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DOUBLY STOCHASTIC COMPOUND POISSON PROCESSES
IN EXTREME VALUE THEORY

H. FERREIRA

Abstract: For some linear models, chain-dependent sequences and doubly stochastic
max-autoregressive processes, which do not satisfy the long range dependence condition
A(uy) from Hsing et al. ([7]), the sequence {S,},>1, of point processes of exceedances
of a real level u,, by Xy, ..., X,,, n > 1, converges in distribution to a compound Poisson
process with stochastic intensity.

These examples illustrate the main result of this paper: for sequences {X,}n>1
that conditional on a random variable X satisfy the usual dependence conditions in
the extreme value theory, we obtain the convergence of {S,,} to a point process whose
distribution is a mixture of distributions of compound Poisson processes. Such result
permits the identification of a class of sequences for which the extremal behaviour can

be described by mixtures of extreme value distributions.

1 — Introduction

Let {up, }n>1 be a sequence of real numbers and {X,, },>1 a sequence of random
variables such that, for some random variable X, every family of conditional
distributions given X,

Py = {P(Xilw-xin)(' | X=x): n>1, i1<~--<in} (z in the support of X)

satisfies the dependence condition A(u,) introduced in Hsing et al. ([7]). That
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is, if {X7},>1 is a sequence with distribution determined by P, then
ans = anele) = sup{ [P(4. B)  P(4) P(B):
A e B (uy,), B e B (un), 1 <k<n—€}, 1<<n-—1,
where Bg (up) denotes the o-field generated by { X7 < w,}, i<s<j,

satisfies
anye, — 0,  for some sequence ¢, =o(n) .
’ n—oo

From the results in Hsing et al. ([7]) it follows that, if {X},>1 is a stationary
sequence and the sequence of point processes of exceedances

n
Sn[Xp, unl(r) = Z 1{Xf’>un} 61/17,() , n=>1,
i=1
converges in distribution to a point process S*, then S* is a compound Poisson
process S[v,II] with Laplace transform

Lg=(f) =exp (—1/ /[071] (1 — liekf(y) H(k)) dy) ;

where v = v(z) is a positive constant and IT = II(*) is a distribution for the
multiplicities.

The most general results (Nandagopalan ([14]), Nandagopalan et al. ([15]))
guarantee that for a non stationary sequence {X*},>; we can also find in the
limit a compound process where Poisson events have a finite intensity measure
and the distributions of multiplicities {Il,},c[,1) depend on the position y of the
atoms, provided that some additional assumptions of equicontinuity and uniform
asymptotic negligibility are satisfied.

Stronger results can be obtained if {u,} is a sequence of normalized levels,
{un = up(7)}n>1, with 7 = 7(zx), for {X7},>1, that is, if for each a € [0,1], it
holds

[na]

ZIP(Xf > Up,) =2, a7
If {X7},>1 is a stationary sequence and if, for some 79 > 0, {Sp[XZ, un(70)]}n>1
converges in distribution, then for each 7 > 0, {S,[XZ, un(7)]}n>1 converges to
S[67,11], with 6 = £ and II independent of .

This result of Hsing et al. ([7]) can be applied to some simple forms of

non-stationarity like periodic sequences (Alpuim ([1]), Ferreira ([5])) and quasi-
stationary sequences (Turkman ([16])).



DOUBLY STOCHASTIC COMPOUND POISSON PROCESSES 467

A significant theory of point processes of rare events, under long range and lo-
cal dependence conditions, is available in the recent literature and can be applied
to obtain the asymptotic distribution S* of S,[X?,u,] (Hisler, J. ([9]), Falk et
al. ([3]), Husler, J. and Schmidt, M. ([10])). A simple application of the domi-
nated convergence theorem enables us to conclude that S, [X,,, u,] will converge
to a point process whose distribution is a mixture of the distributions of the pro-
cesses S*. Such point process exists when, for each simple function f, the Laplace
transform of S* on f, ¢(z) = Lg=(f) is a measurable function (Kallenberg, [11]).

We begin in section 2 with a general result on the convergence of {S,} to a
mixture. As a corollary, when { X, } conditional on realizations of X, is stationary,
we obtain a sufficient condition for the convergence of S,[X,,u,] to a doubly
stochastic compound Poisson process, i.e., a point process whose distribution is a
mixture of the distributions of S[v(z),II], the intensity measure being regulated
by X.

As applications we shall study the point process of exceedances of u,, generated
by the linear sequences X,, = Y, +X by some sequences whose finite distributions
are determined from the values of a sequence of discrete random variables X =
{Jn}n>1 and, finally, exceedances by the max-autoregressive sequences X, =
max(Yn, Yn—h veny Yn—X)-

The sequences to which we apply the results of this paper do not satisfy, in
general, the condition A(u,). However, on what concerns the local restrictions
on rapid oscillations of {X,,} (conditions D’(u,,) from Leadbetter ([12]), D" (uy)
from Leadbetter and Nandagopalan ([13]), D) (u,) from Chernick et al. ([2]),
D®)(u,) from Ferreira ([5])), they can be satisfied provided the analogous con-
dition holds for each sequence {X[},>1.

