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STABILIZATION OF THE SCHRÖDINGER EQUATION

E. Machtyngier and E. Zuazua*

Abstract: We study the stabilization problem for Schrödinger equation in a bounded

domain in two different situations. First, the boundary stabilization problem is consid-

ered. Dissipative boundary conditions are introduced. By using multiplier techniques

and constructing energy functionals well adapted to the system, the exponential decay in

H1 is proved. On the other hand, the internal stabilization problem is considered. When

the damping term is effective on a neighborhood of the boundary, the exponential decay

in L2 is proved by multiplier techniques. These results extend to Schrödinger equation

recent results on the stabilizability of wave and plate equations.

1 – Introduction and main results

This paper is devoted to study the stabilization problem for Schrödinger equa-
tion.

Let Ω be a bounded domain of IRn, n ≥ 1, with boundary Γ = ∂Ω of class
C3.

It is well known that L2(Ω) and H1(Ω)-norms of solutions of Schrödinger
equation

(1.1)



















i ϕt +∆ϕ = 0 in Ω× (0,∞)

ϕ = 0 on Γ× (0,∞)

ϕ(0) = ϕ in Ω
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are conserved, i.e.

‖ϕ(t)‖L2(Ω) = ‖ϕ
0‖L2(Ω); ‖∇ϕ(t)‖(L2(Ω))n = ‖∇ϕ0‖L2(Ω))n , ∀ t ∈ (0,∞) .

Roughly, the stabilization problem can be formulated as follows: to intro-
duce a damping term in system (1.1) ensuring the exponential decay of L2(Ω) or
H1(Ω)-norms of solutions as t goes to infinity.

Note that solutions of the Schrödinger equation

i ϕt +∆ϕ = 0

are also solutions of the plate equation

ϕtt +∆2ϕ = 0 .

Therefore, one can try to obtain stabilization results for Schrödinger equation
from the corresponding ones for plate models. The stabilization problem for
plate models has been extensively studied during the last years (see, for instance,
J. Lagnese [7] and the references therein).

The goal of this paper is to study directly the stabilizability of Schrödinger
equation by adapting the multiplier methods developed during the past years in
the context of the stabilization of wave and plate equations. We will consider
both the boundary and internal stabilization problems. The first one consists
in producing the exponential decay by means of suitable dissipative boundary
conditions. In the internal stablization problem the damping term is assumed to
be supported in a subset of Ω and appears in system (1.1) as a right hand side in
the Schrödinger equation. Of course, in borth cases, from a practical view point
it is interesting to restrict the support of the damping term to a set as small as
possible.

Let x0 be any point of IRn and let us define the following partition of the
boundary Γ:

(1.2)







Γ0 =
{

x ∈ Γ; m(x) · ν(x) > 0
}

Γ1 = Γ \ Γ0 =
{

x ∈ Γ; m(x) · ν(x) ≤ 0
}

,

where m(x) = x−x0, ν(x) denotes the unit outward normal vector to Ω at x ∈ Γ
and · denotes the scalar product in IRn.

We will prove the boundary stabilizability of Schrödinger equation with a
boundary damping term supported on Γ0. The internal stabilization will be
proved with a damping term supported on a neighborhood of Γ0 in Ω (by “neigh-
borhood of Γ0 in Ω” we mean the intersection of Ω with a neighborhood of Γ0
in IRn). These are the analogues of the stabilization results for wave equations
proved in V . Komornik and E. Zuazua [6] and E. Zuazua [12].
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Let us state more precisely these two main results.

We introduce the following damped Schrödinger equation with dissipative
boundary condition:

(1.3)







































i yt +∆y = 0 in Ω× (0,∞)

∂y

∂ν
= −(m(x) · ν(x)) yt on Γ0 × (0,∞)

y = 0 on Γ1 × (0,∞)

y(x, 0) = y0(x) in Ω .

The natural space for initial data is

V =
{

ϕ ∈ H1(Ω): ϕ = 0 on Γ1
}

.

When Γ1 has non-empty interior in Γ, by Poincare’s inequality, we have

(1.4) ‖ϕ‖L2(Ω) ≤ α ‖∇ϕ‖(L2(Ω))n , ∀ϕ ∈ V .

