) refers to the bulk
of the spectrum.

The so-called Wigner surmise conjectures that the limiting spacing between
two subsequent eigenvalues of a large Gaussian matrix should have the density
(0,00) 3z — Cze=°" . This is true for a (2x2)-matrix (¢ ©) withindependent
standard Gaussian entries a,b, c: The spacing A2 — A1 is equal to [(a — ¢)? +
4b2]1/ 2 whose square has the y2-distribution. However, the Wigner surmise
turned out to be inaccurate (even though rather close to the true distribution):
the asymptotic spacing distribution is different.

2.2 Matrix distributions

It turned out [Dy62a] that, according to time reversal invariance properties of
the material considered, basically three different matrix classes are of interest as
models for energy levels of nuclea: matrices whose entries are (1) real numbers,
(2) complex numbers, and (3) quaternions. One basic requirement is that the
random matrices considered be symmetric, respectively Hermitian, respectively
self-dual, such that all the eigenvalues are real numbers. For the (famous and
most studied) special case of Gaussian entries, these three cases correspond
to the Gaussian Orthogonal Ensemble (GOE), the Gaussian Unitary Ensemble
(GUE) and the Gaussian Simplectic Ensemble (GSE). In the following, we shall
concentrate mostly on the unitary ensemble, since this class is, in some respects,
technically the easiest to treat and exhibits the farthest reaching connections to
other models.

We assume that M = (M; ;) j=1,...,~ is a random Hermitian (N x N)-matrix
with complex entries. In particular, the diagonal entries M;; are real, and for
i # j, we have M; j = M%) +1 M) = M) —i M) = M ;, where M) and
M J(Il) are the real part and imaginary part, respectively.

Two basic respective requirements are (1) independence of the matrix entries,
and (2) invariance of the distribution of the matrix under unitary conjugations.
These two ideas lead to different matrix classes:

Wigner matrices: We call the random Hermitian matric M o Wigner matrix
if the collection {M[5: 4,5 = 1,...,N,i < jyU{M:i,j =1,...,N,i <
JYU{M,;;:i =1,...,N} consists of independent, not necessarily identically
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distributed, random variables with mean zero and a fized positive variance, which
is the same for the real parts and for the imaginary parts, respectively.

Hence, there are N? independent real variables that determine the distrib-
ution of M. The distribution of the diagonal elements is arbitrary, subject to
moment conditions.

Unitary-invariant matrices: We call the random Hermitian matriz M unitary-
invariant if the joint distribution of its entries has the form

N
P(dM) = const. e "M TTdM;; [ [dM dM] = const. e 7 dp,
i=1 1<i<j<N
(2.1)
for some function F, and, for every unitary matriz U, P(dM) is invariant under
conjugation with U.

The last requirement implies that e_F(UMUfl)d[UMU_l] = e FM) qpr,
and since it is easy to see that d[UMU '] = dM [De98, p. 92], the function
F must be a symmetric function of the eigenvalues of M. One particular and
important example is the case where

F(M) =Tr(Q(M)), Q(x) = y2;2* + -+ + 70, a polynomial with y2; > 0.

(2.2)
With the exception of the Gaussian case ;7 = 1, there are strong correlations
between all the matrix entries. The idea behind the invariance under unitary
conjugations is that the matrix distribution should not depend on the observa-
tion system, as long as it is based on a unitary coordinate axis.

The famous GUE lies in the intersection of the Wigner-class and the unitary-
invariant class. It is a Wigner matrix with all the sub-diagonal entries being
complex standard normal variablesd and the diagonal entries being a real normal
variable with variance twdhl. Alternately, it is the unitary-invariant matrix of the
form &) with F(M) = Tr(M?).

The GOE is the real variant of the GUE; i.e., the sub-diagonal entries are
independent standard real normal variables with the same variance as the di-
agonal entries. Hence, the GOE has %N (N + 1) independent sources of real
randomness.

The GSE is the symplectic variant of the GUE, i.e., the diagonal entries are
real standard normals as in the GUE, and the sub-diagonal entries are elements
of the quaternion numbers. Their four components are i.i.d. real standard normal
variables. Hence, the GSE has N + 2N (N — 1) independent real randomnesses.

Further important related classes of random matrices are the Wishart matri-
ces, which are of the form A*A with A a (not necessarily square) matrix having

2By this we mean that the real and the imaginary part are two independent standard
normal variables.

3Some authors require the sum of the variances per entry to be equal to one, or equal to
1/N.
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throughout i.i.d. complex normal entries (first considered in a multivariate sta-
tistics context by Wishart [Wi28]). See [Me91] for further classes.

2.3 Eigenvalue distributions

Let A1 < Xy <--- < Ay be the N eigenvalues of the random Hermitian matrix
M. We ask for the distribution of the random vector A = (A1,..., An). A concise
answer for a general Wigner matrix M seems inaccessible, but for unitary-
invariant ensembles there is a nice, fundamental formula. We formulate the
GUE case and make a couple of remarks afterwards.

Lemma 2.1 (Eigenvalue distribution for GUE). Let M be a random ma-
triz from GUE. Then the distribution of the vector A = (A1,...,An) of eigen-
values of M has the density

N

1 2
Py (z) = EAN(JS)Q He_l%, x=(21,...,TN), (2.3)
i=1

with Zn the appropriate normalizing constant on the Weyl chamber Wy in

).

Sketch of the proof. Choose a (random) unitary matrix U which diagonalizes
M, i.e., the matrix D = UMU™! is the diagonal matrix with the eigenvalues
on the main diagonal. Hence,

dM = d(U*DU) =dU* -D-U +U*-dD-U +U*-D-dU
—U*-(dD+U-dU*-D+D-dU -U*)-U
=dD+U-dU*-D+D-dU -U*
—dD+dA-D—D-dA,

(2.4)

where we used the invariance of dM under unitary conjugations, and we intro-
duced dA =U -dU* = —dU - U*. Now integrate over dM; ; with ¢ < j and use
calculus. See [Me91l, Ch. 3] or [HPOO, Ch. 4] for details. O

Remark 2.2. (i) We chose the normalization Zx such that Py is normalized
onWy ={z € RNz <ag< - < N }. We extend Py to a permutation
symmetric function on RY. Hence, ]3N = %PN is a probability density
on RV,

(ii) The density in [ 3) is called the Hermite ensemble. This is one of the
most prominent examples of an orthogonal polynomial ensemble; the name
refers to the Hermite polynomials which form an orthonormal base with
respect to Gaussian weights.

(iii) For the GOE and the GSE, there are analogous formulas. Indeed, replace
An(2)? by An(z)? with 8 = 1 respectively 3 = 4 to obtain the corre-
sponding statement for GOE, respectively for GSE [Me91l, Ch. 3]. The
three matrix classes are usually marked by the parameter

8 =1 for GOE, 8 = 2 for GUE, 8 = 4 for GSE. (2.5)
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(iv) It is easy to extend Lemma Il to unitary-invariant matrix distributions.
Indeed, if the distribution of M is of the form Il) with F(M) =
f(A1,..., AN), a symmetric function that depends only on the spectrum of
M, then the density of (A1, ..., A\y) is proportional to = +— e~ (@) Ay (z)2.
An analogous assertion is true for the orthogonal case, see [HPOO, Ch. 4].

(v) If M = A* A is a Wishart matrix, i.e., A is an (N x k)-matrix (with & < N)
having throughout independent complex standard normal entries, then the
vector of eigenvalues of M has the density [Ia64]

An(z)? H[xN_ke_’ﬂ, z € Wy N (0,00)". (2.6)

This ensemble is called the Laguerre ensemble.

(vi) Using Selberg’s integral [HPOO, p. 118/9], the normalizing constants of the
Hermite ensemble and the Laguerre ensemble may be identified in terms
of the Gamma-function. Indeed, for any S > 0, we have

~ll=)® NOD(1442)
Av@))P e de =T "2/ 2.7
Lo s ar= 11505 (2.7
and, for any a > 0,

N N-1 N B B

P P(1+(1+j)3)(a+j3)
Ay (z)|? xy le=i] do = 2 2 2.8
[ 1axt@) Il Jar =TI LT (2.8

(vii) There is obviously a mutually repelling force between the eigenvalues in
[23): the density vanishes if any two of the N arguments approach each
other. It does not seem easy to derive an intuitive reason for this repellence
from random matrix considerations, but if the matrix M is embedded
in a natural process of random Hermitian matrices, then the process of
eigenvalues admits a nice identification that makes the repellence rather
natural. This is the subject of Section EEIl below. o

2.4 Circular ensembles

An important type of random Gaussian matrices are the circular ensembles,
which were introduced in [Dy62a] in the desire to define a matrix model that
can be seen as the conditional Gaussian ensembles given a fixed value of the
exponential weight F'(M) in (ZII). Again, there is an orthogonal, unitary and
symplectic version of the circular ensemble.

We give the definition of the circular ensembles [Me91l, Ch. 9]. The circular
orthogonal ensemble (COE) is the unique distribution on the set of orthogo-
nal symmetric (N x N)-matrices that is invariant under conjugation with any
real orthogonal matrix. That is, an orthogonal symmetric random matrix S' is
COE-distributed if and only if W.SW ~! has the same distribution as S, for any
real orthogonal matrix W. The circular unitary ensemble (CUE) is the unique
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distribution on the set of complex unitary (N x N)-matrices that is invariant
under (two-sided) transformations with unitary matrices, i.e., a complex unitary
random matrix S is CUE-distributed if and only if USV has the same distribu-
tion as .S, for any two unitary matrices U and V. Finally, the circular symplectic
ensemble (CSE) is the unique distribution on the set of self-dual unitary quater-
nion matrices that is invariant under every automorphism S — WRSW  where
W is any unitary quaternion matrix and W& its dual.

All eigenvalues of the circular matrices lie on the unit circle and may be
written A\; = €% with 0 < 61 < 0y < -+ < Oy < 27 One advantage of
the circular ensembles is that the joint distribution density of their eigenvalues
admits particularly simple formulas. Indeed, adopting the parameter 8 = 1,2,4
for the COE, CUE and CSE, respectively (recall (2H)), the density of the vector

(01,...,0n) of eigenvalue angles is given as
pires) (g Orn) — 1 i6, i6;18 _ 1 A i0.\|8
N O ON) = Sy [T le? e = e [An (e )]
N 1<0<j<N N

(2.9)
Here we chose the normalization such that P](\;i“’ﬁ ) is a probability density on
Wx N10,27)N where Wy = {x € RN: 2y < --- < zy} is the Weyl chamber.

2.5 The law of large numbers: Wigner’s semi-circle law
In this section we present the famous semi-circle law first proved by Wigner: the
convergence of the mean eigenvalue density as the size of the matrix increases to
infinity. This is an asymptotic statement about the convergence of the empirical
measurd] of the appropriately scaled eigenvalues of a random matrix towards
the distribution

pix (da)

1
T = ; V 2 — .%'2]1[7\/5’\/5](37), (210)

the famous semicircle distribution. We first formulate the semicircle law for the
GUE, make some remarks and sketch two proofs. Afterwards we summarize
some extensions.

Theorem 2.3 (Semicircle law). Let the random matriz My be a GUE-matriz
of size N, with eigenvalues N < --- < /\%w. Let

N
1 ~ 1
pN = E o5 where A" = N7z (M (2.11)
i=1

be the empirical measure of the rescaled eigenvalues. Then N converges weakly
in distribution towards the semicircle distribution p,. in EI0).

We shall call AY, ..., A" the (unscaled) eigenvalues and A(™ ..., A% the
(re)scaled eigenvalues.

4By the empirical measure of N points z1,...,zx we denote the probability measure

% Zi\; Oa; -
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Remark 2.4. (i) Theorem reveals that the eigenvalues are of order v N
and that the largest behaves like v/2N. In particular, all eigenvalues lie
in the interval N'/2[—v/2 — £,v/2 + €] for any € > 0 with overwhelming
probability, and the spacings between subsequent eigenvalues are of order
N—1/2 in the bulk of the spectrum and much larger close to the edge.

(ii) The convergence takes place in the sense that the expectation of every
bounded and continuous function of the empirical measure converges. Note
that the moments (i.e., the family of maps pu — [ 2" u(dz) for k € N)
constitute a convergence determining family.

(iii) Note that, for any a < b,

E [ (0, b])] = %E[#{i: X € a.b]}].

In particular, the semicircle law states that the expected number of un-
scaled eigenvalues A\ in the interval [a N2, bN 2] behaves like N 1. ([a, b]).
See Remark EZ(vi) for further asymptotic statements.

(iv) The convergence in Theorem has also been proved [Arf7] in distrib-
ution in the almost sure sense, see [HPOO, Th. 4.1.5]. More precisely, let
(M; ;)i jen be a sequence of independent standard complex normal ran-
dom variables and denote by My = (M; ;)i j<n the (N x N)-corner. Let
pun (as in (ZI0) denote the empirical measure of the rescaled eigenval-
ues of M. Then all the k-th moments of uy converge towards the k-th
moment of .

(v) See [HPOO, Ch. 4] for the statement analogous to Theorem for the
orthogonal ensembles. &

We turn now to sketchs of two proofs.

Sketch of the first proof: the method of moments. This is Wigner’s
original method [Wib5)], [WibSg], see [HPOO, Ch. 4]. The idea is that it suffices
to prove that the expected moments of p converge to the ones of u., i.e.,

lim E[/]R z* MN(dx)} = /Rack e (d), ke N. (2.12)

N—oc0

By symmetry, all odd moments of both px and u. are zero, hence it suffices to
consider k = 2m. The (2m)-th moments of u. are known to be f;—m (27:’:) Note
that the left hand side is equal to the normalized trace of M3™, i.e.,

N

E[/]R 22T ,UN(dm)} = %ﬁ:E{/ p2m &XEN) (dx)} = ﬁE[Z()\;M)%@}
e CIED R S| O

U1y.eslom=1
(2.13)
where M; j, denote the entries of the matrix My. Some combinatorial work has
to be done in order to discard from the sum those terms that do not contribute,
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and to extract the leading terms, using the independence of the matrix entries
and rough bounds on the moments of the matrix entries. The term coming from

the subsum over those multi-indices i1, ..., 49, with #{i1,...,i2,} <m+ 1is
shown to vanish asymptotically, and the one with #{i1,...,iom} > m + 1 is
shown to be equal to zero. O

The second proof is in the spirit of statistical mechanics and is based on the
eigenvalue density in (Z3]). Indeed, the convergence is derived with the help of
large-deviation type arguments and the minimization of a certain energy func-
tional. In particular, the semicircle law turns out to be the unique minimizer,
because of which it is sometimes called an equilibrium measure for that func-
tional. We partially follow the presentation in [Ded8, Ch. 6], which is based on
1098 and [DMK9S]. A general reference for equilibrium measures and related
material is [ST97].