We say that the condition D®)(u,) holds, for a stationary sequence {XZ}
satisfying A(uy,), if k is the minimum positive integer for which there exists a
sequence of positive integers {ky },>1 satisfying

kn — 00, kply/n — 0, kypoang, — 0, k, P(X{ >u,) — 0
n—oo n—oo n—oo n—oo

and

k
(1.1) s®=n 3 P(Xf>un, ﬂ{Xﬁ gun<XﬁH}) — 0.
2<g1 << g <[n/kn]—1 i=1

When k& = 1 we get the condition D”(u,) from Leadbetter and Nandagopalan

([13])-
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The condition D) (u,), from Chernick et al. ([2]), holds for a stationary se-
quence { X7} if

[n/kn]
(1.2) nh_)Iglo n Z P(Xl > Up, X5 < tpy oy X <tp, Xj > un) =0.
j=k+1

These local dependence conditions enable us to obtain v(z) and II(*), in the
limiting compound Poisson process S%, from certain limiting probabilities easy
to compute, and also give criteria for the existence of the parameter § = 6(x),
the extremal index of {X*}.

By applying Fatou’s lemma, if (1.1) or (1.2) holds for each of the sequences
{X7}, then {X,,} can satisfy the analogous convergence, which gives information
about the episodes of high values of {X,,}.

2 — Main result and examples

Proposition 2.1. Let {X,},>1 be a sequence of random variables for which
there exists a random variable X such that, for each x in the support of X, the se-
quence { X} },>1 with distribution determined by P, satisfies Sy[ X7, uy] n%O S7.
Suppose that, for each continuous, positive and with compact support function
f, ¢(x) = Lg=(f) is a measurable function.

Then {S,[Xn,un]}n>1 converges, in distribution, to a point process whose

distribution is a mixture of the distributions of S* regulated by the distribution
of X.

Proof. It is sufficient to prove that, for any finite number of disjoint intervals
I, ..., I in [0, 1] and non negative integers si, ..., S, it holds

(2.1) P(ﬁl{sn[xn,un](lj) = sj}) — /P(ﬁl{sﬂ[j) = sj}) dPx (z) .
J= J=

Since
k

{8t 3) {51 =) 32}
_/p<6 (1) :sj}) dPx(z)

then, by using the dominated convergence theorem, we conclude (2.1). m
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If {X7} is a stationary sequence and satisfies the condition A(uy) then S
is a compound Poisson process S[v(z),I1®)]. Furthermore, if we suppose that
Unp, = up(7(z)) for {X7*}, ie. {un}n>1 is a sequence of normalized levels for
{XZ¥}p>1, then v(z) = 0(z) 7(x), with 0 < f(x) < 1.

In some examples we find II®) and 0(x) independent of z. For instance, if for
each x, { X7} satisfies the condition D’(u,,), in Leadbetter ([12]), that is

[n/k]
li P(XY X7
17ris;pnj§ ( 1> Un, Xj >un) kj0>00,

then 6(z) = 1 and II(x)(1) = 1. By applying the Proposition 2.1, we conclude
that in these cases S, [Xp,u,] converges in distribution to a Cox process with
stochastic intensity 7(X).

The Proposition 2.1 is too general to give an insight into the limiting point
process. The following application is a more useful result since in special cases of
interest the limiting point process S is a compound Poisson process.

Corollary 2.1. Let {X,} be a sequence of random variables for which

there exists a random variable X such that, for each x in the support of X, the
sequence {X*},>1 with distribution determined by P, satisfies Sy[ X}, un] H%JO
S10 7(x), 1], where 7(x) is a measurable function.

Then {Sy,[ Xy, un|}n>1 converges, in distribution, to a doubly stochastic com-

pound Poisson process with intensity 0 7(X) and multiplicity distribution I1. m

In the following we present two examples illustrating the above corollary. We
shall maintain the notation X for the random variable chosen for conditioning.

We first give a limit distribution for the point process of exceedances generated
by a linear model X,, = Y, + X, n > 1, where {Y,,} is a periodic sequence
independent of the variable X.

The second example concerns a sequence {X,,} whose finite distributions are
determined by a sequence of discrete random variables X = {.J;,},,>1.

The asymptotic distribution of .5, in these examples has already been obtained
by specific methods (Ferreira ([4]), Turkman and Duarte ([17])). Our aim is to
present one single methodology supported by the above results.

Example 2.1. Let T be a positive integer and Y,, n > 1, independent
exponential variables with parameter A, > 0 such that A\, = Ay 7, n > 1.

Then {Y,} a T-periodic sequence, that is, for every choice of integers i; <
e <y (Yiy, e Ys,) and (Y 47, ..., Y5, 7)) are identically distributed.
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If A = minj<;<7 A; and C is the number of \;’s, ¢ < T, equal to A, then we
check directly that v, = —5 log , n > 1, is a sequence of normalized levels for
{Y,}n>1 with 7 = CA and for {maX(Yn, Yoi1)}n>1 with 7 =2CA:

[na]

(2.2) nliﬂrgl(}ZP(Inax(E,Yz_H)>vn>— lim ET:{ (YZ <n, Yi+1§vnﬂ =
i=1 =1

n—oo T’

) na AT\ Ni/A AT di+1/A AT QitAir1)/A
S EE[ ()

=1 n n n

=aq2CA.

