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Recommended by A. Ferreira dos Santos

Abstract: We consider matrix convolution type operators that carry a certain

symmetry due to the presence of even or odd extensions. The study is motivated by

mathematical physics applications where this kind of operators appears. In connection

with this interest, a class of Hölder continuous Fourier symbols is taken into consideration.

The main result consists of sufficient conditions for the invertibility of such operators

including a presentation of the corresponding inverse operator in terms of an asymmetric

factorization of the symbol matrix. Moreover the asymptotic behavior of the factors is

analyzed.

1 – Introduction

We consider matrix convolution type operators with symmetry, acting between

Bessel potential spaces, which have the form

T = r+A`
c = r+F

−1φ · F`c : ×m
j=1H

rj (R+) → ×m
j=1H

sj (R+) ,(1.1)

where `c is the even `e or odd `o continuous extension operator from ×m
j=1H

rj (R+)
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into ×m
j=1H

rj (R) in the case where all rj ∈ (−1/2, 3/2) or all rj ∈ (−3/2, 1/2),

respectively, A : ×m
j=1H

rj (R)→ ×m
j=1H

sj (R) , is a bounded translation invariant

operator and r+ denotes the operator of restriction to the corresponding Bessel

potential space on the positive half-line.

It is well-known that A can be represented by A = F−1φ · F where F denotes

the Fourier transformation and φ ∈ [L∞loc(R)]m×m. Moreover we shall assume that

the matrix Fourier symbols φ are from the following class of Hölder continuous

matrix functions:

φ ∈

{
φ ∈ G[L∞loc(R)]m×m : φ0 = λs− φλ

−r ∈ [Cα(R̈)]
m×m

}
,(1.2)

where Cα(R̈) is the class of Hölder continuous functions, with exponent α ∈ (0, 1],

on R̈ = R∪{±∞}, admitting two possible different finite limits at infinity. Later

on, we will also make use of the subclass Cα(Ṙ) of Hölder continuous functions,

with exponent α ∈ (0, 1], on Ṙ = R ∪ {∞}, admitting the same finite limit at

(plus and minus) infinity. We let GX denote the subclass of invertible elements

of a unital algebra X. For complex numbers or complex valued functions d and

multi-indices η = (η1, ..., ηm), we use the notation

dη = diag[dη1 , ..., dηm ] = diag[dηj ] ,(1.3)

λη−(ξ) = diag
[
(ξ − i)ηj

]
,(1.4)

λη(ξ) = diag
[
(ξ2 + 1)

ηj/2
]
,(1.5)

λη+(ξ) = diag
[
(ξ + i)ηj

]
, ξ ∈ R .(1.6)

Let us recall that the Bessel potential spaces Hs(R+), s ∈ R, are the spaces of

generalized functions on R+ which have extensions into R that belong to Hs(R);

i.e., they belong to the space of tempered distributions ϕ such that

‖ϕ‖Hs(R) =
∥∥∥F−1(ξ2 + 1)

s/2
· F ϕ

∥∥∥
L2(R)

<∞ .(1.7)

For this framework, our operator T in (1.1) is well-defined and bounded;

for the scalar case cf. [7] (in particular Lemma 2.1 and Lemma 2.2).

Operators with the form of T appear in several mathematical physics prob-

lems. In particular, they occur in (stationary as well as non-stationary) wave

diffraction problems involving rectangularly wedged obstacles [6, 13]. Therefore,

a representation of the inverse operator or invertibility conditions for such oper-

ators are very useful for those applications.
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In the present work, in Section 2, we present a lifting procedure for T and

therefore obtain new operators equivalent to T , but defined in the framework of

Lebesgue spaces. For this setting, in Section 3, certain factorization concepts are

proposed for the Fourier symbols of the operators in study. Connections between

different kinds of the presented factorizations are also exposed. In Section 4,

sufficient conditions and inverse formulas are provided for T depending on the

existence of the factorizations in the previous section. Assuming certain Hölder

continuous behavior of the symbols, detailed information about the factors is

obtained. This leads also to corresponding information about a representation

of the inverse of T , which may be viewed as the main result of this work (Corol-

lary 4.6). In Section 5, weaker conditions are imposed such that conclusions

about the generalized invertibility of T are obtained. The last two sections con-

tain also asymptotic representations of the factors that can be used to describe

the asymptotic behavior of the solution of diffraction problems [14].

2 – Relation with convolution type operators with symmetry in

Lebesgue spaces

We will perform a lifting of the initially presented operator T to the L2 spaces,

taking for that (in the odd or even extension `c case) the largest possible range

of indices r = (r1, ..., rm) in the domain space of (1.1) where the operator is

bounded.

Proposition 2.1. Let r ∈ (−1/2, 3/2) and `c = `e (or r ∈ (−3/2, 1/2) and

`c = `o). Then the operator (1.1) can be lifted into [L2(R+)]
m
, i.e., there are

linear homeomorphisms E, F such that

T = E T0 F

T0 = r+F
−1φ0 · F`

c : [L2(R+)]
m
→ [L2(R+)]

m(2.1)

where φ0 ∈ [Cα(R̈)]
m×m

. More precisely, we have

F−1φ0 · F =
(
F−1λs− · F

) (
F−1φ · F

) (
F−1λ−r · F

)
(2.2)

E = r+F
−1λ−s− · F`(2.3)

F = r+F
−1λr · F`c ,(2.4)

where ` : [L2(R+)]
m
→ [L2(R)]

m
denotes an arbitrary extension, i.e., E is inde-

pendent of that choice.
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Proof: We will use the notations L2,e(R) and L2,o(R), for the L2(R) elements

that are even or odd functions, respectively.