Sketch of the second proof: the equilibrium measure method. The start-
ing point is the observation that the joint density Py of the unscaled eigenvalues
in Z3) is of the form Py (z) = ﬁe*H’V(z) with the Hamiltonian

N

Hy(z) =Y a7 -2 Y log(a; — ). (2.14)

i=1 1<i<j<N

In order to obtain a non-degenerate limit law, we have to rescale the A\{"™ in
such a way that both parts of Hy(z) are of the same order in N. Since the
second part is always of order N 2_it is clear that we should consider the scaling
)\EM = N_%)\EM as in the theorem. The vector A* of the rescaled quantities
has the density

- 1 ~
P(AY € dz) = — e NPHN () gy (2.15)
ZNn
where
- 1L, 2
Hy(z) = N sz ~ Nz Z log(z; — x), (2.16)
i=1 1<i<j<N

and we absorbed some terms in the new normalizing constant. In terms of the
empirical measure of the rescaled quantities, py, the Hamiltonian takes the
shape Hy =~ Z(un), where

I(u):/RwQu(dx)*/R/Rlogleylu(dx)u(dy), p € Mi(R).  (2.17)

Here we suppressed the diagonal terms, i.e., the summands for ¢ = j, which is a
technical issue. Since the integration is only of the order N and the e:?(ponent of
order N2, it is clear that the large- N behavior of the measure %G’N Z(in) Ny

is determined by the minimizer(s) of the variational problem

E—= inf Z(u). 2.18
Vi (1) (2.18)
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The minimizer(s) are called equilibrium measure(s). According to (a high-dimen-
sional variant of) the well-known Laplace method, the value of E should be the
large-N exponential rate of Py (x) with speed N2, and the empirical measures
un should converge towards the minimizer(s).

The analysis of the problem in (1) is not particularly difficult. Using stan-
dard methods one shows the existence and uniqueness of the equilibrium mea-
sure and the compactness of its support. Using the Euler-Lagrange equation
in the interior of its support, one identifies the equilibrium measure with the
semicircle law, u.. However, in order to show the convergence of p towards pi,
one needs to show that the contribution coming from outside a neighborhood
of p. is negligible, which is a more difficult issue. This is carried out in [I098].

O

Remark 2.5. (i) The moment method has been generalized to a large class
of Wigner matrices, [HPO0, Ch. 4]. Indeed, assume that the real and the
imaginary parts of the sub-diagonal entries of My are independent, cen-
tred and have variance one and that the diagonal entries have variance
two, and assume that, for any k € N, their k-th moments are uniformly
bounded in N, then the conclusion of Theorem remains true.

(ii) The equilibrium measure method has been generalized to a large class
of unitary-invariant matrices in [D99] and [DMK9S]|, see also [De9§]. To
mention one of the most obvious generalisations, let My be a matrix as
in 1)) with F' as in (Z32), i.e., the eigenvalues have the density in (23]
with the term 2 replaced by the polynomial Q(x;) = ’}/le’?] + O(x?rl);

recall Remark EZ(iv). The correct scaling is A = N _%j)\ém, and in the

limit as N — oo, only the leading term of Q(x;) survives. The empirical
measure of the XEM converges weakly towards the equilibrium measure of
the functional

po [y tn) = [ [ togle — ylude)uty) (2.19)

The analysis of this functional and the proof of convergence towards its
minimizer is similar to the proof in the special case where Q(z) = z2.
The equilibrium measure has a density, and its support is compact. If
denotes the density and [—a, a] its support, then ¢ (z) = (a2 — 22)2 hy (2)
for |z| < a, where h; is a polynomial of order 25 — 2.

(iii) Even more generally, one starts immediately from distributions as in (23
with z? replaced by NV (z;) (note the factor of N) with some sufficiently
regular function V tending to infinity at infinity sufficiently fast. With this
ansatz, no rescaling is necessary, i.e., the empirical measure of the unscaled
vector (A, ..., A{"”) converges. The relevant functional is then the one
in ZId) with v9;2% replaced by V(z). The Euler-Lagrange equations for
this functional are, for some [ € R,

2 [logle — o () + Viz) =1 s esupp(u)® (220)
R



(iv)

(vii)

W. Koénig/Orthogonal polynomial ensembles in probability theory 397

However, for general V', the explicit identification of the minimizer is con-
siderably more difficult and involved. In general, if V' is convex, then the
support of the equilibrium measure is still an interval, but in the general
case it consists of a finite union of intervals, provided that V is analytic
[DMKIS).

The energy functional Z in (ZI7) has an interpretation in terms of an
electrostatic repulsion in the presence of an external quadratic field, if
w is the distribution of electrons. The second term is sometimes called
logarithmic entropy or Voiculescu’s entropy, see [Vo93] and [Vo94].

An advantage of the equilibrium measure method is that it opens up
the possibility of a large-deviation principle for the empirical measure of
the rescaled eigenvalues. (This is, roughly speaking, the determination of
the large-N decay rate of the probability for a deviation of the empirical
measure from the semicircle law in terms of a variational problem involving
the energy functional.) The first proof of such a principle is in [BAGI7],
after pioneering (and less rigorous) work in [Vo93] and [Vo94]. Extensive
and accessible lecture notes on large deviation techniques for large random
matrices may be found in [GuiQ4].

In the course of the equilibrium-measure proof of Theorem (see [Ded8|
Theorem 6.96]), for every k € N, also the weak convergence of the k-
dimensional marginal of ]3N with density

Py p(an, ... ap) = (/N kﬁN(xlw-me)dkarl"'deN)a (2.21)
N

towards the k-fold product measure & is proved. As an elementary con-
sequence, N % times the expected number of k-vectors of different rescaled
eigenvalues in [a, b] converges towards i ([a, b])¥.

There is an analogue of the semicircle law for the spectrum of the cir-
cular ensembles introduced in Section B2l without normalisation of the
eigenvalues required. An innovative technique for deriving this law was in-
troduced in [DS94] (see also [DEQT]), where the asymptotic independence
and normality of the traces of powers of the random matrix under con-
sideration is shown. Related results are derived in [DS94] for the problem
of the longest increasing subsequence of a uniform random permutation,
which is introduced in Section o

2.6 Correlation functions

In this section we let Py: Wx — [0, 00) be any probability density on the Weyl
chamber Wy in (LZ) and A = (A1,...,An) € Wx be a random variable with
density Py. We introduce the so-called correlation functions of Py, which will
turn out to be important for two reasons: (1) much interesting information about
the random variable A can be expressed in terms of the correlation functions, and
(2) when specializing Py to an orthogonal polynomial ensemble, the correlation
functions admit a determinantal representation which will be fundamental for
the asymptotic analysis of the ensemble.
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We extend Py to a permutation invariant function on RY. Then ﬁN = ﬁPN
is a probability density on RV. For k € N, the k-point correlation function is
defined as

N!

RI(CN)(mla"'7xk):m

/ PN(m)dIk+1dxk+2---dIN, xl,...,IkER.
RN—k

(2.22)
Then ]3N7k = WREN) is a probability density on R¥, the marginal density of
]3N in ZZI)). It is a simple combinatorial exercise to see that, for any measurable
set A C R, the quantity fAk R;N)(:c) d*z is equal to the expected number of k-
tupels (Ai,, ..., A, ) of distinct particles such that A;; € A forall j =1,... k.
In particular, R{" (z) dx is the expected number of particles in dz.
As a first important application, the probability that a given number of par-
ticles lie in a given set can be expressed in terms of the correlation functions as
follows.

Lemma 2.6. For any N € N, any m € {0,1,..., N} and any interval I C R,

_ 1)k
P(#{i<N: N el =m)= ( ni,! Z (]E 17)71)! /Ik RN (z)d¥z.  (2.23)

k=m

Sketch of the proof. We only treat the case m = 0, the general case being a
simple extension. Expand

N

N
H[l — Ny ()] Z Ck ]11 (x1),. ﬂl(fUN))

i=1 k=0

where the functions (i are permutation symmetric polynomials, which are de-
fined by the relation Hivzl(z — ;) = Zszo(fl)N’kzk(k(a) for any z € R and
a = (a1,...,ay) € RY. Now multiply by the density ]3N and integrate over
RY. Using the explicitly known coefficients of the polynomials (j, and using the
permutation invariance of R,;N), one arrives at ([Z23)). O

Also the expected number of spacings in the vector A can be expressed in
terms of the correlation functions. For z = (x1,...,2n) € Wy, v € R and
s,t > 0 denote by

S™(s;x) = #{je{l,...,Nfl}:xij:cj§s}, (2.24)
SN (s,usz) = #{je{l,...,N—l}:xj+1—xj§3,|xj—u|§t}, (2.25)

the number of nearest-neighbor spacings in the sequence x1,...,zx below the
threshold s, respectively the number of these spacings between those of the
z1,...,TN that are located in the interval with diameter 2t around u. Clearly,
SM(s;x) = limy_oo S, (s,u;x). It is convenient to extend S™(s;-) and
Si™ (s, u; ) to permutation invariant functions on RY.
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Lemma 2.7. For any N € N and t,s > 0, and u € R,

E[Si™ (s, u; N)]

(-1
:Z k ]_'/ dr/ R;»CN)(T7T+y2)T+y3,...,T—f-yk)dyQ...dyk.
k=2( - Dl [0,s]k—

(2.26)

Sketch of the proof. We do this only for ¢t = oo. For £ > 2 and y =
(yh oo 7yk) € Rk, let

k
Xes@) = [ Mlyi =yl <s}  and
i,j=1

Zl(c],\;)(y) = Z Xk,s(yjn cee 7yjk)~

1< < <G <N

Elementary combinatorial —considerations show that S®(s;x) =
ZkNZQ(fl)kZ,i?;) (z) for any z € Wy. Multiplying this with the density Py,
integrating over Wy and using the permutation symmetry of Py = %PN and
Z,) yields

N
E[S™(s;0)] Z /W WYay, —x1 < s}RY(x) d¥ e, (2.27)
k=2 k

Now an obvious change of variables and the symmetry of R,(cm yields the asser-
tion for ¢ = co. O

2.7 The orthogonal polynomial method

In this section we briefly describe the most fruitful and most commonly used
ansatz for the deeper investigation of the density Py in [Z3): the method of or-
thogonal polynomials. This technique has been first applied to random matrices
by Mehta [Me60] but relies on much older research. For the general theory of
orthogonal polynomials see [Sz7h]. We follow [Ded8, Sect. 5] and treat a general
orthogonal polynomial ensemble of the form

~ 1 )
PN(x)zmAN(x)QHe*QW, = (z1,...,25) ERYN,  (2.28)

where : R — R is continuous and so large at infinity that all moments of the
measure e~ 2@ dz are finite. We normalized Py to a probability density on RY.

Let (m))jen, with 7;(z) =27 +b; 12771 + - + bz + by be the sequence of
orthogonal polynomials for the measure e~ @) d:c, ie.,

/ ﬂi(iﬂ)ﬂj (:c)e_Q(“) dx = Cicj(sij; Z,j S No. (229)
R
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(In the GUE-case Q(x) = z2, these are the well-known Hermite polynomials,
scaled such that the leading coefficients are one.) Elementary linear manipula-
tions show that the Vandermonde determinant in ([([3)) can be expressed in terms
of the same determinant with the monomials =7 replaced by the polynomials
mi(x), ie.,

AN(m) = det [(Fj_l(mi))i,jzl,__’]\[}, T e RN. (230)
We normalize the 7; now to obtain an orthonormal system (¢;)jen, of L*(R)
with respect to the Lebesgue measure: the functions

¢j(x) = cijeW)/%j(;c) (2.31)

satisfy
R
An important role is played by the kernel K defined by

N—-1
Kn(z,y) = Z o;(x)p;(y),  wyeER (2.33)

The k-point correlation function RECN) in (Z22) admits the following fundamental
determinantal representation.

Lemma 2.8. Fiz N € N and z € RY, then, for any k € {1,...,N},

R;N)(xl, ceTg) = det[(KN (aci, xj))i,jzl,___,k]. (2.34)
In particular,
~ 1
R (11) = Kn(71,71) and Py(z) = N det[(KN(aci,Ij))i,jzl,___,N].
' (2.35)

Sketch of the proof. Using the determinant multiplication theorem, is easily
seen that the density Py may be written in terms of the functions ¢; as

2

~ ... A, 2
Pn(z) = —NZy det[(¢j—1(2i))ij=1,..n]

} (2.36)
— det[(Kn (%4, 25))ij=1,..N]
ZN

where Z N = N\ Zy Hi.vzgl 0;2. Using the special structure of this kernel and

some elegant but elementary integration method (see [De98, Lemma 5.27]), one
sees that the structure of the density is preserved under successive integration
over the coordinates, i.e.,

/N . det[(KN(:ci, mj))i,j:l,...,N} dl‘kJrldl‘kJrQ .. .(‘L’CN
RN—

= (N - k‘)! det [(KN(xi, Ij))i7j=17,,,7k}, 1< k < N.
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In particular, Zy = N!, and E34) holds. O

Remark 2.9 (Determinantal processes). Lemma offers an important
opportunity for far-reaching generalisations. One calls a point process (i.e., a
locally finite collection of random points on the real line) a determinantal process
if its correlation functions are given in the form (Z34), where K is, for some
measure y on R having all moments, the kernel of a nonnegative and locally trace
class integral operator L?(R,u) — L%(R, ). Because of [De98, Lemma 5.27],
correlation functions that are built according to ([234)) form a consistent family
of N-particle distributions and therefore determine a point process on R. To a
certain extent, random matrix calculations only depend on the determinantal
structure of the correlation functions are may be used as a starting point for
generalisations. <&

Now let A = (M\1,...,An) € Wy be a random variable with density Py =
N!Ppy. We now express the probability that a given interval I contains a certain
number of \;’s in terms of the operator Ky on L?(I) with kernel Kx(z,y).

Lemma 2.10. For any N € N, any m € {0,..., N}, and any interval I C R,

P#{i<N: N €I} =m) = (*ﬂll?m (%)m det[(Id — v n )| £2(n)] ‘7:1, (2.38)

where 1d denotes the identical operator in L?(I).
Sketch of the proof. From Lemma 8 and 34 we have

P(#{i < N: X\ €I} =m)

_1ym N _1\k
:( ) Z (k(: 1271); /Ik det[(KN(fCi,mj))z‘,j:Lm,k] dFz.

m/!

(2.39)

k=m

On the other hand, for any v € R, by a classical formula for trace class operators,
see [RS7H80, Vol. TV, Sect. 17]

o ()"
det [(Id - ')/]CN)|L2(I)} = Z ];)'/ / det[(KN(xi;mj))i,j:l,__.,k} dk:L', (240)
—o : Ik

Now differentiate m times with respect to v and put v = 1 to arrive at (Z38).
O

2.8 Spacings in the bulk of the spectrum, and the sine kernel

In this section, we explain the limiting spacing statistics in the bulk of the
spectrum of a random unitary-invariant (N x V) matrix in the limit N — co. We
specialize to the matrix distribution in @) with F as in [Z32) and Q(z) = 2%
for some j € N. This has the technical advantage of a perfect-scaling property
of the eigenvalues: as was pointed out in Remark ZH(ii), the correct rescaling

of the eigenvalues is XEM = N_%’)\EN). In order to ease the notation, we shall
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consider A™ instead of A™. Note that the distribution of A is the orthogonal
polynomial ensemble in [ZZ8) with Q(x) = Nz, and we shall stick to that
choice of ) from now.

Let ¢¥: R — [0,00) denote the density of the equilibrium measure (i.e., the
unique minimizer) for the functional in Id) with v2; = 1. According to the

semicircle law, the rescaled eigenvalues Xém lie asymptotically in the support
of 1, which is the rescaled bulk of the spectrum. In particular, the spacings
1

between neighboring rescaled eigenvalues should be of order , and hence the

spacings of the unscaled eigenvalues are of order N 51,

We fix a threshold s > 0 and a point u € supp(¢))° in the bulk of the
rescaled spectrum and want to describe the number of spacings < & of the
rescaled eigenvalues in a vicinity of u. Let ({x)nven be a sequence in (0, 00)
with txy — 0 as N — oco. The main object of our interest is the expected value
of S,ﬁfv”(%,u; A®) ) the number of spacings < + in the sequence A in a ty-
interval around wu; see (ZZZH). We expect that this number is comparable to ¢ty N,
and we want to find the asymptotic dependence on s and .

