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SOME CORRESPONDENCES FOR
GALOIS SKEW GROUP RINGS

G. Szeto and L. Xue

Abstract: Let S be a ring with 1, G a finite automorphism group of S, and S ∗ G

a skew group ring of G over S which is Azumaya. Two correspondence theorems are

shown between a class of subgroups of G and a class of the Azumaya algebras contained

in S ∗ G.

1 – Introduction

The fundamental theorem for Galois extensions of fields was generalized to

commutative rings with no idempotents but 0 and 1 ([5], Theorem 1.1, p. 80). For

Galois extensions of noncommutative rings, there were some kind of correspon-

dence theorems for special types of Galois extensions between different classes

of separable extensions contained in the Galois extension ([2], [4]). Recently, we

studied the following two types of Galois extensions:

(i) Galois extensions of Azumaya algebras called the Azumaya Galois exten-

sions ([1], [2]), and

(ii) Galois skew group rings which are Azumaya ([1], [2], [3], [7]).

Let S ∗G be an G′-Galois extension of (S ∗G)G
′

with an inner group G′ induced

by the elements in G. If S ∗ G is Azumaya, in the present paper, we shall show

two correspondence theorems between a class of subgroups of G and a class of

the Azumaya algebras contained in S ∗ G. The results are given in section 3.

Moreover, let Z be the center of S ∗G, H a normal subgroup of G such that the
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center of ZH is ZIH where IH is the center of H. Then in section 4, we shall

show that the G′-Galois extension S ∗G is a composition of the following Galois

extensions:

(i) S ∗G is an I ′H -Galois extension of (S ∗G)
I′
H ,

(ii) (S ∗G)I
′
H is an Azumaya H ′/I ′H -Galois extension of (S ∗G)

H′

, and

(iii) (S ∗G)H
′

is an G′/H ′-Galois extension of (S ∗G)G
′

.

2 – Preliminaries

Throughout, we assume that S is a ring with 1, G (= {g1, g2, ..., gn} with g1 is

identity) a finite automorphism group of S of order n for some integer n invertible

in S, SG the subring of the elements fixed under each element in G, and S ∗G a

skew group ring of G over S. We denote the inner automorphism group of S ∗G

induced by the elements in G by G′, H < G means that H is a subgroup of G,

VA(B) is the commutator subring of the subring B in a ring A. Following [1], [2],

and [5], we call S an G-Galois extension of SG if there exist elements {ci, di in S,

i = 1, 2, ..., k for some integer k} such that
∑

ci gj(di) = δ1,j for each gj ∈ G.

Let B be a subring of a ring A with 1. A is called a separable extension of B if

there exist {ai, bi in A, i = 1, 2, ...,m for some integer m} such that
∑

ai bi = 1,

and
∑

s ai ⊗ bi =
∑

ai ⊗ bi s for all s in A where ⊗ is over B. An Azumaya

algebra is a separable extension of its center. A ring A is called an H-separable

extension of B if A⊗B A is isomorphic to a direct summand of a finite direct sum

of A as an A-bimodule. It is known that an Azumaya algebra is an H-separable

extension and an H-separable extension is a separable extension. A ring S is call

an Azumaya G-Galois extension of SG if it is an G-Galois extension of SG which

is CG-Azumaya algebra where C is the center of S ([1], [2]).

3 – Correspondence theorems

Let Z be the center of S ∗ G. Assume that S ∗ G is an G′-Galois extension

which is an Azumaya Z-algebra. We shall show two correspondence theorems.

At first, we define two classes of subgroups of G.

Definition 1. For H, K < G, H ∼ K if ZH and ZK have the same center,

that is, DH = DK whereDH andDK are the center of ZH and ZK respectively.
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We note that ∼ is an equivalence relation on the class of subgroups of G, the

equivalence class of H is denoted by [H ∼], and C = {[H ∼] | H < G}.

Definition 2. For H, K < G with center IH and IK respectively, H ≈ K if

ZH and ZK are central Galois algebras over the same center with inner Galois

groups induced by the elements in H and K respectively.

We note that ≈ is an equivalence relation on a class of subgroups of G, the

equivalence class of H is denoted by [H ≈], and D = {[H ≈] | for some H < G}.

We begin with the well known commutator theorem for Azumaya algebras

([5], Theorem 4.3) and some consequences of the theorem.

Proposition ([5], Theorem 4.3). Let A be a central separable R-algebra.

Suppose B is any separable subalgebra of A containing R. Set C = VA(B), then

C is a separable subalgebra of A and VA(C) = B. If B is also central, so is C

and the R-algebra map B ⊗ C → A by b⊗ c→ bc is an isomorphism.