Consider the first case with `c = `e. For the corresponding values of r and s

we can write

F−1F =
(
r+F

−1λ−r · F
)
(`er+)

(
F−1λr · F`e

)
(2.5)

: ×m
j=1H

rj (R+)→ [L2,e(R)]
m
→ [L2,e(R)]

m
→ ×m

j=1H
rj (R+)

and F−1λr · F preserves the “even function property”, since its symbol is even.

So we may drop the middle term `er+ and obtain F−1F = I in ×m
j=1H

rj (R+).

By analogy we have FF−1 = I in [L2(R+)]
m
. On the other hand it is known [10,

Lemma 4.6] that

E−1E = r+F
−1λs− · F`r+F

−1λ−s− · F` = I in [L2(R+)]
m

(2.6)

and EE−1 = I in ×m
j=1H

sj (R+) for any s = (s1, ..., sm) ∈ Rm.

The rest of the formulas is obvious and the proof for `o runs the same way,

if we replace `e by `o and [L2,e(R)]
m

by [L2,o(R)]
m

in (2.5).

We note that the identity in (2.1) between T and T0 is an operator equivalence

relation. This simple but useful observation allows the initial consideration of a

factorization procedure in L2 spaces that later on will be transposed to the initial

context of Bessel potential spaces.

The operator T0 in (2.1), can be regarded as a Wiener–Hopf–Hankel operator

but we find the present approach more convenient (see [7] for the scalar case and

[6] for applications where it was used with great efficiency).

3 – Asymmetric and anti-symmetric generalized matrix factorizations

The present section is concerned with new kinds of factorizations of matrix

functions that later on will play a central role in the characterization of the

invertibility of our convolution type operator T . These definitions generalize

corresponding notions presented in [7]. The roots for such factorizations can

be found in the well-known notion of generalized factorization in the theory of

singular integral, Toeplitz, and classical Wiener–Hopf operators [15], in the theory

of general Wiener–Hopf operators [18], and in the recent work on Toeplitz plus

Hankel operators [1, 2, 8].
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Let [L2
±(R)]

m×m
be the image of [L2(R)]

m×m
under the action of the projector

P± =
1

2
(I ± SR)

associated with the Hilbert transformation SR. For our subspaces [X(R)]m×m of

[L2(R)]
m×m

, we will denote by [X(R, ρ)]m×m the corresponding weighted spaces

whose elements ϕ fulfill ρϕ ∈ [X(R)]m×m, for some weight function ρ.

Definition 3.1. A matrix function φ ∈ G[L∞(R)]m×m admits an asymmetric

generalized factorization with respect to L2 and `e, written as

φ = φ− diag[ζκj ]φe(3.1)

if κ1, ..., κm ∈ Z, ζ(ξ) = (ξ − i)/(ξ + i) for ξ ∈ R, φ− ∈ [L2
−(R, λ−2

− )]
m×m

,

φ−1
− ∈ [L2

−(R, λ−1
− )]

m×m
, φe ∈ [L2,e(R, λ−1)]

m×m
, φ−1

e ∈ [L2,e(R, λ−2)]
m×m

and if

Ve = A−1
e `er+A

−1
−(3.2)

is an operator defined on a dense subspace of [L2(R)]
m

possessing a bounded

extension to [L2(R)]
m
, with

Ae = F−1φe · F ,(3.3)

A− = F−1φ− · F .(3.4)

As usual the factor spaces, where the factors of φ can be found, are the closures

of the spaces of bounded rational functions without poles in the closed lower half-

plane C− = {ξ ∈ C : Imm(ξ) ≤ 0} or of those which are even, respectively, due

to the weighted L2 norm.

When all kj in (3.1) are zero, we will denote the factorization as a canonical

asymmetric generalized factorization with respect to L2 and `e and so we shall

use the word canonical in other kinds of factorizations.

Note that the weights λ−1
− , λ−1 have the common decrease at infinity that is

used for generalized factorization in [L2(R)]
m×m

[15] whilst the weights λ−2
− , λ−2

admit an increase of the factors φ− and φ−1
e , respectively, that is one order higher

than usual. That choice of the spaces was firstly proposed in [7] for the scalar

case where it turned out to be most appropriate for constructive factorization of

GCα(R̈) symbols.
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Definition 3.2. Furthermore, we speak of an asymmetric generalized fac-

torization with respect to L2 and `o, if a matrix function φ ∈ G[L∞(R)]m×m

admits the form of (3.1), with κ1, ..., κm ∈ Z, φ− ∈ [L2(R, λ−1
− )]

m×m
, φ−1

− ∈

[L2
−(R, λ−2

− )]
m×m

, φe ∈ [L2,e(R, λ−2)]
m×m

, φ−1
e ∈ [L2,e(R, λ−1)]

m×m
and if

Vo = A−1
e `or+A

−1
−(3.5)

is an operator defined on a dense subspace of [L2(R)]
m

possessing a bounded

extension to [L2(R)]
m
, and with Ae and A− as in (3.3) and (3.4), respectively.

Note that here the increase orders of the factors are exchanged compared with

those in Definition 3.1.

Given a matrix-valued function ϕ, on the real line, we will abbreviate by ϕ̃

that one defined by

ϕ̃(ξ) = ϕ(−ξ) , ξ ∈ R .(3.6)

Definition 3.3. A matrix function ψ ∈ G[L∞(R)]m×m admits an anti-sym-

metric generalized factorization with respect to L2 and `e, written as

ψ = ψ− diag[ζ2κj ] ψ̃−1
−(3.7)

if κ1, ..., κm ∈ Z, ψ− ∈ [L2
−(R, λ−2

− )]
m×m

, ψ−1
− ∈ [L2

−(R, λ−1
− )]

m×m
, and if

Ue = Ã−`
er+A

−1
−(3.8)

is an operator defined on a dense subspace of [L2(R)]
m

possessing a bounded

extension to [L2(R)]
m
, with Ã− = F−1ψ̃− · F and A− = F−1ψ− · F .