We continue to follow [De98, Sect. 5] and stay in the framework of Section 27
keeping all assumptions and all notation, and specializing to Q(x) = Na?/. We
indicate the N-dependence of the weight function Q(x) = Na% by writing K ](\],V)
for the kernel K defined in (Z33)) and 3. Abbreviate

kn(u) = K\ (u,u). (2.41)

We write RiN) for the 1-point correlation function with respect to the ensemble
in @) with Q(z) = Na¥; hence R{™(u)du is the density of & times the
number of rescaled eigenvalues in du (see below [Z2Z2)). From Z35) we have
kn(u) = ]Sb(lN)(u) Hence, the asymptotics of ky(u) can be guessed from the
semi-circle law: we should have ky(u) = R (u) ~ Nip(u). (In the GUE-case
j =1, we have |u| < V2 and rn(u) &~ N1v2 —u2) We shall adapt the scaling
of the expected number of spacings to the spot u where they are registered by
using the scaling #(u) instead of % This will turn out to make the value of
the scaling limit independent of w.

We use now Lemmas 27 and and an elementary change of the integration
variables to find the expectation of the number of rescaled eigenvalue spacings
as follows.

1 1 N 3 oo\ N (1% 1 uttn
ot 3 (N = S L,
1 N Ys Y
/[o,s]kl det[(“N(u) KN ) (T+ HN(U)7T+ HNEU)>)i,j=1,...,IJ y1=0 dya . - dy.
(2.42)

Hence, we need the convergence of the rescaled kernel in the determinant on the
right hand side. This is provided in the following theorem. The well-known sine
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kernel is defined by

S(x — y) = sm;g:ﬂ_y;/)) _ sin(7z) Sinl(ﬁﬁl_ﬁyr)ll(ﬂx) sin(7y) ’ -
(2.43)

Proposition 2.11 (Bulk asymptotics for K\’). Fiz j € N and Q(z) =
Na?i. Let KY, be as in @33) with the functions ¢; defined in [ZZ1) such that
&32) holds. Denote by 1: R — [0,00) the equilibrium measure of the functional
in ZI9) with v2; = 1. For u € supp()°, abbreviate iy (u) = Ky (u,u). Then,
uniformly on compact subsets in u € supp(¢)° and x,y € R,

1
lim
N—oo KN (U)

K(N)(qu x U+ Y ):Sxf . 2.44
N HN(’U,) IiN(u) ( y) ( )

For a rough outline of the proof using Riemann-Hilbert theory, see Sec-
tion EZT0 below.

Remark 2.12. (i) The asymptotics in [ZZ4) in the GUE case j = 1, where
the orthogonal polynomials are the Hermite polynomials, are called the
Plancherel-Rotach asymptotics.

(ii) Note that the limit in ZZ4]) is independent of u, as long as w is in the inte-
rior of the support of the equilibrium measure, i.e., as long as we consider
the bulk of the spectrum. See Proposition ZTH for the edge asymptotics.

(iii) The asymptotics in Proposition ZTTlare universal in the sense that they do
not depend on the weight function Q(z), at least within the class Q(x) =
2?7 we consider here (after rescaling). The case of a polynomial Q(z) =
2?7 + O(2?71) is asymptotically the same, but the proof is technically
more involved.

(iv) The proof of Proposition ZIlis in [De98, Ch. 8], based on [KS99|. The first
proof, even for more general functions @, is in [PS97]. See also [D99] and
[BI99] for related results. The main tool for deriving [ZZ4)) (and many
asymptotic assertions about orthogonal polynomials) are the Riemann-
Hilbert theory and the Deift-Zhou steepest decent method.

(v) Analogous results for weight functions of Laguerre type (recall (ZH)) for
B = 2 have been derived using adaptations of the methods mentioned in
(iv). The best available result seems to be in [Va05], where weight functions
of the form p(dz;) = 28~ ) dz; are considered with a > —1, and Q is
an even polynomial with positive leading coefficient. The cases 8 = 1 and
[ =4 are considered in [DGKV0H].

(vi) The orthogonal and symplectic cases (i.e., 5 = 1 and § = 4) for Hermite-
type weight functions p(dz;) = e~ Q@) dz; with Q a polynomial have also
been carried out recently [DGO5a].

(vii) Using the well-known Christoffel-Darbouz formula

Jil 0:(2); () = CCN an(z)gn-1(y) — QN(?J)QNA(ZC)’ .y € R,
7=0

N—1 r—y
(2.45)
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(where ¢; = m;/cj; see [Z31)), one can express the kernel Kn defined in
[233)) in terms of just two of the orthogonal polynomials. Note the formal
analogy between the right hand sides of (ZZH) and ZZ3). &

Now we formulate the main assertion about the limiting eigenvalue spacing
for random unitary-invariant matrices. Denote by Kg, the integral operator
whose kernel is the sine kernel in ([ZZ3).

Theorem 2.13 (Limiting eigenvalue spacing). Let My be a random unitary-
invariant matriz of the form @) with F as in @2) and Q(x) = 2% for some
j € N. Let AN = N_%J()\(lm, s AYY) be the vector of scaled eigenvalues of
Mp. Denote by ¥: R — [0,00) the equilibrium measure of the functional in
&I with v2; = 1. Fiz u € supp(¢)° and s > 0 and let (tx)nen be a sequence
in (0,00) with ty — 0. Recall the definition [Z2Z5) of the spacing number. Then

: 1 (™) s NV
NI N 2tN]E{SfN (Nw(u)’u’A( ))} */0 p(v)dv, (2.46)

where
2

d
p(v) = T2 det [(Id — Ksin)| L2 ([v,00)) ] v >0, (2.47)
is the density of the Gaudin distribution.

Sketch of the proof. In (22), replace the normalized r-integral by the integral
over the delta-measure on u and use Proposition EZT0] to obtain

left hand side of (ZZ8)

o) 1 k
- Z (l(<: —)1)' /[o JE-1 det [(S(yi — y5))i.j=1....] |y1=0 dyz -+ dyp.
k=2 : ST

(2.48)

On the other hand, note that

s d
/ pv)dv=1+ 1 det [(Id — Kain)|£2([s,00))]
0 S

d
=1- & —o det [(Id - ]CSin)|L2([5,s])}
d o~ (-1 k
=1-— 1 det|(S(y; — y;))i.j= d
IR B B CUR )
= right hand side of ([Z43),
(2.49)
as an application of the product differentiation rule shows. O

Remark 2.14. (i) It is instructive to compare the asymptotic spacing distri-
bution of the rescaled eigenvalues of a large random matrix (which have a
mutual repellence) to the one of N independently on the interval [0, 1] ran-
domly and uniformly distributed points (where no interaction appears).
The latter can be realized as a standard conditional Poisson process, given
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that there are precisely N Poisson points in [0, 1]. The asymptotic spacing
density for the latter is just v — e™%, and the former is v — p(v) as in
Theorem Note that the asymptotics of p(v) for v | 0 and the one
for v — oo are both smaller than the one of e™". Indeed, it is known that
p(v) =~ v? asv | 0if in ) the term Ay (x)? is replaced by Ay (z)? and,
furthermore, p(v) =~ e~V as v — oo; see [DIZ97] and [Ded8| Sect. 8.2].

(ii) Another variant of the assertion in (E2Z6]) is about the number of pairs of
rescaled, not necessarily neighboring, eigenvalues whose difference is in a
fixed interval (a,b):

. 1 .. N NG
]\IIEI})ONE{#{(Z,]) €{l,..., NP2 a <A™ -3 < b}}
b . .
sin(mu)\ 2 1 if0e€ (a,b),
= 1—|——=) |d
/a [ ( g ) } ut {0 otherwise.

The last term accounts for the pairs i = j.

(iii) Proposition ZZTTand Theorem T3 are extended to a large class of Wigner
matrices in [Lo0Tal, more precisely to the class of random Hermitian ma-
trices of the form W + aV, where W is a Wigner matrix as in Section 222
a > 0 and V is a standard GUE-matrix. The entries of W are not assumed
to have a symmetric distribution, but the expected value is supposed to
be zero, the variance is fixed, and the (6 4+ ¢)-th moments for any ¢ > 0
are supposed to be uniformly bounded. This result shows universality of
the limiting spacing distribution in a large class of Wigner matrices. The
identification of the distribution of the eigenvalues of W 4 aV uses the
interpretation of the eigenvalue process of (W + aV'),>0 as a process of
non-colliding Brownian motions as in [Dy62b], see Section Bl below.

(iv) After appropriate asymptotic centering and normalization, the distribu-
tion of the individual eigenvalues for GUE in the bulk of the spectrum is
asymptotically Gaussian. Indeed, for iy = (a+0(1))N with a € (—v/2,v/2)
(i.e., a is in the interior of the support of the semicircle law p, in ([ZI0)),
the correct scaling of the in-th eigenvalue is

MY 12N

o 1/2°
(%)

(2.50)

™) _
Xiy =

where ¢ is determined by p.((—o00,t]) = a. One main result of [Gus(4]
is that X;szv) is asymptotically standard normal as N — oo. Also joint
distributions of several bulk eigenvalues in this scaling are considered in
[Gus04]. In particular, it turns out that )\;N) and )\;N) are asymptotically
independent if |[¢ — j| is of the order N, but not if |z — j| = o(N). <&

2.9 The edge of the spectrum, and the Tracy-Widom distribution
In this section we explain the limiting scaled distribution of the largest eigen-
value, Ay, of an (N x N) GUE-matrix, i.e., we specialize to j = 1. Let
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A = (AM,..AF7) € Wy be the vector of the eigenvalues. According to
Lemma 71 its distribution is the orthogonal polynomial ensemble in ([Z2Z)
with Q(z) = z2. Hence, the distribution of the vector of rescaled eigenvalues,
N~L/2X\® s that ensemble with Q(x) = Nx2. The event {\§’ < t} is, for any
t € R, identical to the event that no eigenvalue falls into the interval (¢,c0).
Hence we may apply Lemma EZT0 for 7 = (¢,00) and m = 0. In order to obtain
an interesting limit as N — oo, we already know from the semicircle law that
t should be chosen as t = V2N + O(N®) for some o < 2. It will turn out that
o= 7(15 is the correct choice.

As in the preceding section, we denote by K](\JIV) the kernel Ky defined in
E33) for the choice Q(z) = Nz?, with the functions ¢; defined in (31 such
that ([Z32) holds. Using Lemma B8 for m = 0 and (Z34), we see, after an
elementary change of measure, that

P(AY) < V2N + s(V2N7)™)
- P(A;N), LA ¢ (VN + s(\/iN%)*l,oo))

N (_1\k
:Z( kll) /[s,oo)kdet[(\/iN K(m(\/_—l-\/_N?,\/_—i-\/_N ))MZLMJ d*z.

k=0

(2.51)
In order to obtain an interesting limit, one needs to show that the inte-
grand on the right hand side of ([ZEI) converges. This is provided in the fol-
lowing theorem. By Ai: R — R we denote the Airy function, the unique solu-
tion to the differential equation f”(x) = xf(z) on R with asymptotics f(x) ~
(47r\/_)1/2 -32"% 35 4 — 0. The corresponding kernel, the Airy kernel, is given

by

Kai(z,y) = Ai($)Ai/(y) — Ai/(I)Ai(y) _ /OOO Ai(z+u)Ai(y+u) du, z,y € R.

T—y
(2.52)

Note the formal analogy to (ZZ3) and ZZ5).

Proposition 2.15 (Edge asymptotics for Ky). Uniformly in z,y € R on
compacts,

2,\f+

(\/_-i- = Kai(2,y). (2.53)

Jm 7o vtV oy
Remark 2.16. (i) Note that the kernel K scales with N—3 at the edge

of the spectrum, i.e., in ++/2, while it scales with % in the interior of the

support of the equilibrium measure, (—+v/2,v/2) (see Proposition EZTI).

(ii) The Airy kernel already appeared in [BB91] in a related connection. Proofs
of Proposition Tl were found independently by Tracy and Widom [I'W93al
and Forrester [Fo93)].

(iii) For an extension of Proposition to the weight function Q(z) = 2%
for some j € N; see [De98, Sec. 7.6], e.g. The real and symplectic cases
(i.e., =1 and B = 4) have also been recently carried out [DGOAH].
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(iv) Analogous results for weight functions of Laguerre type (recall (Z8) and
Remark EZZT(v)) for § = 1 and 8 = 4 are derived in [DGKV05]. Both
boundaries, the ‘hard’ edge at zero and the ‘soft > one at the other end,
are considered. <

Next, we formulate the asymptotics for the edge of the spectrum, i.e., the
largest (resp. smallest) eigenvalues. Let ¢: R — R be the solutionf] [HML0] of
the Painlevé II differential equation

q"(x) = zq(z) +2q(2)° (2.54)

with asymptotics g(x) ~ Ai(z) as © — oo. It is uniquely determined by requiring
that ¢(x) > 0 for any x < 0, and it has asymptotics ¢(x) ~ +/|x|/2 as  — —o0.
Furthermore, ¢’(z) < 0 for any x € R.

Define a distribution function Fy: R — [0, 1] by

o0
Fy(s) = exp{—/ (z — 5)¢*(z) da?}, seR. (2.55)
S
This is the distribution of the by now famous GUFE Tracy- Widom distribution;

its importance is clear from the following.

Theorem 2.17 (Limiting distribution of the largest eigenvalue, [TW94al).
Let My be a random Hermitian matriz of size N from GUE, and let A’ be
the largest eigenvalue of M. Then, for any s € R,

lim P(()\X,“ — V2N)V2N/S < s) = Fy(s). (2.56)

N —o0

Proof. Using ([ZX]]) and Proposition EZTH we obtain

Jim P((AQ = V2N) V2N <)

= i (_kl!)k /[soo)k det |:(KA1($Z‘,Ij))i,j:l,...,k} d*z (2.57)

= det (14 = Ki)| (g0 ooy |

where Ka; is the operator on L?([s,00)) with kernel Ku;. The relation to the
Painlevé equation is derived in [I'W94al using a combination of techniques from
operator theory and ordinary differential equations. O

Remark 2.18. (i) The great value of Theorem ZT7 is the characterization
of the limit on the left hand side of [Z21) in terms of some basic ordinary
differential equation, in this case the Painlevé II equation. Analogous re-
lations between the Gaudin distribution p in (Z4) and the Painlevé V
equation were derived in [IMMSS()].

5The function u = —q is also a solution of (Z&4), which is sometimes called the Hastings-
Mac Leod solution.
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(ii) There are analogous statements for GOE and GSE ['W36]. The limiting
distributions are modifications of the GUE Tracy-Widom distribution.
Indeed, for 3 = 1 and 3 = 4, respectively (recall (1)), F, is replaced
by

o0 oo
B =exp{~5 [ [alo) + (2 - )P (@] do} = VRl e HLT o,
S

[e% [T a@de | -5 [T q(r)dr]

(2.58)

(iii) The expectation of a random variable with distribution function Fy is
negative and has the value of approximately —1.7711.

(iv) In [TW94a], also the joint distribution of the first m top eigenvalues is
treated; they admit an analogous limit theorem. The starting point for
the proof is Lemma 20l and 234).