Lemma 3.1. Let A be an Azumaya algebra over its center C. If B is a

separable subalgebra of A, then

(1) B and VA(B) are Azumaya algebras over the same center, and

(2) let D be the center of B, then VA(D) is an Azumaya D-algebra such that

VA(D) = BVA(B).

Proof: (1) By the Proposition, VA(VA(B)) = B, so the center of VA(B) ⊂

B ∩ VA(B). Clearly, B ∩ VA(B) ⊂ the center of VA(B). Hence B ∩ VA(B) = the

center of VA(B). Similarly, B ∩VA(B) = the center of B. Thus B and VA(B) are

Azumaya algebras over the same center.

(2) By the Proposition again, VA(D) is an Azumaya D-algebra such that

VA(D) = B ⊗DVE(B) where E = VA(D). But VE(B) = E ∩ VA(B) = VA(B),

hence VA(D) ∼= B ⊗DVA(B) ∼= BVA(B).

Lemma 3.2. Let H < G and DH the center of ZH. Then

(1) VS∗G(DH) = (S ∗G)
H′

(ZH) as an Azumaya DH -algebra, and

(2) VS∗G(DH) is the maximum Azumaya DH -algebra contained in S ∗G.

Proof: Since n is a unit in S, the order of H is a unit in Z. Hence ZH is

a separable subalgebra of S ∗ G; and so VS∗G(ZH) (= (S ∗ G)H
′

) is a separable

subalgebra of S ∗G such that we have VS∗G((S ∗G)
H′

) = ZH by the commutator
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theorem for the Azumaya algebra S∗G ([5], Theorem 4.3). Thus (S∗G)H
′

and ZH

have the same center DH by Lemma 3.1. Since DH is a commutative separable

subalgebra of S ∗G, VS∗G(DH) is an Azumaya DH -algebra by Lemma 3.1 again.

Moreover, since (S ∗G)H
′

and ZH are contained in VS∗G(DH) as Azumaya DH -

subalgebras, denoting VS∗G(DH) by AH , we have that VAH
((S ∗ G)H

′

) = AH ∩

VS∗G((S ∗ G)H
′

) = AH ∩ (ZH) = ZH. But then, AH = (S ∗ G)H
′

⊗DH
ZH ∼=

(S ∗G)H
′

ZH (Lemma 3.1). This proves (1).

Again, since DH is a commutative separable subalgebra of S ∗G, VS∗G(DH)

is a separable subalgebra of S ∗G. But VS∗G(VS∗G(DH)) = DH , so VS∗G(DH) is

a maximum Azumaya DH -algebra contained in S ∗G. This completes the proof

of (2).

We denote the class of the Azumaya algebras contained in S ∗G by A. Then

we show the first correspondence theorem from C to A.

Theorem 3.3. Let f : C → A by f([H ∼]) = (S ∗G)H
′

(ZH) for [H ∼] ∈ C.

Then f is an injection.

Proof: Let H ∼ K be subgroups of G. Then H and K have the same

center DH = DK . By Lemma 3.2, VS∗G(DH) = (S ∗ G)
H′

(ZH) = VS∗G(DK) =

(S ∗G)K
′

(ZK), so f is well defined. Next, suppose that f([H ∼]) = f([L ∼]) for

some subgroups H and L. Then (S ∗ G)H
′

(ZH) = (S ∗ G)L
′

(ZL) as Azumaya

algebras. Hence ZH and ZL have the same center (for (S ∗G)H
′

, ZH, (S ∗G)L
′

,

and ZL have the same center by the commutator theorem for Azumaya algebras

([5], Theorem 4.3)). Thus, [H ∼] = [L ∼]; and so f is an injection.

Next, we show that the above f([H ∼]) becomes an Azumaya Galois extension

whenDH is ZIH generated by Z and the center IH ofH. Consequently, we obtain

the second correspondence theorem between D and the class of the Azumaya

H ′/I ′H -Galois extensions contained in S ∗ G as studied in [1] and [2]. We begin

with several lemmas.

Lemma 3.4. Let H be a subgroup of G. Then, the following statements are

equivalent.

(1) ZH is a central Galois algebra with Galois group H ′/I ′H , where IH is the

center of H,

(2) (S ∗G)I
′
H = (S ∗G)H

′

H as an Azumaya ZIH -algebra, and

(3) The center of ZH is ZIH .
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Proof: We first claim that {g ∈ H | g′(d) = d for all d ∈ ZH} = IH . In fact,

g′(d) = d for all d ∈ ZH implies that g′(gi) = gi for all gi ∈ H. Hence g ∈ IH .

The converse is clear.

(1) −→ (2) By Lemma 3.2, (S ∗ G)H
′

and ZH have the same center.