Definition 3.4. We will say that a matrix function ψ ∈ G[L∞(R)]m×m

admits an anti-symmetric generalized factorization with respect to L2 and `o,

if ψ can be written as in (3.7), with κ1, ..., κm ∈ Z, ψ− ∈ [L2
−(R, λ−1

− )]
m×m

,

ψ−1
− ∈ [L2

−(R, λ−2
− )]

m×m
, and if

Uo = Ã−`
or+A

−1
− ,(3.9)

where Ã− = F−1ψ̃− · F and A− = F−1ψ− · F , is an operator defined on a dense

subspace of [L2(R)]
m

possessing a bounded extension to [L2(R)]
m
.
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In view of the study of our convolution type operator T (and T0), we will take

profit of the properties of the following auxiliary Toeplitz operator (also having

in mind the last defined anti-symmetric generalized factorization)

S0 = P+ψ0|[L2
+

(R)]
m : [L2

+(R)]
m
→ [L2

+(R)]
m
,(3.10)

where the symbol ψ0 of S0 is given by

ψ0 = φ0 φ̃
−1
0 .(3.11)

In a sense, the role of the even or odd extension in the operator T0 is here

incorporated in the symmetry of the symbol of S0.

Theorem 3.5. Let φ ∈ G[L∞(R)]m×m and consider ψ = φ φ̃−1.

(i) If φ admits an asymmetric generalized factorization with respect to L2

and `c,

φ = φ− diag[ζκj ]φe ,(3.12)

then ψ admits an anti-symmetric generalized factorization with respect

to L2 and `c in the form

ψ = φ− diag[ζ2κj ] φ̃−1
− .(3.13)

(ii) If ψ admits an anti-symmetric generalized factorization with respect to

L2 and `c,

ψ = ψ− diag[ζ2κj ] ψ̃−1
− ,(3.14)

then φ admits an asymmetric generalized factorization with respect to

L2 and `c in the form

φ = ψ− diag[ζκj ]
(
diag[ζ−κj ]ψ−1

− φ
)
,(3.15)

where diag[ζ−κj ]ψ−1
− φ is the even factor.

Proof: We will present the proof for `c = `e. The case `c = `o runs analo-

gously, with obvious changes.
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(i) Assuming an asymmetric generalized factorization with respect to L2 and

`e for φ,

φ = φ− diag[ζκj ]φe ,(3.16)

with κj ∈ Z, j = 1, ...,m, φ− ∈ [L2
−(R, λ−2

− )]
m×m

, φ−1
− ∈ [L2

−(R, λ−1
− )]

m×m
,

φe ∈ [L2,e(R, λ−1)]
m×m

, φ−1
e ∈ [L2,e(R, λ−2)]

m×m
and where

Ve = F−1φ−1
e · F`er+F

−1φ−1
− · F(3.17)

is an operator defined on a dense subspace of [L2(R)]
m

possessing a bounded

extension to [L2(R)]
m
, we start by choosing the same “minus” factor φ− for the

factorization of ψ and observe in addition that

φ̃−1 = φ−1
e diag[ζκj ] φ̃−1

−(3.18)

holds due to the even property of φe. Therefore,

ψ = φ φ̃−1 =
(
φ− diag[ζκj ]φe

) (
φ−1
e diag[ζκj ] φ̃−1

−

)
(3.19)

= φ− diag[ζ2κj ] φ̃−1
− ,

with

φ− ∈ [L2
−(R, λ−2

− )]
m×m

, φ−1
− ∈ [L2

−(R, λ−1
− )]

m×m
,(3.20)

or equivalently

φ̃− ∈ [L2
+(R, λ−2

+ )]
m×m

, φ̃−1
− ∈ [L2

+(R, λ−1
+ )]

m×m
.(3.21)

The supposition of having an asymmetric generalized factorization includes

that

V = F−1φ−1
e · F`er+F

−1φ−1
− · F(3.22)

is a bounded operator (densely defined) in [L2(R)]
m
. As in the theory of gener-

alized factorizations [12, Section 9], this last condition (3.22) can be equivalently

replaced by others. In particular, together with (3.18) we obtain that

Ue = F−1φ̃− · F`
er+F

−1φ−1
− · F(3.23)

is a bounded operator also (densely defined) in [L2(R)]
m
.
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(ii) If ψ admits an anti-symmetric generalized factorization with respect to

L2 and `e,

ψ = φ φ̃−1 = ψ− diag[ζ2κj ] ψ̃−1
− ,(3.24)

then choosing

φe = diag[ζ−κj ]ψ−1
− φ(3.25)

φ− = ψ−(3.26)

it directly follows that

φ = φ− diag[ζκj ]φe .(3.27)

In addition, due to (3.24), we have

ψ−1
− φ φ̃−1 = diag[ζ2kj ] ψ̃−1

−(3.28)

ψ̃−1
− φ̃ = diag[ζ−2kj ]ψ−1

− φ ,(3.29)

and therefore (please remember (3.25), as well as the first identity in (3.24))

φ̃e = diag[ζκj ] ψ̃−1
− φ̃ = diag[ζ−κj ]ψ−1

− φ = φe ,(3.30)

which in particular shows that φe is an even function.

Now, due to the anti-symmetric generalized factorization of ψ, we already

know that

φ− = ψ− ∈ [L2
−(R, λ−2

− )]
m×m

, φ−1
− = ψ−1

− ∈ [L2
−(R, λ−1

− )]
m×m

(3.31)

which together with the fact that φ ∈ G[L∞(R)]m×m, and the form of the even

function φe in (3.25) leads to

φe ∈ [L2,e(R, λ−1)]
m×m

, φ−1
e ∈ [L2(R, λ−2)]

m×m
.(3.32)

Finally, similarly as in part (i), we obtain that

Ve = F−1φ−1
e · F`er+F

−1φ−1
− · F(3.33)

is bounded in [L2(R)]
m

(as an extended operator from a dense subspace).
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4 – Sufficient conditions for invertibility and representation of inverses

In this section, based on the factorizations presented above, we start with a

sufficient condition for the invertibility of our convolution type operator in study.