(v) Theorem EZI7 is generalized to a large class of Wigner matrices in [So99].
It is assumed there that the entries have a symmetric distribution with all
moments finite such that the asymptotics for high moments are bounded
by those of the Gaussian. The proof is a variant of the method of moments
(see the first proof of Theorem EZ3)). The main point is that the expected
trace of high powers (appropriately coupled with the matrix size) of the
random matrix is bounded by a certain asymptotics, which is essentially
the same as for GUE. Since the expected trace of high moments depends
on the matrix entries only via the moments, which are the same within the
class considered, the result then follows from a comparison to the known
asymptotics for GUE.

(vi) If the index iy is a bit away from the edge N, then the iyn-th largest
eigenvalue scales to some Gaussian law. Indeed, if iy = N — ky with
kn — oo, but ky/N — 0, then the correct scaling is

ok ) 2/3
XY - VAN (1 - (3)*")

_ log k /2 7
((12m) 275 Joxh )

(N)
IN

and one main result of [Gus(4] is that X;g) is asymptotically standard
normal. Also joint distributions of several eigenvalues in this scaling are
considered in [Gus04]. In particular, it turns out that A{Y) and A} (pro-
vided that N —ix and N — jn are o(IV)) are asymptotically correlated if
|Z‘N7jN|:0(N7Z‘N). &

2.10 Some elements of Riemann-Hilbert theory

Apparently, the most powerful technical tool for deriving limiting assertions
about orthogonal polynomial ensembles is the Riemann-Hilbert (RH) theory.
This theory dates back to the 19th century and was originally introduced for the
study of monodromy questions in ordinary differential equations, and has been
applied to a host of models in analysis. Applications to orthogonal polynomials
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were first developed in [FIK90], and this method was first combined with a
steepest-decent method in [DZ93]. Since then, a lot of deep results on random
matrix theory and related models could be established using a combination of
the two methods. The reformulation in terms of RH theory leaves the intuition
of orthogonal polynomial ensembles behind, but creates a new framework, in
which a new intuition arises and new technical tools become applicable which
are suitable to deal with the difficulties stemming from the great number of zeros
of the polynomials. For a recent general survey on Riemann-Hilbert theory, see
[I£03]; for a thorough exposition of the adaptation and application of this theory
to orthogonal polynomials, see the lectures [Ded8], and [Ku(3], [DOT] and [BI99].

In this section, we give a rough indication of how to use Riemann-Hilbert
theory for scaling limits for orthogonal polynomials, in particular we outline
some elements of the proof of Proposition XTIl We follow [De98]. Let us start
with the definition of a Riemann-Hilbert problem in a situation specialized to
our purposes, omitting all technical issues.

Let ¥ be a finite union of the images of smooth, oriented curves in C, and
suppose there is a smooth function v (called the jump matriz) on ¥ with values
in the set of complex regular (2 x 2)-matrices. We say a matrix-valued function
Y on C\ ¥ solves the Riemann-Hilbert (RH) problem (X,v) if

(1) Y is analytic in C\ 3,
(i5) Yi(z) = Y_(x)v(z), x € X, (2.59)
(i)  Y(z) = I1+0(%) as z — 00,

where I is the (2 x 2)-identity matrix, and Y (x) and Y_(x) are the limiting
boundary values of Y in x € ¥ coming from the positive and negative side of
Y, respectivelyﬂ

The main connection with orthogonal polynomials is in Proposition EZTd be-
low. Assume that p(dz) = w(z)dz is a positive measure on R having all mo-
ments and a sufficiently regular density w, and let (7, )nen, be the sequence of
orthogonal polynomials for the L2-inner product with weight w, such that the
degree of 7, is n and the highest coefficient one. Hence, for some k,, > 0,

1
/ Ton (@), () p(de) = k_Qén’m’ n, m € No. (2.60)
R n

Recall the Cauchy transform,

Cf(z) = R%%, 2 € C\R, f € H'(R). (2.61)

Here we think of R as of an oriented curve from —oo to oo, parametrized by the
identity map. Note that C(f); —C(f)— = f on R.

6The definition of Yy (x) and Y_(x) and the sense in which (ii) is to be understood have
to be explained rigorously, and (ii) is required outside the intersections of the curves only,
but we neglect these issues here. The general notion involves (k X k)-matrices for some k € N
instead of (2 x 2)-matrices.
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Proposition 2.19 (RH problem for orthogonal polynomials, [FTK90],
[FIK9T]). Fizn € N and consider the jump matriz v(z) =(; ) forz € R.

Then
() = Tn(2) C(mnw)(2)
Y(e) = <—27Ti k2 mao1(2) —2mi k2 mn_1(2)C(mp_1w)(2) )’ 2 € C\R.
(2.62)
is the unique solution of the RH problenﬂ
(1) Y™ is analytic in C\ R,
e (n) _ ym
(i) YV(x) = YIV(x)v(x), . z € R, (2.63)
(iti) Y (z) = (I+0()) ( I ) as z — 00.

The main advantage of the characterisation of the orthogonal polynomials
in terms of a RH problem is that it provides a technical frame in which the
difficulties stemming from the oscillations of the polynomials close to their zeros
can be resolved.

Now we specialize to w(z) = e N9 with Q(x) = 2% for some j € N, recall
Remark EZ0(ii) and Section Z8 We now write 7" instead of m, for the orthog-
onal polynomials. We shall (extremely briefly) indicate how the asymptotics of
the N-th orthogonal polynomial ﬂ'E\I,V) can be deduced from RH theory, building
on Proposition ZTA

The first main step is a transformation of ([ZG3]) which absorbs the exponen-
tial term of the jump matrix into an inverse exponential term in the solution of
the new RH problemE For doing this, we need to use some information about the
variational formula in (ZT9) with v9; = 1. Recall the Euler-Lagrange equations
in ZZ0) for the equilibrium measure p.(dz) = ¢(x) dz, and put

g(z) = /Rlog(z — x)(z) dz, z€ C\R. (2.64)

The intuitive idea behind the choice of ¢ is the fact that, if z7,...,2% € R
denote the zeros of ’/TE\]]V) and py their empirical measure, then we can write

N
WE\ZIV) (z) = H(‘T — ) = N fR log(z—y) MN(dy); (2.65)
i=1
compare also to (). Since the asymptotic statistics of the zeros and of the
ensemble particles are very close to each other, we should have WE\][V) ~ eN9 and
eV9 will indeed turn out to be the main term in the expansion.
Consider the transformed jump matrix

oNlg—(@)=g+ (@) Nl (0)+9+(2) Q@) +1]
v (x) =

0 (Nlo(@)—g— ()] ) z€R. (2.66)

"Note that (Z83) is not a standard RH problem, compare (iii).

8This step is analogous to the exponential change of measure in large deviation theory,
which absorbs the main exponential factor in the probability with respect to a transformed
measure under which the deviation behavior becomes typical. However, because of the great
amount of zeros of ﬂ'g\z,v), the exponential term is rather subtle here.
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Then the unique solution, m™, of the RH problem (R, v™) can easily be calcu-
lated from Y in Proposition ZZI% its (1, 1)-entry is 7 e ~V9. This means that
the leading (exponential) term has been isolated in the transformed RH prob-
lem (R,v™). It turns out that, outside the support of the equilibrium measure,
v®(x) is exponentially close to the identity matrix, and inside this support we

have
e—27‘ri Ny ([z,00)) 1
v“)(:c) - < 0 e2mi N ([z,00))

_ 1 0 0 1 1 0
T\ e2Ne-(2) 1 -1 0 e2Nei(z) 1 |7

where ¢(2) = 27i [ 4(t)dt for z € C\ [~a, a], where we chose a > 0 such that
supp(pis) = [—a,a]. We know from Remark EZ(ii) that ¢ — (t)(a? — t2)"2
is analytic in C, and hence faz ¥ (t) dt depends on the integration curve from a
to z: any two curves lead to a difference by an integer multiple of 27i . Hence,
z - ") is well-defined and analytic in C \ [~a,a] and therefore this is true
for its boundary functions on (—a,a), ¢4 and @_.

The next main step is a deformation of (R,v™), which isolates the second
term in the expansion of w4, which is of fourth-root order and hence much
more subtle. Indeed, the decomposition in the second line of ([ZED) gives rise to
a deformation into a RH problem (3, v®), where ¥ is the union of the real line
and two curves from —a to a in the upper and lower half plane, respectively, and
v® is some suitable jump matrix on ¥. It is relatively easy to prove that, in L2-
sense, as N — 0o, we have v® — v, on X with v z( 5! ) on [—a, a]. Hence,
the unique solution, m®, of the problem (X, v®) should converge towards the
unique solution, mq., of the RH problem ([—a, a], v ). This is true, but relatively
hard to prove, in particular on supp(u.) and here in particular close to the
boundaries +a. It is easy to compute that

1 (i@epY) p-p imand
moo—g( B1-8 (48 ), Whereﬁ(z)—(z+a) .
(2.68)

Computing m® | re-substituting m® and m«,, and considering the (1, 1)-entry,
we obtain therefore the asymptotics of WE\J,\” outside the critical points +a:

(2.67)

1 1
zZ—a 4 Z+a 4 z
%[(ZH) + (zja) —l—o(l)}eNg( )

if z € C\ supp(ps),

Ty (2) = %[ g r cos(Nﬂu*([z,a]) + %)
+|z2 ] cos(Nmpna((za)) — ) + o] Joa el

if z € supp(p«)°.

(2.69)
This explains how to derive the Plancherel-Rotach asymptotics for the orthog-
onal polynomials for the weight function w(x) = e~V = Note that the error
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terms in (ZZ69) are locally uniform outside neighborhoods of +a. Exploiting the
Christoffel-Darboux formula in (ZZ3), one obtains the statement of Proposi-
tion ZZTT1

In order to obtain the asymptotics of Proposition E-TH i.e., the asymptotics
of 7T§\1]V) (z) for z close to +a, one uses an appropriate deformation into a suitable
RH problems involving the Airy function, see [De98 Sect. 7.6], e.g.

2.11 Random matrices and the Riemann zeta function

Excitingly, it turned out in the early seventies that the spacings of the zeros
of the Riemann zeta function show a close relation to those of the eigenvalues
of certain random matrices. The famous Riemann zeta function is defined on

{R(s) > 1} as N
()= n*= ] @=p)" (2.70)

p prime

Riemann showed in 1859 that { can be meromorphically continued to the whole
complex plane, and that the functional equation I'(s/2)((s)y/T = 7 T(3(1 —
$))¢(1—s) holds. This continuation has simple zeros at the negative even integers
and a simple pole at 1, which is the only singularity. Furthermore, there are
infinitely many zeros in the so-called critical strip {0 < R(s) < 1}, and none
of them is real. These zeros are called the non-trivial zeros; they are located
symmetrically around the real axis and around the line {R(s) = 1}, the critical
line. Denote them by p, = B, +1 v, with y_1 <0 <73 <~ <.... The famous
Riemann Hypothesis conjectures that 3, = % for every n, i.e., every non-trivial
zero lies on the critical line {R(s) = 3}. This is one of the most famous open
problems in mathematics and has far reaching connections to other branches of
mathematics. Many rigorous results in analytic number theory are conditional
on the truth of the Riemann Hypothesis. There is extensive evidence for it being
true, as many partial rigorous results and computer simulations have shown. See
[Ed74] and [Ti86] for much more on the Riemann zeta function.

It is known that the number 7(z) of prime numbers < z behaves asymptot-
ically as m(x) = Li(x) + O(z®logz) as x — oo, where Li(x) is the principal
value of foz @ du, which is asymptotic to @, and © = sup,,cy Bn. Hence,
the Riemann Hypothesis is equivalent to a precise asymptotic statement about
the prime number distribution.

More interestingly from the viewpoint of orthogonal polynomial ensembles,
the Riemann Hypothesis has also much to do with the vertical distribution
of the Riemann zeros. Let N(T') be the number of zeros in the critical strip
up to height T, counted according to multiplicity. It is known that N(T) =
% log %Jr(?(log T) as T — oo. In the pioneering work [Ma73|, vertical spacings
of the Riemann zeros are considered. Denote by

1

RT((Z, b) = m

n- /m T
#{(n,m) € N2: yp, g < Ty < I log o~ Sb}, a<b,
s

27
(2.71)
the number of pairs of rescaled critical Riemann zeros whose difference lies be-
tween a and b. Then it was proved in [Ma73], assuming the Riemann Hypothesis,
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that

Jim_Rr(a,b) = /ab [1 - (Wﬂ du + {1 if0 € (a,0), (2.72)

0 otherwise.

The last term accounts for the pairs m = n. Note the close similarity to (Z20).
Calculating millions of zeros, [Od87] confirms this asymptotics with an extraor-
dinary accuracy.

The Lindelof Hypothesis is the conjecture that (($+it) = O(t) as t — oo for
any € > 0. The (2k)-th moment of the modulus of the Riemann zeta function,

T
I(T) = %/ IC(E +i)*" at, (2.73)
0
was originally studied in an attempt to prove the Lindel6f Hypothesis, which
is equivalent to I,(T) = O(t¢) as T — oo for any € > 0 and any k. The latter
statement has been proved for £k = 1 and £ = 2. Based on random matrix
calculations, [KSO0] conjectured that

G*(k+1)

Tu(T) ~ G2k + 1)

a(k)(logT)¥, ke {R(s) > -1}, (2.74)

where G is the Barnes G-function, and

atk)= ] (1%)” m%()(%fpm. (2.75)

p prime

This so-called Keating-Snaith Conjecture was derived by an asymptotic calcula-
tion for the Fourier transform of the logarithm of the characteristic polynomial
of a random matrix from the Circular Unitary Ensemble introduced in Sec-
tion Z41 This conjecture is one of the rare (non-rigorous, however) progresses
in recent decades in the understanding of the Riemann zeros.

3. Random growth processes

In this section we consider certain classes of random growth processes which
turned out in the late 1990es to be closely connected to certain orthogonal poly-
nomial ensembles. There is a number of physically motivated random growth
processes which model growing surfaces under influences of randomly occur-
ring events (like nucleation events) that locally increase a substrate, but have
far-reaching correlations on a long-time run. In one space dimension, for these
kinds of growth processes, limiting phenomena are conjectured that have morally
some features of random matrices in common, like the fluctuation behavior of
power-order 1/3 (instead of the order 1/2 in the central limit theorem and re-
lated phenomena) and the universality of certain rescaled quantities. Recently
some of these models could be analysed rigorously, after exciting discoveries of
surprising relations to orthogonal polynomial ensembles had been made.



W. Koénig/Orthogonal polynomial ensembles in probability theory 414

Random growth models may be defined in any dimension, and two and three
dimensional models are of high interest. However, the high-dimensional cases
seem mathematically intractable yet, such that we restrict to one-dimensionalf]
models in this text. General physics references on growing surfaces are the mono-
graphs [BS95] and [Me98]; see also [KS92|. Much background is also provided
in [P03] and [Fe04b]. Recent surveys on some growth models that have been
solved in recent years by methods analogous to those used in random matrix
theory are [Io01d] and [Ba03].

After a short description of one basic model that cannot be handled rigor-
ously yet in Section Bl we shall treat basically only two models: the corner-
growth model introduced in Section and the PNG model introduced in Sec-
tion B8l The main results on these two models are presented in Sections
and Section Bl respectively in Sections Bl and BZ The famous and much-
studied problem of the longest increasing subsequence of a random permutation
is touched in Section B, since it is instrumental for the PNG model (and also
important on its own). Furthermore, in Section B8 we mention the Plancherel
measure as an technically important toy model that links combinatorics and
orthogonal polynomials.