Let us consider the T-periodic sequence

X, =max(V,, Y1)+ X, n>1,
where X is independent of {Y,}.
Then {X7}},>1 is a T-periodic and 2-dependent sequence. Applying (2.2) for
Up = —+ 3 log M , we obtain
[na]
nlgr;ozlP(Xf > up) = Jim P(maX(Yi,YiH) +z> un) —aCeM .
1=
Therefore, u,, = u,(7) for {XZ} with 7 = C €.
Simple calculations enables us to obtain

nP(X‘r <up < Xz+1) — U,

—00

1
where v; = 3 T e if Aita = A and v; =0 for the other cases ;

T
1

and

1 &y
;;’LP( 1>'U,n, Xf+2>un7 X{z_gﬁun ‘ X;CSUTL<X1]:+1) nj(;() H(Q):l .

Therefore, by applying the results in Ferreira ([5]), we conclude that, for each

x, it holds

SulXg,un] 5 S[3CEM T, with TI(2) =1,

and then {S,,[ Xy, un]}n>1 converges, in distribution, to a doubly stochastic com-
pound Poisson process with intensity % C e and multiplicity distribution II. o
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A more interesting model corresponding to the situations where X and {Y;,}
are not independent can be treated by using the ideas from the following example.

Example 2.2. Let X = {J,},>1 be the following sequence of discrete
random variables:

P(J,=k)=0pk, fork=1,..,m, with Z ok =1, n>1.
k=1

Consider a sequence {X,},>1 whose finite distributions are determined by
X = {Jn}n>1 as follows:

Ji, = Jz)

P
P(Xi1 <z, e Xy <1 ’ {In}n>1= {jn}nZl) = H P(Xis <z
s=1

p
= H F'z‘s (LL‘S) ’
s=1

with non degenerated distributions Fi, ..., Fi,.
Therefore {X{y"}} is a sequence of independent and non-identically distributed
variables with P(Xz-{j"} <z)=Fj(x).

2

Suppose that, for each k € {1,...,m},

E En: 1 2% N,
n {J;=k} N0 k>
=1
where N} is a positive random variable, and that
n(l - Fk(un)> 2 Tk >0

Then, for almost every realization {Jp, }n>1 = {jn}n>1, if M = limy, oo % Mien =
limy, o0 % > iy 1ji=ky, for each k € {1,...,m}, it holds

[na] [na]

y . m
S P(XI s ) =3 o) = 3 T o)
=1 i=1 n =1 n n— o0
m
—ay e = aT({j}nz1) -
k=1

Therefore, u,, = u,(7) for {X,gj”}}nzl.
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Since {X,} conditional on {J,}n>1 is a sequence of independent variables,
then S [X{gj "}, uy) converges to an homogeneous Poisson process S[7], with inten-
sity 7 (see Husler ([8])). Therefore, Sp,[Xp, up] converges to a Cox process with
stochastic intensity

T=71{Jn}) = iNka .0
k=1

In the next example #(x) and II*) are not independent of z and we find
the limiting multiplicities distributions with the help of results under the local
dependence hypotheses.

Example 2.3. Let X be a random variable with values in {1,2} and in-
dependent of a sequence {Y,,} of i.i.d. variables with continuous common d.f..

Define
Xn= maX(Yny Yn—X7Yn—2) ) n>1.

If uy, = u,(7) for {Yy,} then u, = u,(37) for {X}} and u,, = u,(27) for {X2}.

The 2-dependent sequence { X!} satisfies the condition D”(u,) and, by ap-
plying the results in Leadbetter and Nandagopalan ([13]), we conclude that
SIXE, up] =5 S[E7, O] with TV (3) = 1.

The 2-dependent sequence {X2} does not satisfy the condition D”(u,) but

satisfies the condition D®)(u,) from Chernick et al ([2]) and the condition
D?(uy,) from Ferreira ([6]). It holds

lim nP(X? > up) =27,

n—oo

v= T}ErolonP(X% <u, < X3)=2T1

and
[n/kn]—1
§=Jim by Y, P(XP<un<X} X} <un<X})
j=3

= lim nP(X}<u, <X}, X}<u,<X})=r,

n—oo

for any sequence {k,} of positive integers such that k,, — oo and n/k, — oo.
n—oo n—oo



DOUBLY STOCHASTIC COMPOUND POISSON PROCESSES 473

Then, applying directly the results in Ferreira ([6]) we obtain that {X2} has

v=B _ 1

extremal index 6 = 5= = 5 and

1 {1}) = lim

n—oo y— (3

P(X}? <un, X3<un <X}, Xi<un, X3<u,) =0;

1 {2}) = lim

n—00 l/—ﬁ

P(X}<un<X3, X3<u,<X3}, X<u,) =1.

Therefore S,[X,,u,] converges in distribution to a point process which
distribution is a mixture of S[7,IIV] and S[37, I(?)] directed by X. o
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