At the end of the section, we will be in the position to present the main result

of this work: a representation of the inverse of T under certain conditions on the

Hölder continuous Fourier symbol φ0 of T0, in terms of a canonical asymmetric

generalized factorization of φ0, which allows an asymptotic analysis.

Theorem 4.1. Let us turn to our first operator (1.1) assuming (1.2). If the

matrix function φ0 admits a canonical asymmetric generalized factorization with

respect to L2 and `c (see (3.1)),

φ0 = φ− φe ,(4.1)

then T is an invertible operator with inverse given by

T−1 = F−1 r+A
−1
e `cr+A

−1
− `E−1 ,(4.2)

where E and F are defined in (2.3)–(2.4), Ae = F−1φe · F , A− = F−1φ− · F ,

and ` : [L2(R+)]
m
→ [L2(R)]

m
is an arbitrary extension (which particular choice

is indifferent for the definition of T−1).

Proof: Let `c = `e. The statement can be achieved through a direct compu-

tation:

T T−1 = (E r+A−Ae`
e F ) (F−1 r+A

−1
e `er+A

−1
− `E−1)

= E r+A−Ae`
er+A

−1
e `er+A

−1
− `E−1

= E r+A−`
er+A

−1
− `E−1

= E E−1

= I×m
j=1

Hsj (R+) ,

where we omitted the first term `er+ of the second line due to the factor (invari-

ance) property of A−1
e that yields Ae`

er+A
−1
e `er+ = `er+. Similarly we dropped

the term `er+ in A−`
er+A

−1
− ` due to a factor property of A−.

For T−1 T we have an analogous computation:

T−1T = (F−1 r+A
−1
e `er+A

−1
− `E−1) (E r+A−Ae`

e F )

= F−1 r+A
−1
e `er+A

−1
− ` r+A−Ae`

e F
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= F−1r+A
−1
e `er+Ae`

e F

= F−1 F

= I×m
j=1

Hrj (R+) ,

where we may omit the term `r+ in the second line since A−1
− is “minus type”

and `er+ can be dropped subsequently due to the factor (invariance) property of

Ae that yields A−1
e `er+Ae`

e = `e.

The case `c = `o is proved by analogy.

Theorem 4.2. If ψ0 = φ0φ̃
−1
0 , see (3.11), admits a canonical anti-symmetric

generalized factorization with respect to L2 and `c,

ψ0 = φ− φ̃
−1
− ,(4.3)

then the Toeplitz operator S0 presented in (3.10) is an invertible operator with

inverse given by

S−1
0 = P+φ̃−P+φ

−1
− |[L2

+
(R)]

m : [L2
+(R)]

m
→ [L2

+(R)]
m
.(4.4)

Proof: Having the canonical anti-symmetric generalized factorization of ψ0,

the result is a consequence of the “minus” and “plus” factor properties of φ− and

φ̃−1
− , respectively. Therefore, a direct computation shows the statement:

S−1
0 S0 = P+φ̃−P+φ

−1
− P+φ−φ̃

−1
− |[L2

+
(R)]

m(4.5)

= P+φ̃−P+φ̃
−1
− |[L2

+
(R)]

m

= I[L2
+

(R)]
m ,

and

S0S
−1
0 = P+φ−φ̃

−1
− P+φ̃−P+φ

−1
− |[L2

+
(R)]

m(4.6)

= P+φ−P+φ
−1
− |[L2

+
(R)]

m

= I[L2
+

(R)]
m .

The following proposition gives us an idea about the possible structure of the

intermediate space [4] in factorizations of T due to corresponding asymmetric

generalized factorizations of its lifted Fourier symbol.
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Proposition 4.3. Let an asymmetric generalized factorization of a matrix

φ0 ∈ [L∞(R)]m×m, with respect to L2 and `c, be given in the form

φ0 = φ− diag[ζκj ]φe .(4.7)

Then the following assertions are equivalent:

(i) there are real numbers

δj ∈





(−1/2, 3/2) , if `c = `e

(−3/2, 1/2) , if `c = `o ,
(4.8)

such that

r+F
−1φe · F`

c : [L2(R+)]
m
→ ×m

j=1H
δj (R+)(4.9)

r+F
−1φ− · F` : ×

m
j=1H

δj (R+) → [L2(R+)]
m

(4.10)

are bijections;

(ii) the matrices φe and φ− have the properties

diag[λδj ]φe ∈ G[L
∞(R)]m×m(4.11)

φ− diag[λ
−δj

− ] ∈ G[L∞(R)]m×m(4.12)

where δj are the same as before.

Proof: For ν ∈ (−1/2, 3/2) and `c = `e (or ν ∈ (−3/2, 1/2) and `c = `o),

s ∈ R, the following operators are bijective

r+F
−1λν · F`c : Hν(R+)→ L2(R+)(4.13)

r+F
−1λs− · F` : H

ν(R+)→ Hν−s(R+)(4.14)

where ` denotes any extension into Hν(R), cf. [7], Lemma 2.1 and Lemma 2.2,

as well as [10], Theorem 4.4 and Lemma 4.6. Herein, the indicated values of

ν are exactly those for which the operator in (4.13) is boundedly invertible [7]

whilst that one in (4.14) is a bijection for any ν, s ∈ R [10]. Hence we have that

the invertibility of the operators defined by (4.9) and (4.10) is equivalent to the

invertibility of the operators

r+F
−1 diag[λδj ] · F`cr+F

−1φe · F`
c : [L2(R+)]

m
→ [L2(R+)]

m
(4.15)

r+F
−1φ− · F`r+F

−1 diag[λ
−δj

− ] · F` : [L2(R+)]
m
→ [L2(R+)]

m
.(4.16)
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But, by use of the even factor property of φe and also the holomorphic extendibil-

ity of λ− and φ−, we may drop lcr+ and lr+, in (4.15) and (4.16), and then the

conditions (4.11) and (4.12) are necessary and sufficient for the invertibility of

the operators given by (4.15) and (4.16).