But (S ∗ G)I
′
H is an Azumaya ZIH -algebra, hence (S ∗ G)H

′

ZH is an Azu-

maya algebra. Clearly Z ⊂ (S ∗ G)H
′

, so (S ∗ G)H
′

ZH = (S ∗ G)H
′

H. Since

ZH (= VS∗G(VS∗G(ZH)) = VS∗G((S ∗ G)
H′

)) is a central Galois H ′/I ′H -algebra,

(S ∗G)I
′
H = (S ∗G)H

′

ZH ([6], Theorem 6-(3)).

(2) −→ (1) (S∗G)I
′
H =(S∗G)H

′

H=(S∗G)H
′

ZH=(S∗G)H
′

VS∗G((S∗G)
H′

),

so ZH is a central H ′/I ′H -Galois algebra ([6], Theorem 6-(3)).

(1) −→ (3) is given in the proof of (1) −→ (2).

(3) −→ (1) Since the center of ZH is ZIH , the center of VS∗G(ZH)

(= (S ∗ G)H
′

) is ZIH . Clearly, ZH and (S ∗ G)H
′

⊂ VS∗G(ZIH). Denote

VS∗G(ZIH) (= (S ∗G)
I′
H ) by A. Then A is an Azumaya ZIH -algebra and ZH =

VS∗G(VS∗G(ZH)) = VA(VS∗G(ZH)). Since A is an Azumaya ZIH -algebra,

A = (S ∗ G)I
′
H = (S ∗ G)H

′

ZH as Azumaya ZIH -algebras (Lemma 3.1). Thus

ZH is a central H ′/I ′H -Galois algebra ([6], Theorem 6-(3)).

Corollary 3.5. If ZH is a central Galois algebra with Galois group H ′/I ′H ,

then (S ∗G)H
′

H is an Azumaya Galois extension with Galois group H ′/I ′H .

Proof: Since (S ∗G)H
′

H = (S ∗G)H
′

ZH ∼= (S ∗G)H
′

⊗ZH as an Azumaya

ZIH -algebra, where⊗ is over ZIH such that ZH is a centralH ′/I ′H -Galois algebra

over ZIH by Lemma 3.1, (S ∗G)
H′

H is an H ′/I ′H -Galois extension of (S ∗G)
H′

which is an Azumaya ZIH -algebra, that is, (S ∗ G)H
′

H is an Azumaya Galois

extension of (S ∗G)H
′

.

When two subgroups H and K of G such that ZH and ZK are central Galois

algebras as given in Lemma 3.4, we shall show a sufficient and necessary condition

under which (S ∗G)H
′

H = (S ∗G)K
′

K.

Lemma 3.6. Let H and K be subgroups of G such that ZH and ZK are

central Galois algebras as given in Lemma 3.4. Then (S ∗G)H
′

H = (S ∗G)K
′

K

if and only if ZIH = ZIK .

Proof: By Lemma 3.4, (S ∗ G)H
′

H = (S ∗ G)I
′
H as ZIH -algebras and

(S ∗ G)K
′

K = (S ∗ G)I
′
K as ZIK-algebras, so that (S ∗ G)H

′

H = (S ∗ G)K
′

K

implies that ZIH = ZIK . Conversely, ZIH = ZIK implies that VS∗G(ZIH) =

VS∗G(ZIK), so (S ∗G)
I′
H = (S ∗G)I

′
K ; and so (S ∗G)H

′

H = (S ∗G)K
′

K.
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Next we show that any Azumaya H ′/I ′H -Galois extension A of AH′/I′
H with

center ZIH is of the form (S ∗G)
I′
H .

Lemma 3.7. If A is an Azumaya H ′/I ′H -Galois extension of (S ∗G)H
′

with

center ZIH for some subgroup H of G, then A = (S ∗G)H
′

(ZH) = (S ∗G)I
′
H .

Proof: Since VS∗G((S∗G)
H′

) = ZH which is a separable subalgebra of S∗G,

the center of ZH is ZIH by Lemma 3.1 and A ⊂ VS∗G(ZIH) = (S ∗G)
I′
H . Hence

(S ∗ G)I
′
H = (S ∗ G)H

′

(ZH) = (S ∗ G)H
′

H as an Azumaya algebra by Lemma

3.4. Thus ZH is a central Galois H ′/I ′H -algebra ([6], Theorem 6-(3)); and so

(S ∗G)I
′
H is an Azumaya H ′/I ′H -Galois extension of (S ∗G)

H′

by Corollary 3.5.

Noting that A is an H ′/I ′H -Galois extension of (S ∗G)
H′

by hypothesis and that

A ⊂ (S ∗G)I
′
H , we conclude that A = (S ∗G)I

′
H .

We denote the class of Azumaya H ′/I ′H -Galois extension of (S ∗ G)H
′

with

center ZIH for some H < G in S ∗G by B.

Theorem 3.8. There exists a one-to-one correspondence between D and B.