Thus, we may consider V endowed with the norm induced by the scalar prod-
uct

(ϕ,ψ)v = Re

∫

Ω
∇ϕ · ∇ψ dx

which, in V , is equivalent to the norm of H1(Ω).

Multiplying in (1.3) by yt, integrating by parts and taking the real part we
formally obtain that

(1.5)
dE(t)

dt
= −

∫

Γ0

(m · ν) |yt(x, t)|
2 dΓ , ∀ t > 0 ,

where the energy E( · ) is given by

(1.6) E(t) =
1

2

∫

Ω
|∇y(x, t)|2 dx =

1

2
‖y(t)‖2v .

In (1.5), dΓ denotes the surface measure on Γ.

Identity (1.5) shows that the boundary conditions of system (1.3) are dissipa-
tive in V .

In order to solve system (1.3) we use classical semigroup theory. Let us intro-
duce the linear unbounded operator Aϕ = i∆ϕ with domain

D(A) =
{

ϕ ∈ V : ∆ϕ ∈ V,
∂ϕ

∂ν
= −i(m · ν)∆ϕ on Γ0

}

.
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Identity
∂ϕ

∂ν
= −i(m · ν)∆ϕ on Γ0

has to be understood in the following variational sense:

∫

Ω
∇ϕ · ∇ψ dx+

∫

Ω
(∆ϕ)ψ dx+

∫

Γ0

i(m · ν)∆ϕψ dΓ = 0 , ∀ψ ∈ V .

It is easy to see that (A,D(A)) is a m-dissipative operator in V . Therefore,
by Hille-Yosida’s Theorem, for every y0 ∈ D(A) there exists a unique solution

(1.7) y ∈ C
(

[0,∞); D(A)
)

∩ C1
(

[0,∞); V
)

of






yt(t) = Ay(t), ∀ t ∈ [0,∞)

y(0) = y0

or, equivalently, of system (1.3).
Furthermore, D(A) is dense in V and for every t ∈ [0,∞), the linear map

y0 → y(t)

extends to a unique contraction S(t) : V → V such that (S(t))t≥0 is a strongly
continuous semigroup of contractions in V .

Therefore, for every y0 ∈ V ,

(1.8) y(t) = S(t)y0 , ∀ t ≥ 0 ,

defines in a unique way a weak solution of (1.3).
Our main boundary stabilization result is as follows.

Theorem 1.1. Assume that Ω is a bounded domain of class C3 of IRn with
n ≤ 3. Let be x0 ∈ IRn such that Γ1 has non-empty interior in Γ.

Then, for every C > 1 there exists γ > 0 such that for any initial data y0 ∈ V
the energy E( · ) of solution y(t) = S(t) y0 of system (1.3) satisfies

(1.9) E(t) ≤ C E(0) e−γt , ∀ t > 0 .

Remark 1.1. If Γ0 ∩ Γ1 = ∅ the restriction on the dimension n ≤ 3 is not
needed. Indeed, in Theorem 1.1 we assume that n ≤ 3 in order to use Grisvard’s
[3] analysis of singularities of solutions of elliptic problems with mixed Dirichlet–
Neumann boundary conditions. This analysis of singularities is needed in order
to apply multiplier techniques. However, when Γ0∩Γ1 = ∅ solutions of (1.3) with
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smooth initial data satisfying suitable compatibility conditions remain smooth for
t > 0. Thus, Green’s formula suffices to justify the integrations by parts necessary
to apply multiplier methods. Notice that Γ0 ∩ Γ1 = ∅ holds when Ω = Ω1\Ω0
with Ω0 and Ω1 star-shaped domains with respect to x0 ∈ Ω0 if Ω0 ⊂ Ω1.

Let us now consider the internal stabilizability problem.
Let ω ⊂ Ω be a neighborhood of Γ0 in Ω and let be a = a(x) ∈ L∞(Ω) such

that

(1.10)







a ≥ 0 a.e. in Ω

∃a0 > 0: a ≥ a0 a.e. in ω .

Consider the following damped Schrödinger equation:

(1.11)























iyt +∆y + ia(x)y = 0 in Ω× (0,∞)

y = 0 on Γ× (0,∞)

y(0) = y0 in Ω.