The following result is essential for asymptotic considerations and has its roots

in the work of N.P. Vekua [19], F. Penzel [16], and the second author [17].

Theorem 4.4. Suppose that ψ0 (see (3.11)) has the following properties:

(i) ψ0 ∈ G[C
α(R̈)]

m×m
for some α ∈ (0, 1] ;

(ii) there arem complex numbers η1, ..., ηm and an invertible constant matrix

U such that

−
1

2
< Re ηj <

1

2
, lim

ξ→±∞
U diag

[(
λ−(ξ)

λ+(ξ)

)ηj
]
U−1 = ψ0(±∞) ;(4.17)

(iii) α > 1
2 + maxj Re ηj ;

(iv) the matrix ψ0 admits a canonical anti-symmetric generalized factoriza-

tion with respect to L2 and `c .

Then there are

M− ∈ [L2
−(R)]

m×m
, M+ ∈ [L2

+(R)]
m×m

(4.18)

such that ψ0 has the form

ψ0 = ψ− ψ̃
−1
−(4.19)

as a canonical anti-symmetric generalized factorization with respect to L2 and `c,

with

ψ− =
(
U +M− diag[λ

−ηj

− ]
)
diag[λ

ηj

− ](4.20)

ψ̃−1
− = diag[λ

−ηj

+ ]
(
U +M+ diag[λ

−ηj

+ ]
)−1

(4.21)

where U +M− diag[λ
−ηj

− ], U +M+ diag[λ
−ηj

+ ] ∈ G[L∞(R)]m×m.

Proof: Let us take into consideration the even case (the odd case is analo-

gous). From (iv), we have that

ψ0 = ψ− ψ̃
−1
−(4.22)



206 L.P. CASTRO and F.-O. SPECK

with λ−2
− ψ− ∈

[
L2
−(R)

]m×m
, λ−1

+ ψ̃−1
− ∈

[
L2

+(R)
]m×m

, λ−1
− ψ−1

− ∈
[
L2
−(R)

]m×m

and λ−2
+ ψ̃− ∈

[
L2

+(R)
]m×m

. Due to assertions (i) and (ii) the matrix function ψ0

has the representation

ψ0 = U diag

[(
λ−
λ+

)ηj
]
U−1 + ψ00 ,(4.23)

where ψ00 ∈ [Cα(Ṙ)]
m×m

, and ψ00(±∞) = 0. With the result of Theorem 4.2,

we take profit of the existence of a matrix M+∈
[
L2

+(R)
]m×m

being the solution

of the following system of singular integral equations (cf. (3.10))

S0M+ = −P+ψ00 U diag[λ
ηj

+ ].(4.24)

Please observe that the right-hand side of (4.24) belongs to
[
L2

+(R)
]m×m

, due to

(4.23), the action of P+ and the assertions (i), (ii), and (iii) in the hypotheses.

In addition, due to assertion (iv), Theorem 3.5 and Theorem 4.2, we point out

that the matrix M+ is uniquely defined by (4.24):

M+ = −P+ψ̃−P+ψ
−1
− P+ψ00 U diag[λ

ηj

+ ] .(4.25)

Then we also introduce a matrix M− ∈
[
L2
−(R)

]m×m
in the following way

M− = ψ0M+ + ψ00 U diag[λ
ηj

+ ] .(4.26)

In fact, from the construction of M− in (4.26) and Equation (4.24), we obtain

P+M− = S0M+ + P+ψ00 U diag[λ
ηj

+ ] = 0 ,(4.27)

which allows us to conclude that the matrix function M− has a holomorphic

extension into the lower half-plane.

From the representation (4.23) and the definition ofM−, introduced in (4.26),

it follows that

ψ0

(
U diag[λ

ηj

+ ] +M+

)
= U diag[λ

ηj

− ] + ψ00 U diag[λ
ηj

+ ] + ψ0M+(4.28)

= U diag[λ
ηj

− ] +M− .

By (4.22) and (4.28) we get

ψ̃−1
−

(
U diag[λ

ηj

+ ] +M+

)
= ψ−1

−

(
U diag[λ

ηj

− ] +M−

)
.(4.29)
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The right-hand side of (4.29) is an analytic function in the half-plane Im ξ>0,

continuous in the closed half-plane, while the left-hand side is analytic for Im ξ<0

and continuous in the closed half-plane where the increase at infinity is algebraic.

Since both sides coincide on the real axis, it follows that they are restrictions of

an analytic function in the whole complex plane to the half-planes Im ξ ≥ 0 and

Im ξ ≤ 0, respectively. According to the possible increase of the factors in (4.22)

and recognizing that the functions λ
ηj

± (ξ) grow slower than |ξ|, Liouville’s theorem

applies and we obtain that both sides in (4.29) equal the same constant matrix.

This constant matrix is invertible because we already know that the matrix

ψ̃−1
− is invertible almost everywhere and, for sufficiently large |ξ|, the same holds

for the matrix U diag[λ
ηj

+ ](ξ)+M+(ξ). The latter fact can be seen by passing from

the real line to the unit circle and then applying Banach’s fixed point principle

to the corresponding equation of (4.24). In this case, the regularity of such a

solution can also be analyzed with the help of classical results from the theory

of singular integral equations in Hölder spaces with weight (cf. the lemmata 4.5,

4.6 and 4.6 in [17]).