3.1 The Eden-Richardson model
A fundamental model for random growth is the so-called Eden-Richardson
model, which is defined as follows. The model is a random process (A(%)):>0
of subsets of Z? such that A(t) C A(s) for any ¢ < s. At time ¢ = 0, the set Ay is
equal to {0}, the origin in Z2. We call a site (i,7) € Z? \ A(t) active at time ¢t if
some neighbor of (4, j) belongs to A(t). As soon as (i, j) is active, a random wait-
ing time w(i, j) starts running, and after this time has elapsed, (4, 7) is added
to the set process as well. The waiting times w(i, j), (i,7) € Z?, are assumed
to be independent and identically distributed (0, c0)-valued random variables.
They can be discrete or continuous. In the case of N-valued waiting times, we
consider the discrete-time process (A(t))sen, instead of (A(¢))i>o. If and only
if the distribution of the waiting times is exponential, respectively geometric,
the process (A(t))i>0, respectively (A(t))ien,, enjoys the Markov property: in
the discrete-time case, at each time unit any active site chooses independently
with a fixed probability if it immediately belongs to the set process or not. In
this special case, the model is called the Eden-Richardson model. The Markov
property is not present for any other distribution.

Actually, the Eden-Richardson model is equivalent to what probabilists call
last-passage percolation, which we will explain more closely in Remark Bl below.

The natural question is about the asymptotic behavior of the set A(t) for large
t. It is not so difficult to conjecture that there should be a law of large numbers
be valid, i.e., there should be a deterministic set A C R? such that > A(t) — A as
t — oo. A proof of this fact can be derived using the subadditive ergodic theorem
[KeR6], which considers the Markovian case. However, an identification of the
limiting set A and closer descriptions of A for general waiting time distributions

9Taking into acount the time-evolution, they are sometimes also called (1+1)-dimensional.



W. Koénig/Orthogonal polynomial ensembles in probability theory 415

seem out of reach. In physics literature, it is conjectured that the fluctuations
be of order t'/3. It is rather hard to analyze Eden’s model mathematically
rigorously. Reasons for that are that A(¢) may and does have holes and that the
growth proceeds in any direction. No technique has yet been found to attack the
asymptotics of the fluctuations rigorously. This is why we do not spend time on
the Eden model, but immediately turn to some simpler variant which has been
successfully treated.

3.2 The corner-growth model

An important simpler variant of Eden’s model is known as the corner growth
model. This is a growth model on N2 instead of Z?, and growth is possible only
in corners. At time zero, A(0) is the union of the z-axis Ny x {0} and the y-
axis {0} x Np. Points in N2 \ A(¢) are called active at time t if their left and
their lower neighbors both belong to A(t). As soon as a point (¢,7) is active,
its individual waiting time w(i, j) starts running, and after it elapses (i,7) is
added to the set. This defines a random process (A(t)):>o of growing subsets
of N3. Again, if the waiting times are N-valued, we consider (A(t))¢en,, and
the Markov property is present only for the two above mentioned waiting time
distributions: the exponential, respectively the geometric, distributions.

It is convenient to identify every point (i, j) with the square [i—$,i+2)x[j—
1,j+1) and to regard A(t) as a subset of [3, 00)?. The process (A(t)):>0 consists
of an infinite number of growing columns, of which almost all are of zero height
and which are ordered non-increasingly in height. One can view these columns
as a vector of runners who proceed like independent random walkers, making
a unit step after an individual independent waiting time, subject to the rule
that the (¢ 4+ 1)-st runner is stopped by the i-th runner as long as they are on
the same level. Note that this is a suppression mechanism, not a conditioning
mechanism. A realization of A(t) is as follows (the active sites are marked by
‘7).

|x

Denote by G(M, N) the first time ¢ at which the point (M, N) belongs to
A(t). Obviously, G(M, N) depends on the variables w(i,j) with ¢ < M and
j < N only, and the recurrence relation

G(M,N) =w(M,N)+max{G(M—1,N),G(M,N—1)},  M,N €N, (3.1)
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is satisfied. From this relation, it is straightforward to derive the formula

GOM,N)= max > w(ij), MNEN (32)
(i,5)em
where II(M, N) is the set of nearest-neigbor paths with M 4+ N —2 steps, starting
from (1,1), ending at (M, N) and having only steps (0,1) or (1,0). An example
of an array of waiting times with M =4 and N =6 is

210 2] 542

P I W 0 0 N I Y
310(0 311
Fortedetd | 110

We ordered the rows from the bottom to the top. Four maximal paths from
the left lower corner to the right upper corner are depicted.

Much of the interest in the corner-growth model stems from the fact that
it has a couple of connections to other well-known models and admits several
alternate descriptions:

Remark 3.1 (Directed last-passage percolation). Switch to the dual lat-
tice of Z?* (where the role of sites and bonds are interchanged) and interpret
w(i, j) as the travel time along the bond (i, 7). Then >, - w(i, j) is the travel
time along the path 7 € II(M, N) from (0,0) to (M, N). Hence, G(M, N) is the
maximal travel time from (0,0) to (M, N) along right /up paths, and this model
is called directed last-passage percolation. The term ‘directed’ refers to the use
of right /up paths. If all nearest-neighbor paths are admissable, then the model is
called last-passage percolation; this is equivalent to the Eden-Richardson model
of Section Bl

Switching the signs of w(i, j) and ignoring that —w(i, j) is negative, we see
that —G(M, N) is the minimal travel time (now with passage ‘times’ —w(i, 7))
from (0,0) to (M, N), which is the well-known model of first-passage percolation.
An interpretation is as follows. If at the origin there is the source of a fluid, whose
floating time along the bond (i, 7) is —w(4, j), then the set A(¢t) = {(M,N): —
G(M,N) <t} is the set of bonds that are wet by time ¢. <&

Remark 3.2 (Totally asymmetric exclusion process). The boundary of
the set A(t) C [4,00)? is a curve that begins with infinitely many vertical line
segments of unit length, proceeds with finitely many horizontal and vertical line
segments of unit length, and ends with infinitely many horizontal line segments
of unit length. If a square is added to A(t), then a vertical/horizontal pair of lines
is changed into a horizontal /vertical pair. If we replace vertical lines by a ‘1’ and
horizontal lines by a ‘0’ and determine the index that refers to the main diagonal
of R? as 0, then we can think of the corner growth model as of a particle process
(zk(t))kez € {0,1}% where x1(t) = 1 means that one particle is present at site k
at time ¢. In the case of geometric waiting time distribution, the dynamics of this
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process is as follows. At each discrete time unit, every particle independently
moves to the right neighboring site with a fixed probability, provided this site
is vacant. Otherwise, it does not move. These are the dynamics of the so-called
totally asymmetric exclusion process in discrete time. The event {G(M, N) =t}
is the event that the particle that was initially at site 1 — N has moved M
steps by time ¢. There is an analogous representation in continuous time for the
exponential waiting time distribution. &

Remark 3.3 (Directed polymers in random environment). Let (S, )nen,
be a simple random walk on Z, then the process (n, Sy, )nen, is interpreted as
a directed polymer in Z2. Let (v(i,))ien,,jez be an i.i.d. field of real random
variables. Every monomer (n, S,,) receives the weight Sv(n, S, ), where 8 > 0 is
interpreted as the inverse of the temperature. This induces a probability measure
on N-step paths given by

1

N
Qn,s(So,...,8N) = In s exp{—ﬁz v(n, S’n)}
’ n=0

In the zero-temperature limit 8 — oo, the measure @y g is concentrated on
those paths (So, ..., Sn) which minimize Zgzov(n, Sy). This is the analog of
the corner-growth model with switched signs of the random variables; com-
pare to ([B2). It is believed that the directed polymer at positive, sufficiently
small, temperature essentially exhibits the same large-N behavior as the zero-
temperature limit, but this conjecture is largely unproven. An account on the
recent research on directed polymers in random environment is in [CSY(4]. <

Remark 3.4 (Tandem queues). At time zero, there is an infinite number of
customers in the first queue, and there is an infinite number of other queues,
which are initially empty and have to be passed by every customer one after
another. The first customer in any queue (if present) is served after a random
waiting time, which has the distribution of the waiting times in the corner
growth model, and he or she proceeds to the end of the next queue. Then,
at every time ¢, the height of the i-th column of the set A(t) is equal to the
number of customers which have passed or reached the i-th queue. A general
and systematic discussion of the relation between tandem queues and orthogonal
polynomial ensembles appears in [OCO3]. <&

A systematic study of the random variable on the right side of ([B2) and its
asymptotics towards Brownian analogs is in [Ba(1l]; see also [GTWQOT], [OY(2],
[B.102) and [Do03]. In fact, for N fixed and under appropriate moment condi-
tions, in the limit M — oo, this random variable (after proper centering and
rescaling) converges in distribution towards

LNy =, max W(1) = Wa(ta) + Wa(ta) = Walta) £ ...

(3.3)
£ Witn_1) — WN(O)},
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where Wy, ..., Wy are N independent standard Brownian motions on R start-
ing at the origin. Using Donsker’s invariance principle, this may be explained
as follows. Assume that E[w(1,1)] = 0 and E[w(1,1)?] = 1. The first upstep
of a path 7 in [B2) may be expected in the (ty_1M)-th step, the second in
the (txy—oM)-th step and so on, where we later optimize on 1 > ¢t > --- >
tn—1 > 0. The partial sums of w(i,t;—1M),...,w(i,t; M — 1) approach the
distribution of v M[W;(t;_1) — W;(t;)] for i = 1,..., N. Hence, we have that
M~2G(M,N) = L(N) as M — oo, in the case of centered and normalized
random variables w(i, 7).

A rather beautiful fact [BalTl, [GTW0OT] is that L(N) is in distribution equal
to the largest eigenvalue of a GUE matrix, A§. (For generalisations of this fact
to Brownian motion in the fundamental chamber associated with a finite Coxeter
group see [BBO05|.) Recall from Theorem EZI7 that we may approximate Ay ~
\/WJr(\/ﬁN% )L Fy for N large. Combining the limits for M — oo and N — oo,
one is lead to the appealing conjecture (still assuming that E[w(1,1)] = 0 and
Efuw(1,1)2] = 1)

VNS (% - \/W) — F,  MN — . (3.4)
This assertion has indeed been proven independently in [BM0O5] and [BS05],
under the additional assumption that M = o(N®) for a < 13—4. The main tool is
a classical strong approximation of random walks by Brownian motion, which
works so well that M can diverge together with N at some speed. However,
the most interesting case is where M and N are of the same order, and this
case is open yet in general. For the two special cases of the geometric and the
exponential distribution, [BZ]) has been proven for M ~ const. x N. Our next
two sections are devoted to a description of this result.

3.3 Johansson’s identification of the distribution

In his beautiful work [Ioi0a], Kurt Johansson deeply investigated the corner-
growth model for both particular waiting-time distributions, the geometric and
the exponential distribution. He identified the distribution of G(M, N) in terms
of the distribution of the largest particle of the Laguerre ensemble (see (20))) in
the exponential case, and of the Meizner ensemble (its discrete analog) in the
geometric case.

Proposition 3.5 (Distribution of G(M, N), [Mo00al]). Let G(M,N) be de-
fined as in BZ), and let the w(i,j) be i.i.d. geometrically distributed with para-
meter ¢ € (0,1), d.e., w(i,j) = k € N with probability (1 — q)q*. Then, for any
M,N € N with M > N, and for anyt € N,

t+N—1 N
1 zi+M-—-N\
P(G(M,N) gt):m E AN(x)QH{( . )q } (3.5)
oy en=1 i=1 v

Remark 3.6. (i) The right hand side of (B3) is the probability that the
largest particle in the Meizner ensemble on N with parameters ¢ and
M — N is smaller than ¢ + N.
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(ii) There is an extension of Proposition Bl to the case where the parameter of
the geometric distribution of w(¢, j) is of the form a;b; for certain numbers
a;,b; € (0,1), see [lo01d, Sect. 2].

(iii) An analogous formula holds for the case of exponentially distributed wait-
ing times, and the corresponding ensemble is the Laguerre ensemble (Gam-
ma-distribution in place of the negative Binomial distribution), see (8.
This formula is derived in [Lo00a] using an elementary limiting procedure
which produces the exponential distribution from the geometric one. It is
remarkable that no direct proof is known yet. Distributions other than the
exponential or geometric one have not yet been successfully treated. <

Sketch of the proof of Proposition[ZHl The proof in [Io00a] relies on various
combinatoric tools, which have been useful in various parts of mathematics for
decades. A general reference is [Sad1].

A generalized permutation is an array of two rows with integer entries such
that the row of the pairs is non-decreasingly ordered in lexicographical sense.

An example is
111 11 2 2 2 2 3 4 4
"_(113331113323)’ (8.6)

the entries of the first and second line are taken from {1,2,3,4} and {1,2,3},
respectively. A longest increasing subsequence of the second row has the length
8; it consists of all the ‘1’ and the last three ‘3’. Also the first two ones and all
the threes form a longest increasing subsequence.

Lemma 3.7 (Matrices and generalized permutations). For any M, N,k €
N, the following procedure defines a one-to-one map between the set of (M x N)-
matrices (W (i,7))i<m j<n with positive integer entries and total sum
dicarj<n Wi, j) equal to k, and the set of generalized permutations of length
k whose first row has entries in {1,..., M} and whose second row has entries in
{1,...,N}: Repeat every pair (i,7) € {1,...,M} x{1,..., N} precisely W (i, j)
times, and list all pairs in lexicographical order. By this procedure, the quan-
tity maX e, N) Z(m)eﬂ W (i, j) is mapped onto the length of the longest non-
decreasing subsequence of the second row.

As an example for M =4, N = 3, the matrix
0
(3.7)

N W O
SO O
W = = =

is mapped onto the generalized permutation o in ([B&). (In order to appeal to the
orientation of the corner growth model, we ordered the rows of W from the bot-
tom to the top, contrary to the order one is used to from linear algebra.) The two
paths linking the coordinates (1,1), (2, 1), (2, 3), (4,3) and (1,1), (1, 3), (4, 3), re-
spectively, are maximal paths in ([B2); they correspond to the longest increasing
subsequences mentioned below (B4l).
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Remark 3.8. (i) For the application of Lemma B for W (i,j) = w(i, )

geometrically distributed random variables, it is of crucial importance that

this distribution induces a uniform distribution on the set of (M x N)-
matrices with fixed sum of the entries.

(ii) Obviously, Lemma B works a priori only for integer-valued matrices. <

The next step is a famous bijection between generalized permutations and
Young tableaux. A semi-standard Young tableadld is a finite array of rows,
nonincreasing in lengths, having integer entries which are nondecreasing along
the rows and strictly increasing along the columns. The shape of the tableau,
A = (\)4, is the vector of lengths of the rows. In particular, A; is the length
of the longest row of the tableau, and >, A; is the total number of entries. An
example of a semi-standard Young tableau with shape A = (10,8,8,3,1) and
entries in {1,...,6} is as follows.

2 13 I3 [3]a a6 ]

OO [W [N
T |~
ot
t
(=)
(=)

‘cnqkooww
o[ [ [

Lemma 3.9 (Robinson-Schensted-Knuth (RSK) correspondence,
[K70]). For any M,N,k € N, there is a bijection between the set of gener-
alized permutations of length k whose first row has entries in {1,..., M} and
whose second row has entries in {1,..., N}, and the set of pairs of semi-standard
Young tableauz of the same shape with total number of entries equal to k, such
that the entries of the first Young tableau are taken from {1,...,M} and the
ones of the second from {1, ..., N}. This bijection maps the length of the longest
non-decreasing subsequence of the second row of the permutation onto the length
of the first row of the tableau, A1.