Proof: Let f : [H ≈] → (S ∗ G)H
′

(ZH) be a map from D to B. Then f

is well defined by Theorem 3.3 and Lemma 3.6. Also, by Lemma 3.7, for any

A ∈ B, A = (S ∗G)H
′

(ZH) = (S ∗G)I
′
H . Moreover, since ZH = VS∗G((S ∗G)

H′

),

ZH is a central Galois algebra with Galois group H ′/I ′H ([6], Theorem 6-(3))

with center ZIH . Thus f [H ≈]) = A. This implies that f is an surjection. By

theorem 3.3, f is also an injection.

4 – Structure of S ∗G

In this section, assume that S ∗G is an G′-Galois extension and an Azumaya

Z-algebra. Let H be a normal subgroup of G such that [H ≈] ∈ D. We shall

show that S ∗G is a composition of three Galois extensions, and give expressions

of (S ∗G)G
′

and Z when G is Abelian.

Theorem 4.1. If H is a normal subgroup of G such that the center of ZH

is ZIH where IH is the center of H, then

(1) H ′ and I ′H are normal group of G′, and

(2) S ∗G is a composition of the following Galois extensions:

(i) S ∗G is an I ′H -Galois extension of (S ∗G)I
′
H ,

(ii) (S ∗G)I
′
H is an Azumaya H ′/I ′H -Galois extension of (S ∗G)H

′

, and

(iii) (S ∗G)H
′

is an G′/H ′-Galois extension of (S ∗G)G
′

.
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Proof: (1) Since (g h g−1)′ = g′ h′(g−1)′ for any g ∈ G, and h ∈ H, H ′ is

normal in G′ whenever H is normal in G. Moreover, since H is normal in G,

g′ is an automorphism of H for each g ∈ G. Therefore g′(IH) = IH since IH is

the center of H. Thus IH is normal in G, and so I ′H is normal in G′.

(2) By hypothesis, S ∗G is an G′-Galois extension of (S ∗G)G
′

, so (i) S ∗G

is an I ′H -Galois extension of (S ∗ G)
I′
H . For (ii) since ZIH is the center of ZH,

(S ∗ G)I
′
H = VS∗G(ZIH) is an Azumaya ZIH -algebra such that (S ∗ G)H

′

and

ZH are contained in (S ∗ G)I
′
H . Hence by the argument given in the proof of

Lemma 3.7, (S ∗G)I
′
H = (S ∗G)H

′

(ZH)). Noting that ZH = VS∗G((S ∗G)
H′

) =

VS∗G(VS∗G(ZH)) ([5], Theorem 4.3), we conclude that ZH is an H ′/I ′H -Galois

extension of ZIH . Thus (S ∗ G)I
′
H is an H ′/I ′H -Galois extension of (S ∗ G)H

′

.

By (1), H ′ is a normal subgroup of G′, so (S ∗G)H
′

is an G′/H ′-Galois extension

of (S ∗G)G
′

. This proves (iii).

Next, we give expressions of (S ∗G)G
′

and Z when G is Abelian.

Theorem 4.2. If G is Abelian, then (S ∗ G)G
′

= SGG, a group ring of G

over SG and Z =
∑n

i=1
(D ∩ Ji) gi where D is the center of SG and Ji = {s ∈ S |

ts = s gi(t) for all t ∈ S}.

Proof: (S ∗ G)G
′

= SGG is clear. Now let x ∈ Z, x =
∑n

i=1
si gi, then

for each gi ∈ G, gi x = x gi, so si ∈ SG. Also for each t ∈ S, tx = xt implies

that si ∈ Ji. In particular, for each t ∈ SG, si ∈ D (= the center of SG). Thus

si ∈ D ∩ Ji for each i. Conversely,
∑n

i=1
si gi, where si ∈ D ∩ Ji for each i, is

clearly in Z.

We conclude the paper with an G′-Galois skew group ring S ∗ G which is

Azumaya such that G is Abelian as constructed at the end of [7].

Let S be the quaternion algebra Q[i, j, k] over the rational field Q and G

(= {g1, gi, gj , gk| g1 = the identity, gi = the inner automorphism group of S

induced by i, gj = the inner automorphism group of S induced by j, gk = the

inner automorphism group of S induced by k}). Then

(1) S ∗ G is an G′-Galois because S is G-Galois with a Galois system

{2−1, 2−1i, 2−1j, 2−1k; 2−1, −2−1i, −2−1j, −2−1k},

(2) S ∗ G is Azumaya because S ∗ G is separable over S and S is Azumaya

over Q,

(3) G is an Abelian, so G′ is an Abelian,

(4) (S ∗G)G
′

= SGG, where SG = Q,

(5) J1 = Q1, Ji = Qi, Jj = Qj and Jk = Qk.

(6) Z = Q by Theorem 4.2.
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