Therefore, we may use the following representation for the factors of ψ0:

ψ− =
(
U +M− diag[λ

−ηj

− ]
)
diag[λ

ηj

− ] ,(4.30)

ψ̃−1
− = diag[λ

−ηj

+ ]
(
U +M+ diag[λ

−ηj

+ ]
)−1

.(4.31)

From (4.24) it also follows that M+ diag[λ
−ηj

+ ] vanishes at infinity, so we have

U +M+ diag[λ
−ηj

+ ], U +M− diag[λ
−ηj

− ] ∈ G[L∞(R)]m×m.

Corollary 4.5. Suppose that φ0 has the following properties:

(i) φ0 ∈ G
[
Cα(R̈)

]m×m
for some α ∈ (0, 1] ;

(ii) there arem complex numbers η1, ..., ηm and an invertible constant matrix

U such that

−
1

2
< Re ηj <

1

2
, lim

ξ→±∞
U diag

[(
λ−(ξ)

λ+(ξ)

)ηj
]
U−1 = φ0(±∞)φ−1

0 (∓∞) ;

(iii) α > 1
2 + maxj Re ηj ;

(iv) the matrix φ0 admits a canonical asymmetric generalized factorization

with respect to L2 and `c .

Then there is a matrix-valued function

M− ∈ [L2
−(R)]

m×m
,(4.32)
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such that we can present a canonical asymmetric generalized factorization of φ0,

with respect to L2 and `c, in the form

φ0 = φ− φe ,

φ− =
(
U +M− diag[λ

−ηj

− ]
)
diag[λ

ηj

− ](4.33)

φe = diag[λ
−ηj

− ]
(
U +M− diag[λ

−ηj

− ]
)−1

φ0

where U +M− diag[λ
−ηj

− ] ∈ G[L∞(R)]m×m.

Proof: The result is a direct combination of Theorem 3.5 and Theorem 4.4.

Corollary 4.6. Under the conditions of the last result, the convolution type

operator in (1.1)–(1.2) is invertible and its inverse has the form

T−1 = F−1 r+F
−1φ−1

e · F`cr+F
−1φ−1

− · F`E−1 ,(4.34)

where E and F are defined in (2.3)–(2.4), ` : [L2(R+)]
m
→ [L2(R)]

m
is an arbi-

trary continuous extension and φ− and φe have the form of (4.33).

Proof: This result follows from Theorem 4.1 and Corollary 4.5.

5 – Sufficient conditions for generalized invertibility and representa-

tion of generalized inverses

In this section, we are concerned with the question of generalized invertibil-

ity of the convolution type operator T , presented in (1.1). Firstly, this will be

done depending only on the existence of a convenient factorization of the (ma-

trix) symbol (in both cases of our convolution type operator with symmetry,

see Theorem 5.1, and of the Toeplitz operator S0, see Theorem 5.2). Secondly,

with additional assumptions (particularly on the behavior of the symbol jump at

infinity, cf. (5.11) and (5.22)), more detailed information about the generalized

invertibility is obtained at the end.

Theorem 5.1. Let the operator T be given by (1.1) with symbol φ satisfy-

ing (1.2). If the matrix function φ0 admits an asymmetric generalized factoriza-

tion with respect to L2 and `c (see (3.1)),

φ0 = φ− diag[ζκj ]φe ,(5.1)
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then T has a reflexive generalized inverse given by

T− = F−1 r+A
−1
e `cr+D

−1`cr+A
−1
− `E−1 ,(5.2)

where E and F are defined in (2.3)–(2.4), Ae = F
−1φe ·F , D = F−1 diag[ζκj ] ·F ,

A− = F−1φ− ·F , and ` : [L
2(R+)]

m
→ [L2(R)]

m
is an arbitrary extension (which

particular choice is indifferent for the definition of T−1).

Proof: First of all, we remark that we will use the decomposition

D = D−D+ ,(5.3)

where D± = F−1 diag[ζβj± ] · F , with

βj+ =

{
κj if κj ≥ 0

0 if κj ≤ 0
(5.4)

and

βj− =

{
0 if κj ≥ 0

κj if κj ≤ 0
.(5.5)

Let us study the case `c = `e and consider, in a suitable dense subspace,

T T− T = (E r+A−DAe`
e F ) (F−1 r+A

−1
e `er+D

−1`er+A
−1
− `E−1)

(E r+A−DAe`
e F )

= E r+A−DAe`
er+A

−1
e `er+D

−1`er+A
−1
− `r+A−DAe`

e F(5.6)

= E r+A−D−D+`
er+D

−1
+ D−1

− `er+D−D+Ae`
e F(5.7)

= E r+A−D−`
er+D+Ae`

e F

= T ,

where we omitted the first term `er+ of (5.6) in (5.7) due to the factor (invari-

ance) property of A−1
e that yields Ae`

er+A
−1
e `er+ = `er+. Similarly we dropped

the term `r+ in `er+A
−1
− `r+A− due to a factor property of A−1

− . Analogous argu-

ments apply to the “plus” and “minus” type factors D−1
− and D−1

+ , respectively.