The algorithm was introduced in [Sc61] for permutations (it is a variant of
the well-known patience sorting algorithm) and was extended to generalized
permutations in [K70)].

Sofar, the distribution of G(M, N) has been reformulated in terms of the
length of the first row of pairs of semi-standard Young tableaux. The next and
final tool is a combinatorial formula for the number of Young tableaux.

Lemma 3.10 (Number of semi-standard Young tableaux). The number

of semi-standard Young tableauzx of shape A and elements in {1,..., N} is equal
to
H Xi—Aj+j—1
x4 J—t '
1<i<j<N

10For the notions of (standard) Young tableaux and Young diagrams, see Section E)below.
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The reader easily recognizes that the combinatorial formula in Lemma B0
is the kernel of the formula in ([B3]). Putting together the tools listed sofar, one
easily arrives at ([B3). O

Remark 3.11. An alternate characterization and derivation of the distribution
of G(M, N) is given in [1o02al Sect. 2.4] in terms of the Krawtchouk ensemble,

1

M,n,q

M
Krarn,q(z) = Apr(w)? H[(;)qz(lq)"z}, ze{0,...,n}MnWy,.
i=1 '

(3.8)
There a family of random non-colliding one-dimensional nearest-neighbor proces-
ses is analyzed, which is a discrete analog of the multilayer PNG-droplet model
in Section B below. The joint distribution of this cascade of processes is iden-
tified in terms of the the Krawtchouk ensemble, and the marginal distribution
of the rightmost process is identified in terms of G(M, N). This implies that

P(G(M,N) <t) = > Krag 4 N41-1,4(%), (3.9)
z€{0,....,t+ M—1}M

i.e., G(M, N) is characterized in terms of the largest particle of the Krawtchouk
ensemble. &

3.4 Asymptotics for the Markovian corner-growth model
Having arrived at the description in (B), the machinery of statistical mechanics
and orthogonal polynomials can be applied. The outcome is the following.

Theorem 3.12 (Asymptotics for the corner-growth model, [[Lo00a]).
Consider the model of Proposition [Z3. Then, for any v > 1,

O m EGIN N = BRI s ), (3.10)
- , G(yNJ,N) = Nf(v.q)
(i) ngn(ﬂP( (. N1 < s) = Fy(s), seR, (3.11)

where Fy is the distribution function of the GUE Tracy-Widom distribution
introduced in 1Y), and o(v,q) is some explicit function.

Remark 3.13. (i) In Theorem the weak law of large numbers
lim¢ o $A(t) = A is contained with

A={(z,y) €[0,00)%: y+2y/qzy + v <1 g}

A qualitative picture of A is as follows.
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Y

1—gq

0
l—gq

(ii) The analogous result for exponentially distributed waiting times is also
contained in [Jo00al.

(iii) Theorem BTZ(ii) is equivalent to ) with M = [yN| (recall that the
w(i, j) are centered and normalized there, but not in Theorem BT2).

(iv) Theorem is the first and yet only rigorous result of behavior of the
type ‘fluctuations ~ means’ for random growth models of the Eden type.

(v) In [Io00a] also some large-deviation estimates are proven, i.e., the proba-
bilities of the events {G(|YN |, N) < N(f(v,¢)—¢)} and of {G(|yN|,N) >
N(f(v,q) + &)} are asymptotically estimated. The former decays on the
scale eO(N2), while the latter decays on the scale e©(V).

(vi) The proof of Theorem BT can also be built on the Krawtchouk repre-
sentation in () by using asymptotics for the Krawtchouk kernel; see
[o02al. &

Sketch of the proof of Theorem The structure of this proof is analo-
gous to the proof of Theorem EZT The right hand side of (BH) may be written
in terms of the Meixner kernel
N—1 )
Ky (w,y) = D my(e)my(y) [wi (2w’ (y)]*,  L=M-N+1, (3.12)
§=0
where m;(z) = k;a? + O(2?~1) are the orthonormal polynomials with respect
to the discrete weight w(” (z) = (“'i_l)q””, z € N. (Both the polynomials m;
and the kernel Kf\flvg also depend on L and ¢.) Indeed, computations similar to

those of Section EX imply that

right hand side of (B3]
N

(—1)k (3.13)
- - 3 det[(K;f;(hi, hj))i’jzlwk}.
k=0 RE{t+N,t+N+1,... }F
The Meixner kernel satisfies the scaling limit
Jim oNSKG)((f + )N +oNSz, (f+ )N +oNsy) = Kai(z,y),  (3.14)

where Ky; is the Airy kernel in Z23), and f = f(v,q) and o0 = o(v,q) are as
in the theorem. Now the remainder of the proof is analogous to the proof of
Theorem 217 O
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3.5 Longest increasing subsequences of random permutations
Another problem that has been recognized to be strongly related to random
growth processes is the problem of the length of the longest increasing subse-
quence of a random permutation. Let G denote the set of permutations of
1,..., N, and let ¢ be a random variable that is uniformly distributed on &y,
i.e., a random permutation. The length of the longest increasing subsequence
of o is the maximal k£ such that there are indices 1 < i1 < iy < --- < ip < N
satisfying o(i1) < o(i2) < -+ < o(ig). We denote this length by £n. In the
early 1960’s, Ulam raised the question about the large- N behavior of £ . Based
on computer simulations, he conjectured that ¢ = limy_,oc N~/ 2E(ly) exists
in (0,00). The verification of this statement and the identification of ¢ have
become known as ‘Ulam’s problem’. A long list of researchers contributed to
this problem, including Hammersley, Logan and Shepp, Vershik and Kerov, and
Seppalédinen. By the end of the 1990’s, it was known that the above limit exists
with ¢ = 2, and computer simulations suggested thatl]

. E(n)—-2VN

A survey on the history of Ulam’s problem may be found in [OR00] and [AT)99).

There is a ‘Poissonized’ version of Ulam’s problem, which is strongly related
and provides a technical tool for the solution of Ulam’s problem. Consider a
homogeneous Poisson process on (0,00)? with parameter one, and let L(\) be
the maximal number of points of this process which can be joined together by
a polygon line that starts at (0,0), ends at (v/X,v/A) and is always going in
an up/right direction. Then it is easy to sed!d that the distribution of L()) is
equal to the distribution of £+, where N* is a Poisson random variable with
parameter A. Via Tauberian theorems, asymptotics of the distribution of L(\)
as A — oo stand in a one-to-one correspondence to the large-N asymptotics of
In.

There are exact formulas for the distributions both of ¢x and L()\), which
have been proved by many authors using various methods (see [BID.I99]). Indeed,
for any n € N, we have

22N N - 2N . . d"e
MNgn):_/ cos0: s _ o 40
( (2N)' [_ﬂ.,ﬂ.]n (; J) H | | (27’()"71'

1<k<j<n

P(L(\) <n) = e_)‘/

[_ﬂ-’ﬂ-]n

- i0; i d"e
eXp{Q\/XZCOSQj} H et 0 — el Ox|2 2yl
j=1 1<k<j<n
(3.16)
In [BD.I99), sophisticated and deep methods are applied to the right hand side of
@Td), which have previously been established in [DZ93], [DZ95] and [DVZ97]:

1 Recall Remark EZTR(iii).

12The main reason is the characteristic property of the Poisson process that, given that
there are precisely N Poisson points in the square, these points are conditionally independent
and uniformly distributed.
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the steepest-decent method for the computation of asymptotics of solutions to
certain Riemann-Hilbert problems. As a result, a limit law for ¢y is proved,
which shows again the universality of the Tracy-Widom distribution for GUE
in (Z5A):

Theorem 3.14 (Limit law for ¢y, [BD.J99)]). Let ¢ be the length of the

longest increasing subsequence of a random permutation, which is uniformly
distributed over Gy . Then, as N — oo, the scaled random variable

Iy —2VN

XN = Nl/G (317)

converges in distribution towards the Tracy- Widom distribution for GUE. More-
over, all moments of xn also converge towards the moments of this distribution.
Both assertions are true also for (L(\) — 2V A)A™5 as A — oo.

Sketch of the proof. We sketch some elements of the proof, partially also
following [P0O3, Sect. 3.1]. We consider the Poissonized version and consider
L()\?) instead of L(\).

The starting point is an explicit expression for the probability of {L(A\2?) <
N} for any N € N and any A > 0 in terms of the Toeplitz determinantl
Dy » = det Tiy(e?*<°5()). More precisely, one has

P(L(A%) < N) = e det Ty (€22 0)) = e =¥ Dy (3.18)
a remarkable formula which has first been derived in [Ge9()], based on the RSK-

correspondence of Lemma B On [0, 27] we introduce the inner product

o i0\ 710\ ,2\cosb d¢
o= [ p(E T (3.19)

Consider the sequence of orthogonal polynomials (7%’)yen, With respect to
(+,-y» which is obtained via the Gram-Schmidt algorithm from the monomials
2", n € Ny. We normalize 7§’ such that 7%’(z) = 2V + O(zV~1) and define
Vi = |7 |12, such that we have

<7T§G),7T§\?2>,\:5N7N/VJ§;), N,NIEN(). (320)
Classical results on orthogonal polynomials (see [SzZ75] for some background)

imply the identities

N-—-1
Dy x = det Ty (€2 *0)) = det (((z", 2)a)ki=0,...v-1) = [] ViV
F=0 (3.21)

N—-1 k
=WVON TTTIO = (= (0))?).
k=0 =1

3We recall that the (N x N) Toeplitz matrix Ty (f) = (Mk—1)k,1=0,...,
to the weight function f on [0, 2] is defined by the Fourier coeficients pj = fOQW e ko f(9) %

~N_1 with respect
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For our special choice of the weight function, e2*cos?

, one obtains a nonlinear
recursion relation for the sequence (7%’ (0))nen,, which are called the discrete

Painlevé II equations. Indeed, the numbers RS’ = (—1)N 1737 (0) satisfy

(X —2)RY +2(RY)°

Ry, —2RY + RY | = 1= (R g
N

N eN. (3.22)

Putting N = [2) + A3 s|, multipling ) with A and letting A — oo, we see
that the function

~ _ . LS50

q(s) = )\h—>n;o )\3RL2>\+>\%sJ’ s €R, (3.23)
should satisfy the (continuous) Painlevé II equation in (ZB4)). The initial value
RYY = —1, i.e., 3(—2X3) ~ A%, implies that we are dealing with that solution
of ([Zh) that is positive in (—oo,0). Hence, ¢ is identical to the solution ¢ of
E24) with g(z) ~ Ai(z) as © — oo; recall the text below ([Z5H4).

Note that ZI) implies that Dy11,3Dn—1,/D% , =1 — (RY’)?. Using this

in (BIX) we obtain, for A — oo, 7

2 1
(%) log P((L(A2) — 2A)A3 < s) ~ A3 <log Diin—2log Dy x + log DN,M)

_ 12 _(p™ 2\ o [(yipm 2N7 2 _ "
f)\zlog<1 (B 5. )~ (AszH%SJ) 4(5)? = (log F»)" (s).
(3.24)

Hence, we have finished the identification of the limiting distribution of L(A?).

The technically hardest works of the proof are the proofs of the convergence
in @Z3) and of the convergence of the moments, which require an adaptation
of the Deift-Zhou steepest descent method for an associated Riemann-Hilbert
problem. O

3.6 The poly nuclear growth model

Consider the boundary of a one-dimensional substrate, which is formed by the
graph of a piecewise constant function with unit steps. At each time ¢ > 0, the
separation line between the substrate and its complement is given as the graph
of the function h(:,t): R — R. Occasionally, there occur random nuclear events
in states x* at times ¢*, and the process of the pairs (z*,t*) forms a Poisson
point process in the space-time half plane R x [0, co) with intensity equal to two.
Such an event creates an island of height one with zero width, i.e., h has a jump
of size one in z* at time t*. Every island grows laterally (deterministically) in
both directions with velocity one, but keeps its height, i.e., for small € > 0 the
curve h(-,t* +¢) has the height h(z*,t*) in the e-neighborhood of z* and stays
on the same level as before t* outside this neighborhood:
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h(z,t* +¢)
h(z*,t*)
— —
h(z*, %) — 1 -
X

The bullet marks the nucleation event, and the two arrows indicate the lateral
growth of velocity one in the two directions. We call the graph of h(-,t* 4+ ¢) in
the e-neighborhood of x* a growing island. If two growing islands at the same
level collide, then they merge together and form a common growing island. The
nucleation events occur only on top of a growing island, and they occur with
constant density equal to two.

This is a (rather simple) model for poly nuclear growth (PNG) in 141 dimen-
sion. Among various initial conditions that one could impose, we shall consider
only two: the flat case, where h(x,0) = 0 for any = € R, and the droplet case,
where h(x,0) = —oo for  # 0 and h(0,0) = 0. The droplet case may also be
defined with the initial condition h(-,0) = 0 by requiring that nucleation events
at time ¢ may happen only in [—¢, ¢].

Let us first consider the droplet case. A beautiful observation [PSO()] is the fact
that the PNG model stands in a one-to-one relation to the Poissonized problem
of the longest increasing subsequence in a rectangle. Using this correspondence,
one arrives at the following limit assertion.

Theorem 3.15 (Limit law for the PNG droplet, [PS00]). Let h(z,t) be
the height of the PNG droplet at time t over the site x, and let ¢ € [—1,1]. Then

h(ct,t) — 2ty/1 — 2 <
s

(1-c2)sts  ~
where Fy is the GUE Tracy-Widom distribution function, see (0.

lim 1P>(

N—oo

) = Ry(s), seR, (3.25)

Idea of proof. We consider the space-time half plane R x [0, 00). For any space-
time point (z,t), we call the quarter plane with lower corner at (z,t) and having
the two lines through (z,t) with slope 1 and —1 as boundaries the (x,t)-quarter
plane. Recall that nucleation events occur in the (0, 0)-quarterplane only, which
is the region {(z,t): |z| < t}.

First note that every nucleation event at some space-time point (z*,t*) influ-
ences the height of the curve h only within the (z*,t*)-quarter plane. Second,
note that any nucleation event (y*,s*) within the (x*,t*)-quarter plane con-
tributes an additional lifting by level one (to the lift created by the nucleation
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event (z*,t*)) for any space-time point in the intersection of the two quarter
planes of the nucleation events, since the growing island created by (y*, s*) will
be on top of the growing island created by (z*,t*). However, if (y*, s*) occurs
outside the (z*,t*)-quarter plane, their influences are merged to a lift just by
one step since their growing islands are merged to one growing island.

Now fix a space-time point (x,t) in the (0,0)-quarter plane. In the space-time
plane, consider the rectangle R having two opposite corners at the origin and at
the point (z,t) and having sides of slopes 1 and —1 only. Condition on a fixed
number N of nucleation events (z7,t7), ..., (z},ty) in the rectangle R.

time

space

Rotate the rectangle by 45 degrees. The preceding observations imply that
only those nucleation events contribute to the height h(x,t) which can be joined
together by a polygon line consisting of straight up/right lines, leading from the
corner of the rectangle R at the origin to the corner at (z,t¢). The maximal
number of nucleation events along such path is equal to the height h(z,t).
Hence, the length of the longest increasing subsequence in a unit square with
Poisson intensity A = v/t2 — 22 has the same distribution as the height h(x,t).
Using Theorem BT4 one concludes the assertion. O

In particular, the fluctuation exponent 1/3 is rigorously proved for this growth
model. Such a result has not yet been achieved for any other growth model of
this type. However, this fluctuation behavior is conjectured for a large class of
(1 4+ 1)-dimensional growth processes, provided the spatial correlations are not
too weak.