More precisely: If one of the factors D+ or D− equals I (as in the scalar case),

then D−`
er+D

−1
− `er+D− = D−`

er+ or D+`
er+D

−1
+ `er+D+ = `er+D+ holds, re-

spectively. Here, in the diagonal matrix case, the situation is identical for each

place in the diagonal which rectifies the simplification in the last but one step.
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For T− T T− we have an analogous computation:

T−T T− = (F−1 r+A
−1
e `er+D

−1`er+A
−1
− `E−1) (E r+A−DAe`

e F )

(F−1 r+A
−1
e `er+D

−1`er+A
−1
− `E−1)

= F−1 r+A
−1
e `er+D

−1`er+A
−1
− ` r+A−DAe`

e(5.8)

r+A
−1
e `er+D

−1`er+A
−1
− `E−1

= F−1 r+A
−1
e `er+D

−1`er+D`
er+D

−1`er+A
−1
− `E−1

= F−1 r+A
−1
e `er+D

−1
+ D−1

− `er+D−

D+`
er+D

−1
+ D−1

− `er+A
−1
− `E−1

= F−1 r+A
−1
e `er+D

−1
+ `er+D

−1
− `er+A

−1
− `E−1

= T−

where we may omit the term `r+ in (5.8) since A−1
− is “minus type” and the third

`er+ is unnecessary in (5.8) due to the factor (invariance) property of Ae that

yields Ae`
er+A

−1
e `er+ = `er+. In addition, due to the “minus” factor property

of D− and D−1
+ , as well as, the “plus” factor property of D+ and D−1

− , one has

D−1
− `er+D−D+`

er+D
−1
+ = `er+.

The case `c = `o is proved by analogy.

Theorem 5.2. If ψ0=φ0φ̃
−1
0 , see (3.11), admits an anti-symmetric general-

ized factorization with respect to L2 and `c,

ψ0 = φ− diag[ζ2κj ] φ̃−1
− ,(5.9)

then the Toeplitz operator S0 presented in (3.10) is a generalized invertible

operator and a generalized inverse of it is given by

S−0 = P+φ̃−P+ diag[ζ−2κj ]P+φ
−1
− |[L2

+
(R)]

m : [L2
+(R)]

m
→ [L2

+(R)]
m
.(5.10)

Proof: The result is derived from a direct computation as in the proof of

Theorem 4.2, and therefore omitted here.

Theorem 5.3. Suppose that ψ0 (see (3.11)) has the following properties:

(i) ψ0 ∈ G[C
α(R̈)]

m×m
for some α ∈ (0, 1] ;
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(ii) there is an invertible constant matrix V andm complex numbers η1, ..., ηm
such that

−
1

2
< Re ηj <

1

2
, ψ−1

0 (+∞)ψ0(−∞) = V diag[e−2πiηj ]V −1 ;(5.11)

(iii) α > 1
2 + maxj Re ηj ;

(iv) the matrix ψ0 admits an anti-symmetric generalized factorization with

respect to L2 and `c .

Then there is a matrix

M− ∈ [L2
−(R)]

m×m
(5.12)

such that ψ0 has the form

ψ0 = ψ− diag[ζ2κj ] ψ̃−1
−(5.13)

of an anti-symmetric generalized factorization with respect to L2 and `c, with

ψ− =
(
ψ0(+∞)V +M− diag[λ

−ηj

− ]
)
diag[λ

ηj−2κj

− ](5.14)

where ψ0(+∞)V +M− diag[λ
−ηj

− ] ∈ G[L∞(R)]m×m.

Proof: We will take into consideration only the even case `c = `e (the odd

case, `c = `o, is analogous). First of all, from (iv), we have that

ψ0 = ψ− diag[ζ2κj ] ψ̃−1
−(5.15)

with kj∈Z, λ−2
− ψ−∈ [L

2
−(R)]

m×m
, λ−1

+ ψ̃−1
− ∈ [L2

+(R)]
m×m

, λ−1
− ψ−1

− ∈ [L2
−(R)]

m×m
,

and λ−2
+ ψ̃−∈ [L

2
+(R)]

m×m
. On the other hand, due to assertions (i) and (ii), the

matrix function ψ0 has also the representation

ψ0(ξ) = ψ0(+∞)V diag

[(
λ−(ξ)

λ+(ξ)

)ηj
]
V −1 + ψ00(ξ) ,(5.16)

where ψ00 ∈ [Cα(Ṙ)]
m×m

, with ψ00(±∞) = 0.

Since Theorem 5.2 and condition (iv) of the hypotheses imply that S0 is a

generalized invertible operator, we obtain projections P1 and P2 in
[
L2

+(R)
]m

such that imP1= kerS0 and imP2 is a complement of imS0 = kerP2.

Therefore, we have

S0P1 = 0 = P2S0(5.17)

and
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kerS0

‖
[L2

+(R)]
m

= kerP1 +̇ imP1

↓ S1

[L2
+(R)]

m
= kerP2 +̇ imP2

‖
imS0

where S1 = RstS0 : kerP1 → kerP2 is bijective as a restriction of S0 on kerP1

acting onto kerP2.

Because of these facts and (iii) we can introduce M+ ∈
[
L2

+(R)
]m×m

in the

following way

M+ = −P+S
−1
1 (I−P2)P+ψ00V diag[λ

ηj

+ ](5.18)

and define

M− = ψ0M+ + ψ00V diag[λ
ηj

+ ] .(5.19)

Then, according to the definition of S1, P1, P2, as well as the definition of M−

and M+, we obtain

P+M− = P+ψ0M+ + P+ψ00V diag[λ
ηj

+ ]

= −S0S
−1
1 (I−P2)P+ψ00V diag[λ

ηj

+ ] + P+ψ00V diag[λ
ηj

+ ]

= −(I−P2)P+ψ00V diag[λ
ηj

+ ] + P+ψ00V diag[λ
ηj

+ ]

= (P2P+ψ00)V diag[λ
ηj

+ ]

= 0

which in particular shows that M− ∈
[
L2
−(R)

]m×m
.