The flat initial condition, h(-,0) = 0, interestingly leads to the GOE Tracy-
Widom distribution instead of the GUE one:

Theorem 3.16 (Limit law for the flat PNG model, [PS00]). Let h(z,t)
be the height of the flat PNG model at time t over the site x. Then,

h(0,t) — 2t
lim P(% <9723 s) =Fi(s), seR, (3.26)

3

where Fy is the GOE Tracy- Widom distribution function, see (ZhY).



W. Koénig/Orthogonal polynomial ensembles in probability theory 428

The above explanation for the droplet case has to be adapted to the flat case
by replacing the rectangle with corners at the origin and (z,t) by the triangle
with base on the axis ¢ = 0, corner at (x,¢) and side slopes 1 and —1. See [Ee(4al
for more detailed results on the flat PNG model.

For other initial conditions (among which some lead to the GSE Tracy-Widom
distribution, Fy), see [P03| Sect. 3]. We recall that a discrete-space version of
the PNG model is analyzed in [Lo02al, Sect. 2.4]; see also Remark BTTl A recent
survey on the PNG droplet and its relation to random matrices and further
random processes, like directed polymers, the longest increasing subsequence
problem and Young tableaux, appears in [EP(05].

3.7 The multi-layer PNG droplet and the Airy process

The PNG droplet has been analysed also as a process. Interestingly, the limiting
distribution of the height process in the correct scaling bears a close relationship
to Dyson’s Brownian motions (see Theorem E), which is best seen when ad-
ditional layers of substrate separation lines are introduced. The so-called multi-
layer PNG droplet (sometimes also called the discrete PNG model) is defined
as follows. We write hg instead of h and add an infinite sequence of separation
lines he(x,t) with ¢ € —N with initial condition h¢(z,0) = £. Nucleation events
only occur to the zeroth line hg, and they occur at time ¢ in the interval [—t,¢]
only (i.e., we consider the droplet case). Every merging event in the ¢-th line
(i.e., every event of an amalgamation of two neighboring growing islands at the
same height) creates a nucleation event in the (¢ — 1)-st line at the same site.
Apart from this rule, every island on any level grows deterministically with unit
speed into the two lateral directions as before.

Hence, randomness is induced only at the zeroth line, and all the other lines
are deterministic functions of hg. Observe that the strict ordering hy(z,t) >
he—1(z,t) for any x,t,¢ is preserved. Hence, the lines form a family of non-
colliding step functions with unit steps. For any £ € —Ny and at any time ¢ > 0,
the £-th line hy(-,t) is constant equal to ¢ far away from the origin. Only a
finite (random) number of them have received any influence coming from the
nucleation events, and only within a finite (random) space-time window [1

An interesting observation [PS02a] is that, in the long-time limit, the multi-
layer PNG droplet process approaches the large-N limit of Dyson’s Brownian
motions (see Section L] below) in the appropriate scaling More precisely, let
AM () = (AV(t), ..., AG(t)) € Wx be Dyson’s Brownian motion at time ¢ as
in Theorem Bl Then the Airy process may be introduced as the scaled limiting
distribution of the largest particle, more precisely,

(\/51\[% (A (yN~3) — \/ﬁ)>yeR = (Ai(y)) , cz- (3.27)

4 Computer simulations show that the space-time region in which the lines are not constant
asymptotically forms a droplet that approaches a circle. This region stays strictly inside the
circle, which is due to the negativity of the expectation of the GUE Tracy-Widom distribution,
recall Remark EZTR)(iii).

15To be more precise, in contrast to Section B} here Dyson’s Brownian motions are not
based on Brownian motions, but on Ornstein-Ulenbeck processes, which are Brownian motions
with drift to the origin and hence stationary.
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Convergence has been established in the sense of finite-dimensional distributions
in [PS02a] and in process sense in [o03]. For any y > 0, the random variable
Ai(y) has the GUE Tracy-Widom distribution F» in 2H), and the family of
these random variables forms an interesting stochastic process. The Airy process
(i(y))yer is a stationary, continuous non-Markovian stochastic process which
may be defined via its finite dimensional distributions, using a determinant
formula involving the Airy kernel Ku; in (ZB2) [PS02a], see also [P0O3, Sect. 5].

In [PS02a) it turns out that, in the appropriate scaling, the joint distribution
of all the lines hy of the multilayer PNG droplet approaches the Airy process.
We state the consequence of this statement for the first line as follows.

Theorem 3.17 (Process convergence of the PNG droplet, [PS02al).
Let h(x,t) be the height of the PNG droplet at time t over the site x. Then, in
the sense of finite-dimensional distributions,

h(t3y,t) — 2t
lim 7( ) =

t—o0 t%

Qll(y) - y27 Y€ R7 (328)

where (Ai(y))yer is the Airy process.

Some progress on the process version of the flat PNG model has been made
in [Fe04a). Discrete versions of the PNG model have been analysed in [IS04a],
[1S04H].

Another interesting process that converges (after proper rescaling) in distri-
bution towards the Airy process is the north polar region of the Aztec diamond
[I605) .

3.8 The Plancherel measure

The Plancherel measure is a distribution on the set of Young tableaux which
exhibits an asymptotic behavior that is remarkably similar to that of the spec-
trum of Gaussian matrix ensembles. Most interestingly, this measure may be
studied for any value of the parameter (3, which is restricted to the values 1, 2
and 4 in the matrix cases.

A Young diagram, or equivalently a partition A = (Ag, Ag,...)of {1,..., N}is
an array of N boxes, such that A; of them are in the first row, Ao of them in the
second and so on. Here A is an integer-valued partition such that Ay > Ao > ...,
and ), A\; = N. We think of the rows as being arranged on top of each other.
A standard Young tableau is a Young diagram together with a filling of the
boxes with the numbers 1,..., N such that the numbers are strictly increasing
along the rows and along the columns[{ The vector A is called the shape of the
tableau. For every A\, we denote by d) the number of Young tableaux of shape
A. For every 8 > 0, we define the Plancherel measure as the distribution on the
set Yy of partitions of {1,..., N}, which is given by

<]
4
ZMGYN dlﬁt

16Compare to the definition of a semistandard Young tableau prior to Lemma [ where
more numbers may appear, and their order is just nondecreasing.

PIY () = AEYy. (3.29)
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We can conceive /\ECN)7 the length of the k-th row, as an Ny-valued random
variable under the probability measure Pl%) on Yy.

The case f = 2 has been studied a lot. Basically, it was shown that the
limiting statistics of the sequence A\{™’; ASY| ... in an appropriate scaling, is the
same as the one for the eigenvalues of an (N x N) GUE-matrix. We mention just
a few important results. As a by-product of their study of the longest increasing

subsequence of a random permutation, in [BI.I99] the limit theorem

()

lim PI? (M < s) = Fy(s), seR, (3.30)
N—oco N3

is shown, where F5 is the Tracy-Widom GUE distribution function. The con-
jecture of [BI.I99] that for every k € N the scaled limiting distribution of A{™
is identical to the one of the k-th largest eigenvalue of a GUE-matrix was in-
dependently proved in [BD.J0O0] for k& = 2, and for general k in [Jo01h] and
[BOONOO]. The convergence of the moments of the scaled row lengths was also
proved in [BD.J99], [BDIO0] and [Io01b], respectively. The bulk-scaling limit
was also proved in [BOOO0]. The case 8 = 1 (which is analogous to the GOE
case instead the GUE case) has been studied in [BEQT].

4. Non-colliding random processes

In this section we systematically discuss conditional multi-dimensional ran-
dom processes given that the components never collide with each other. These
processes are sometimes called vicious walkers, non-colliding processes or nonin-
tersecting paths in the literature. The earliest hint at a close connection between
non-colliding random processes and orthogonal polynomial ensembles was found
in [Dy62Db], where a natural process version of the Gaussian Unitary Ensemble
was considered. It turned out there that the mutual repellence in ([Z3)) receives
a natural interpretation in terms of Brownian motions conditioned on never col-
liding with each other. This theme apparently was not taken up in the literature
up to the beginning of the nineties, when people working in stochastic analysis
turned to this subject. Since the discovery of close connections also with ran-
dom growth models at the end of the nineties, non-colliding processes became
an active research area.

4.1 Dyson’s Brownian motions

A glance at the Hermite ensemble in [3) shows that there is a mutually re-
pelling force between the eigenvalues: the density vanishes if any two of the N
arguments approach each other. It does not seem easy to derive an intuitive
reason for this repellence from random matrix considerations, but if the ma-
trix M is embedded in a natural process of random Hermitian matrices, then
the process of eigenvalues admits a nice identification that makes the repellence
natural.

Theorem 4.1 (Dyson’s Brownian motions, [Dy62b]). For any i €
{1,...,N} resp. © < j, let (M;;(t))e>0 and (Mi(f;)(t))tzo and (M;f;(t))tzo be
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independent real standard Brownian motions, starting at zero, such that the
Hermitian random matriz M(t) = (M; ;(t))ij=1,....n with M; ;(t) = M;?‘)(t) +
1M;I])(t) has the distribution of GUE at time t = 1. Then the process (A(t))¢>o0
of eigenvalue vectors \(t) of M(t) is a conditional Brownian motion on RY,

starting at zero, given that the particles never collide with each other, i.e., con-
ditional on the event {\1(t) < A2(t) < --- < An(t) for all t > 0}.

This theorem has to be explained in some detail.

Remark 4.2. (i) It is remarkable that, in particular, the process of eigen-
value vectors is Markov. This is not true for, say, the process of the largest
eigenvalues, (An(t))¢>0-

(ii) The original proof in [Dy62b] makes nowadays an old-fashioned impres-
sion. See [Bra1] for a modern stochastic analysis treatment of an analogous
matrix-valued process for Wishart-matrices in the real-valued setting. In
this setting, the process of eigenvalues also turns out to be Markov, but
does not admit a conditional interpretation. The latter is also true in the
analogous GOE setting.

(iii) The event of never colliding, {A1(t) < Aa(t) < -+ < An(¢) for all ¢t > 0},
has zero probability for N independent Brownian motions. Hence, the
definition of the conditioned process needs some care. First observe that
the non-colliding event is the event {A(t) € Wy for all ¢ > 0}, where
Wy ={r €RV: 2y <29 <--- <y} is the Weyl chamber. Probabilists
like to write this event as {T" = oo}, where T' = inf{t > 0: \(¢t) € W§}
is the exit time from Wy, the first time of a collision of any two of the
particles. One way to construct the conditional process is to condition
on the event {T" > t} and prove that there is a limiting process as t —
00. Another one is to consider the Doob-h transform of the vector of
N independent standard Brownian motions with some suitable function
h: Wx — (0, 00) that vanishes on the boundary of Wy and is harmonic for
the generator of the N-dimensional Brownian motion in Wy . Remarkably,
it turns out that A = Ay, the Vandermonde determinant, satisfies all these
properties, and that the h-transform with this function h is identical with
the outcome of the first construction. See Section below for a general
treatment of this issue.

(iv) The Markov process (A(t))¢>0 has the invariant measure x — Ay (z)? dz,
which cannot be normalized.

(v) Alsoin the real and the symplectic version, the eigenvalue process, (A(t)):>o0,
turns out to be a diffusion. An elementary application of Ito’s formula
shows that (A(t)):>0 satisfies the stochastic differential equation (see [Br9l]
for related formulas)

N
1
d)\i:dBiJrﬂZﬁdt, i=1,...,N, (4.1)
=1 T
J#i

where By, ..., By are independent Brownian motions, and 8 € {1,2,4} is
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the parameter as in ([H). The generator of the process (A(t))¢>o is

R 1 N N N 1
Gf() =52 0@ + B[ ——|af@). (2

=1 a=1 vi T
i
The generators in the GOE and the GSE setting have a factor different
from 2 before the drift term. Apparently this circumstance makes it im-
possible to conceive the processes as Doob transforms of N independent
processes. &

4.2 Harmonicity of the Vandermonde determinant

Now we consider more general multi-dimensional random processes and their
conditional version given that no collision of the particles occurs. As was pointed
out in Remark EE2(iii), the construction needs some care, since the conditioning
is on a set of probability zero. It turns out that the rigorous definition may be
given for many processes in terms of a Doob h-transform with h = Ay, the
Vandermonde determinant in (L3J). Even more striking, the marginal distrib-
ution of the transformed process turns out, for a couple of explicit examples,
to be given by well-known orthogonal polynomial ensembles, like the Hermite
ensemble in ([Z3)) for the case of conditional Brownian motions.

4.2.1. The continuous case.

Let us turn first to the time-continuous case with continuous paths, more pre-
cisely, to diffusions. We fix N € N and an interval I and let X = (X(¢)):>0 be
a stochastic process on IV. Assume that Xi,..., Xy are N independent and
identically distributed diffusions X; = (X;(¢))i>0 on I. Under the measure P,
they start at X;(0) = x; € I, where x = (z1,...,2n). By pt(z,y) we denote the
transition density function of any of the diffusions Xj, i.e.,

N
P, (X (1) € dy) = [[[pe(@i,vi) dy], oy eIV (4.3)

i=1
Recall the Weyl chamber and its exit time,

Wy={zcRV: 2z, < - <zy} and T =inf{t > 0: X(t) ¢ Wn}.
(4.4)

In words: T is the first time of a collision of any two of the N components of the
process. Recall the Vandermonde determinant Ay (z) = [, <, ;< n(2j —2:). In
order to be able to construct a Doob-h transform of the process with h = A on
Wy, the basic requirements are: (1) Ay is positive on Wy, (2) Ay is harmonic
with respect to the generator G of the process X, i.e., GAy = 0, and (3)
AN (X (¢)) is integrable for any ¢ > 0.

Clearly, the first prerequisite is satisfied. Furthermore, it turns out that Ay
is harmonic for a quite large class of processes:
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Lemma 4.3 (Harmonicity of Ay, continuous case [KOO1]). We have
GAN =0 (i.e., AN is harmonic with respect to G) if there are a,b,c € R such
that

N N
G= Z {(axi—l—b)af—i—c@i or = Z [(x?—l—axi—i—b)@?—i— (% (N—Q)xi—i—c) 81} .
i=1 i=1
(4.5)
The proof consists of an elementary calculation. Lemma in particular
covers the cases of Brownian motion, squared Bessel processes (squared norms
of Brownian motions) and generalized Ornstein-Uhlenbeck processes driven by
Brownian motion. For general diffusions, existence and identification of positive
harmonic functions for the restriction of the generator to the Weyl chamber are
open.
As a consequence of Lemma B3] we can introduce the Doob h-transform of
X with A = An. This is a diffusion on Wy N IN7 which we also denote X. Its
transition probability function is given by

An(y)

@AX@)GQD:P&HT>uXU)GMDAN@y

z,ye WynIN,t>0.

(4.6)
The transformed process is often called the conditional process X, given that
there is no collision of the components. In order to justify this name, one must
show that

~

lim P,(X(s) edy | T > t) =P,(X(s) € dy), for any xz,y € Wn,s > 0.

t—o0
(4.7
This may be proven in many examples with the help of the Markov property at
time s and an asymptotic formula for P,(T > t) as t — oo, see Remark ELT0(ii).
In Section we provide two tools. In Section EE4l we list a couple of exam-
ples of A y-transformed diffusions, whose marginal distribution is an orthogonal
polynomial ensemble.