From the representation (5.16) and by the definition of M− it follows that

ψ0(ξ)
(
V diag[λ

ηj

+ ] +M+(ξ)
)

= ψ0(+∞)V diag[λ
ηj

− ]

+ ψ00(ξ)V diag[λ
ηj

+ ] + ψ0(ξ)M+(ξ)

= ψ0(+∞)V diag[λ
ηj

− ] +M−(ξ)

thus by (5.15), we obtain

diag[λ
−2κj

+ ] ψ̃−1
− (ξ)

(
V diag[λ

ηj

+ ] +M+(ξ)
)
=

diag[λ
−2κj

− ]ψ−1
− (ξ)

(
ψ0(+∞)V diag[λ

ηj

− ] +M−(ξ)
)
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where the left and the right-hand side of this equation are equal to an invertible

constant matrix function.

By the same method indicated in the proof of Theorem 4.4 it is possible to

show the invertibility of ψ0(+∞)V +M− diag[λ
−ηj

− ]. Thus we can write

ψ− =
(
ψ0(+∞)V +M− diag[λ

−ηj

− ]
)
diag[λ

−2κj+ηj

− ] .(5.20)

Finally, from (5.18)–(5.19) and ψ0∈ [L
∞(R)]m×m, it follows that ψ0(+∞)V +

M− diag[λ
−ηj

− ] ∈ G[L∞(R)]m×m.

Corollary 5.4. Suppose that φ0 has the following properties:

(i) φ0 ∈ G
[
Cα(R̈)

]m×m
for some α ∈ (0, 1] ;

(ii) there are m complex numbers η1, ..., ηm and an invertible constant ma-

trix V such that

−
1

2
< Re ηj <

1

2
,(5.21)

φ0(−∞)φ−1
0 (+∞)φ0(−∞)φ−1

0 (+∞) = V diag[e−2πiηj ]V −1 ;(5.22)

(iii) α > 1
2 + maxj Re ηj ;

(iv) the matrix φ0 admits an asymmetric generalized factorization with

respect to L2 and `c .

Then there is a matrix-valued function

M− ∈ [L2
−(R)]

m×m
,(5.23)

such that we can present an asymmetric generalized factorization of φ0 with

respect to L2 and `c by

φ0 = φ− diag[ζκj ]φe ,(5.24)

where the factors have the form

φ− =
(
φ0(+∞)φ−1

0 (−∞)V +M− diag[λ
−ηj

− ]
)
diag[λ

ηj−2κj

− ](5.25)

φe = diag[λ
κj

+ λ
κj−ηj

− ]
(
φ0(+∞)φ−1

0 (−∞)V +M− diag[λ
−ηj

− ]
)−1

φ0(5.26)

and φ0(+∞)φ−1
0 (−∞)V +M− diag[λ

−ηj

− ] ∈ G[L∞(R)]m×m.
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Proof: The result is a direct consequence of Theorem 3.5 and Theorem 5.3.

Corollary 5.5. Under the conditions of the last result, the convolution type

operator T (presented in (1.1)–(1.2)) is generalized invertible and a generalized

inverse of it has the form

T− = F−1 r+F
−1φ−1

e · F`c(5.27)

r+F
−1 diag[ζ−κj ] · F`cr+F

−1φ−1
− · F`E−1 ,

where E and F are defined in (2.3)–(2.4), ` : [L2(R+)]
m
→ [L2(R)]

m
is an arbi-

trary extension and φ− and φe have the form of (5.25)–(5.26).

Proof: This result follows from Theorem 5.1 and Corollary 5.4.

We end up with some final remarks.

1. The results of the last two sections are also useful for application to sys-

tems Tf = g where additional conditions on the regularity of g ∈ ×m
j=1H

sj (R+)

are assumed from the beginning. This will lead to a refined description of the

behavior of the solutions f of the corresponding systems. Particular results into

this direction can be found in [16, 19]. The point is that the operator T in (1.1)

does not directly allow the consideration in a scale of Bessel potential spaces

according to the restrictions on rj . However, for

Hr,e(R) =
{
ϕ ∈ Hr(R) : ϕ = Jϕ

}
(5.28)

Hr,o(R) =
{
ϕ ∈ Hr(R) : ϕ = −Jϕ

}
(5.29)

(where Jϕ(x) = ϕ(−x) for ϕ ∈ Hr(R), r ≥ 0, and Jϕ(υ) = ϕ(Jυ) for test

functions υ in the case of r < 0), a modified operator

T̃ = r+A : ×m
j=1H

rj ,c(R) → ×m
j=1H

sj (R+)(5.30)

(where c replaces e or o, respectively) admits the ideas that we know from [17]:

(a) consideration of the family of restricted operators T̃k where the orders rj , sj
are simultaneously replaced by rj + k, sj + k, k ∈ N; (b) generalized inversion

of T̃k in the sense of the last paragraph, simultaneously following from the fac-

torization of φ0; (c) representation of the preceding generalized inverse of T

by a series in terms of generalized inverses of T̃k, cf. (3.2) in [17], that yields

asymptotic expansions of solutions f for smooth data g.
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2. For the generalization of the present results to Sobolev(-Slobodečkǐı)

spaces W s,p, 1 < p <∞, it is necessary to work in Proposition 2.1 with orders

r ∈ (−1+ 1/p, 1+ 1/p) for `c= `e or r ∈ (−2+ 1/p, 1/p) for `c= `o, respectively,

cf. [5]. The weights in the factorization theorems of Section 3 have to be modified

correspondingly, cf. [15]. This leads to different parameter intervals for δj in (4.8)

and sufficient conditions (4.17) etc. later on.

3. The question of constructive asymmetric matrix factorization is open.

In some cases it can be reduced to the question of constructive generalized fac-

torization, for instance if φ is triangular and so is ψ in Theorem 3.5. For matrix

functions of Daniele–Khrapkov type and other, this step is already difficult in

general, see the articles [3, 9, 11] for an overview on constructive generalized

matrix factorization.
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Departamento de Matemática, Universidade de Aveiro,
Campus Universitário, 3810-193 Aveiro – PORTUGAL

E-mail: lcastro@mat.ua.pt

and

Frank-Olme Speck,
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