4.2.2. The discrete case.

There is also a discrete version of LemmaE3l Recall that a vector v on a discrete
set [ is called a positive regular function for a matrix (@ with index set I x I if
all the components of v are positive and Qv = v holds.

Lemma 4.4 (Regularity of Ay, discrete case [KORO02]). Let (X(n))nen
be a random walk on RY such that the step distribution is exchangeable and the
N-th moment of the steps is finite.

(i) Then Ay is harmonic for the walk, i.e., E;[An(X(1))] = An(x) for any
xr € RY, and the process An(X(n))nen, i a martingale with respect to
the natural filtration of (X(n))nen-
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(i) If (X (n)), takes values in ZN only and no step from Wy to W'y has posi-
tive probability, then the restriction of An to WnNZYN is a positive reqular
function for the restriction Py, = (p(2,Y))s yewynzy of the transition
matriz P = (p(z,y))z,yezy 5 i€,

Z p(z,y)ANn(y) = An(z), for any x € ZN "Wy,  (4.8)
yeEZNNW N

The condition in Lemma EYii) is a severe restriction. It in particular ap-
plies to nearest-neighbor walks on Z" with independent components, and to
the multinomial walk, where at each discrete time unit one randomly chosen
component makes a unit step, see Section EE4l Further examples comprise birth
and death processes and the Yule process [Do(5, Ch. 6].

Under the assumptions of Lemma B4 one can again define the h-transform
of the Markov chain X by using the transition matrix P = (p(2,¥))s yewynzy

with

An(y)
An(z)’
Remark 4.5. Arbitrary random walks with i.i.d. components are considered in

[EKO54]. Under the sole assumption of finiteness of sufficiently high moments
of the steps, it turns out there that the function

V(z) = An(z) = Ez[An(X(7))], 2 €Wy,

ﬁ(x,y) = p(:c,y) z,y € Wy N zN.

where 7 = inf{n € N: X(7) ¢ W} is the exit time from Wy, is a positive reg-
ular function for the restriction of the walk to Wy . (Note that V' coincides with
Ay in the special cases of Lemma EZ|(ii).) Since the steps are now arbitrarily
large, the term ‘non-colliding’ should be replaced by ‘ordered’. Furthermore, an
ordered version of the walk is constructed in terms of a Doob h-transform with
h =V, and some asymptotic statements are derived, in particular an invariance
principle towards Dyson’s Brownian motions. <&

4.3 Some tools
We present two technical tools that prove useful in the determination of prob-
abilities of non-collision events.

4.8.1. The Karlin-McGregor formula

An important tool for calculating non-colliding probabilities is the Karlin-
McGregor formula, which expresses the marginal distribution of the non-colliding
process in terms of a certain determinant.

Lemma 4.6 (Karlin-McGregor formula, [KM59]). Let (X(t))i>0 be a dif-
fusion on RY that satisfies the strong Markov property. Then, for any x,y € Wy
and any t > 0,

P, (T > t, X (t) € dy)
dy

= det [(p¢(%s,9;))ij=1,..N] (4.9)
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where pi(x,y) is the transition probability function of the diffusion, see ([E3).

Proof. By G we denote the set of permutations of 1,..., N, and sign(o)

denotes the signum of a permutation o. We write yo = (Yo(1),---»Yo(n)). We
have
P.(T > t,X(t) € dy
3«( dy( ) ) 7det [(pt(xi;y‘j))iy‘j:l"”i]\’}
P.(T taX 3 dy, Pa (X (¢ dyo
:Zﬁmﬂ[(>d06yt (%ey)
ccB N Y !
P,(T <t X(t) € dy,
:stign(U) T'< ()Gy)’
dy
occByN

(4.10)
since all the summands P, (T > ¢, X (t) € dy,)/dy are equal to zero, with the
exception of the one for the identical permutation.

At time T, the i-th and the j-th coordinate of the process coincide for some
i < j, which we may choose minimal. Reflect the path (X (s))e[r, in the (4, 7)-
plane, i.e., map this path onto the path (Xx(s))scry, where A € Gy is the
transposition that interchanges i and j. This map is measure-preserving, and
the endpoint of the outcome is at yyox if X (t) = Y. Summing on all i < j (i.e.,
on all transpositions \), substituting ¢ o A and noting that its signum is the
negative signum of o, we see that the right hand side of ([IM) is equal to its
negative value, i.e., it is equal to zero. The proof is finished. O

Remark 4.7. (i) The main properties of the process that make this proof
possible are the strong Markov property and the continuity of the paths.
No assumption on spatial dependence of the transition probability function
is needed.

(ii) For discrete-time processes on Z there is an analogous variant of Lemma EC6
but a kind of continuity assumption has to be imposed: The steps must
be —1, 0 or 1 only, i.e., it must be a nearest-neigbor walk. This ensures
that the path steps on the boundary of Wy when leaving Wy, and hence
the reflection procedure can be applied. O

4.8.2. The Schur polynomials

Another useful tool when dealing with certain determinants is the Schur poly-
nomial,

det|(#7), ;1 ]

Schur, (z) = An (o) ,

2z € Wy,z € RV, (4.11)

It turns out that Schur, is a multipolynomial in x1,...,zy, and it is homo-

geneous of degree z1 + -+ + 2y — %(N — 1). Tts coefficients are nonnegative

integers and may be defined in a combinatorial way. It has the properties

}
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Schur,(1,...,1) = Anx(z)/An(2*) (where we recall that 2* = (0,1,2,...,N —
1)), Schury(z) = 1 for any * € RY, and Schur,(0,...,0) = 0 for any z €
A combination of the Karlin-McGregor formula and the Schur polynomials
identifies the asymptotics of the non-collision probability and the limiting joint
distribution of N standard Brownian motions before the first collision:

Lemma 4.8. Let (X(t))t>0 be a standard Brownian motion, starting at x €

Wy . Then, as t — oo, the limiting distribution of t’%X(t) gwen that T >t has
the density y — %gp(y)AN (y) on Wy, where @ is the standard Gaussian density,
and Z the normalization constant. Furthermore, Py (T > t) = Ay (z)t~ 5 V=1 x
(C+0(1)) as t — oo for some C > 0.

Note that the limiting distribution is of the form ([CIl) with A% replaced by
Apn,ie., with g =1.
Sketch of proof. Lemma Ef yields

_1
Po(T > 4172 X(E) €dy) _ det [ ((2m) ¥ e (v 20) ]
dy ij=1,....N
= (2m)" % e NIel3/ 20 o= ul3/2 get Keziyj/ﬁ) }
i,j=1,...,N
~llyli3/2
= ﬁeil‘x”g/(Qt)AN(z)Schury(z),

(4.12)
where we put z; = e%/ vt Now we consider the limit as ¢ — oco. The second
term is (1 + o(1)), and the continuity of Schur, implies that the last term
converges to Ay (y)/An(z*). Using the approximation e®/Vi — 1 ~ z;/\/t, we
see that Ay (2) ~ t~% V=DAy (z). Hence, the right hand side of @I) is equal
to () AN (y)Ax ()t~ T V=D (1/AN(2*) + o(1)). Integrating on y € Wy, we
obtain the last statement of the lemma. Dividing the left hand side of ([EI2) by
P, (T > t) and using the above asymptotics, we obtain the first one. O

4.4 Marginal distributions and ensembles

We apply now the technical tools of Section to identify the marginal dis-
tribution of some particular A y-transformed processes as certain orthogonal
polynomial ensembles.

4.4.1. The continuous case.

Lemma 4.9 (Marginal distribution for Apy-transformed diffusions,
[KOOT]). Assume that I is an interval and X is a diffusion on IV such that
the Vandermonde determinant Ay is harmonic for its generator and Ay (X (t))
is integrable for any t > 0. Assume that there is a Taylor expansion

pt(iﬂ,y) . > m
M*ft(x) (xy) ™ am(t), t>0,y€el,

m=0
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for x in a neighborhood of zero, where an(t) > 0 and fi(z) > 0 satisfy
lim¢ oo @mt1(t)/am(t) = 0 and f:(0) = 1 = lim; o ft(z). Then, for any t >0
and some suitable Cy > 0,

lim P,(X(t) € dy) = CAN(y)*Po(X (1) € dy),  y € Wh. (4.13)

zEW N
Furthermore, for any x € Wy,
P, (T > t) ~ CtAn(z)Eq [AN(X(t))]l{X(t)EWN}], t — o0. (4.14)

Remark 4.10. (i) Relation ([I3) is remarkable since it provides a host of
examples of orthogonal polynomial ensembles that appear as the mar-
ginal distribution of h-transformed diffusions with A = Ay (recall that
Po(X (t) € dy) is a product measure). Explicit examples are the Hermite
ensemble for Brownian motion and the Laguerre ensemble for squared
Bessel processes, where Po(X (t) € dy) is the Gamma distribution. Most
of the other examples covered by Lemma EE9 do not seem to be explicit.

(ii) Relation @) may be deduced from (I, if the right hand side is as-
ymptotically equivalent when ¢ is replaced by ¢t — s for some s > 0. This
has not been worked out yet in general, but can be easily seen in a couple
of special cases. It would justify the notion ‘non-colliding diffusion’ for
h-transformed diffusions with h = Ay.

(iii) A natural question is what examples (besides the Hermite ensemble, i.e.,
Brownian motions; see Section El) lead to processes that can be repre-
sented as eigenvalue processes for suitable matrix-valued diffusions. We
mention here the Laguerre process, the non-colliding version of squared
Bessel processes, which is in distribution equal to the eigenvalue process
of a natural processes of complex Wishart matrices ([KOQ1]; see Re-
mark EZ(v)). We recall that the real-matrix case, which does not seem
to admit an h-transform interpretation, is worked out in [Br91].

(iv) Further important examples with physical relevance are derived in [KT04];
in fact, process versions of all ten classes of Gaussian random matrices
mentioned at the beginning of Section ] are analysed, and their eigenvalue
processes are characterised in terms of non-colliding diffusions.

(v) In [KNT04], independent Brownian motions are conditioned on non-collision
up to a fized time, S. The result is a time-inhomogeneous diffusion whose
transition probabilities depend on S. This conditioned process converges
towards Dyson’s Brownian motions as S — oco. In [KT03], the distribu-
tion of the conditional process is identified in terms of a certain eigen-
value diffusion of a matrix-valued diffusion. Indeed, let (Mi(t)):>0 be a
Hermitian matrix-valued diffusion whose sub-diagonal and diagonal en-
tries are $N(N + 1) independent standard real Brownian motions, and
let (M3(t))¢>0 be an antisymmetric matrix-valued diffusion whose sub-
diagonal entries are 2 N(N — 1) real independent Brownian bridges (i.e.,
Brownian motions conditioned on being back to the origin at time .S).
Then the eigenvalue process for the matrix M7 (t)+1i Ms(t) is a realisation
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of the above conditioned Brownian motion process, given that no collision
happens by time S. The matrix diffusion (M (t) +1 M2(t))co,s) is a one-
parameter interpolation between GUE and GOE (hence it is sometimes
called a two-matriz model). Indeed, recall the well-known independent de-
composition of a Brownian motion (B(t));>o into the Brownian bridge
(B(t) — £B(S5))tep,s) and the linear function (£B(S)):e(0,5) and decom-
pose Mi(t) in that way. Collecting the bridge parts of M;(t) +1i Ma(t)
in one process and the remaining variables in the other, we obtain the
interpolation.

(vi) Infinite systems of non-colliding random processes are considered in [Ba(0()
and in [KNT04]. The nearest-neighbor discrete-time case is the subject of
[BaO(] where the limiting distribution at time N of the left-most walker
is derived, conditional on a certain coupling of the total number of left-
steps among all the walkers with IV; the outcome is a certain elementary
transformation of the Tracy-Widom distribution for GUE. In [KNT04], a
system of N Brownian motions, conditional on non-collision until a fixed
time S, is analysed in the limit N — oo and S — oo, coupled with each
other in various ways. &

4.4.2. The discrete case.

We present three examples of conditioned random walks on Z~: the binomial
random walk (leading to the Krawtchouk ensemble), the Poisson random walk
(leading to the Charlier ensemble) and its de-Poissonized version, the multino-
mial walk.

Fori=1,...,N, let X; = (X;(n))nen, be the binomial walk, i.e., at each
discrete time unit the walker makes a step of size one with probability p € (0, 1)
or stands still otherwise. The walks X1, ..., Xy are assumed independent. Under
P,, the N-dimensional process X = (X1,..., Xy) starts at Xo = 2 € N)'. The
A pn-transformed process on ZY N Wy has the transition probabilities

>

~(y)

z,y € ZY N Wx,n € N.

(4.15)
This marginal distribution, when the process is started at the particular site
x* =(0,1,2,...,N — 1), is identified in terms of the Krawtchouk ensemble in

BR) as follows.

Lemma 4.11 (Apy-transformed binomial walk, [KOR02]). Let z* =
(0,1,2,...,N —1). Then, for any n € N, and y € Z¥ N Wy,

Poe (X (n) = y) = Krnnin-1,p(1)- (4.16)

Such an identification is known only for the particular starting point z*. The
proof is based on the Karlin-McGregor formula and some elementary calcula-
tions for certain determinants.
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The Poisson random walk, X; = (X;(t))i>0, on No makes steps of size one
after independent exponential random times. If X1,..., Xy are independent,
the process X = (X1,...,Xn) on Ny makes steps after independent exponen-
tial times of parameter N, and the steps are uniformly distributed on the set of
the IV unit vectors. The embedded discrete-time walk is the so-called multino-
mial walk; at times 1,2, 3, ..., a randomly picked component makes a unit step.
Lemma EEZYii) applies also here, and we may consider the A y-transformed ver-
sion, both in continuous time and in discrete time. The marginal distribution
of the discrete-time process is given in ({EIH), and the same formula holds true
for the continuous-time version with n € N replaced by t > 0.

Analogously to the binomial walk, the marginal distributions of both con-
ditioned walks, when the process is started at «* = (0,1,2,...,N — 1), may
be identified in terms of well-known ensembles, which we introduce first. The
Charlier ensemble with parameter o > 0 and N € N is given as

re N NnWy. (4.17)

N
1 o’
ChN’a(’JJ) = 7 NAN(:C)2 | | I"’
a, =1

The de-Poissonized Charlier ensemble is defined as

1
dPChy ,(z) = = An(z)?>Muy (), z e NY NWy,n €Ny, (4.18)
N,n
where
N~ n if ce =
MuN’n(Z) — (Il,...,CEN) 1I I1 + + TN n) (4'19)
0 otherwise.

Then the free multinomial random walk has the marginals P, (X (n) = y) =
Mun »(y — ).

Lemma 4.12 (Conditioned Poisson and multinomial walks, [KOR02]).
Let z* = (0,1,2,...,N —1).

(1) Let X = (X (t))i>0 be the Poisson walk, then the marginal distribution of
the conditional process satisfies, for any t > 0 and x € ZVN N Wy,

P, (X (t) = ) = Chy (). (4.20)

(i) Let X = (X(n))nen, be the multinomial walk, then the marginal distribu-
tion of the conditional process satisfies, for any n € Ng and x € N "Wy,

@x* (X(n) = Z‘) = dPChN7n+N(N,1)/2($). (4.21)

The proofs of Lemma are based on the Karlin-McGregor formula and
explicit calculations for certain determinants.
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