It is easy to see that for any initial data y0 ∈ L2(Ω) there exists a unique
weak solution of (1.11) in the class

(1.12) y ∈ C
(

[0,∞); L2(Ω)
)

∩ C1
(

[0,∞); (H2(Ω) ∩H1
0 (Ω))

′
)

.

Let us define the L2(Ω)-energy

(1.13) F (t) =
1

2
‖y(t)‖2L2(Ω) , ∀ t > 0 .

We have

(1.14) F (t2)− F (t1) = −
∫ t2

t1

∫

Ω
a(x) |y(x, t)|2 dx dt , ∀ t2 > t1 ≥ 0 .

Therefore energy F ( · ) is non-increasing along trajectories.
We have the following exponential decay result.

Theorem 1.2. Let Ω be a bounded domain of IRn, n ≥ 1, with boundary
of class C3. Let be x0 ∈ IRn and ω ⊂ Ω a neighborhood of Γ0 in Ω. Assume that
a ∈ L∞(Ω) satisfies (1.10).

Then, for every C > 1, there exists γ > 0 such that

(1.15) F (t) ≤ C F (0) eγt , ∀ t > 0 ,
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for every solution of (1.11) with initial data y0 ∈ L2(Ω).

Applying in (1.3) the conjugate Schrödinger operator −i ∂t +∆, it is easy to
see that every solution of (1.3) satisfies also the plate equation

(1.16) ytt +∆2y = 0

with the following boundary conditions:

(1.17)



























∂y

∂ν
= −(m(x) · ν(x)) yt on Γ0 × (0,∞)

∂∆y

∂ν
= −(m(x) · ν(x))∆yt on Γ0 × (0,∞)

y = ∆y = 0 on Γ1 × (0,∞) .

Let us complete system (1.16)–(1.17) with initial conditions

(1.18) y(x, 0) = y0 , yt(x, 0) = y1(x) ,

such that {y0, y1} ∈W where

W =
{

(ϕ,ψ) ∈ V × V : ∆ϕ ∈ V,
∂ϕ

∂ν
= −(m · ν)ψ on Γ0

}

.

If Γ1 has non-empty interior on Γ, the map

{ϕ,ψ} ∈W → ‖{ϕ,ψ}‖W =
[

‖∆ϕ‖2v + ‖ψ‖
2
v

]1/2

defines a norm in W which is equivalent to the H3(Ω)×H1(Ω)-norm.
Applying Lebeau’s argument [8] (which consists in spliting the solution of the

plate equation in two solutions of Schrödinger equations) the semigroup associ-
ated to system (1.3) can be extended to a contraction semigroup

S̃(t) : W →W such that {y(t), yt(t)} = S̃(t) {y0, y1}

is a weak solution of (1.16)–(1.18) for every {y0, y1} ∈W .
The energy of solutions of (1.16)-(1.18) is the following:

G(t) =
1

2

∫

Ω

[

|∇yt(x, t)|
2 + |∇∆y(x, t)|2

]

dx .

We have the following stabilization result:

Theorem 1.3. Let Ω be a bounded domain of IRn with boundary of class
C3. Assume that n ≤ 3. Let be x0 ∈ IRn such that Γ1 has non-empty interior on
Γ.
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Then, for every C > 1 there exists γ > 0 such that

G(t) ≤ C e−γtG(0)

for every solution of (1.16)–(1.18) with initial data {y0, y1} ∈W .

Remark 1.2. If Γ0 ∩ Γ1 = ∅ assumption n ≤ 3 is not necessary.

Remark 1.3. In view of the particular structure of the boundary condi-
tions (1.17) (that allows us to split the solution of (1.16)–(1.18) in two solu-
tions of Schrödinger equations), Grisvard’s analysis of singularities of solutions of
Laplace’s equation with mixed boundary conditions suffices to apply multiplier
methods in system (1.16)–(1.18).

A set of the form Γ0 as in (1.2) is a simple example of subset of the boundary
satisfying the “geometric control property” introduced by C. Bardos, G. Lebeau
and J. Rauch [1]. This geometric control condition is, essentially, a necessary and
sufficient condition for the exact controllability and the stabilizability of wave
equations. However, due to infinite speed of propagation, this notion of “geomet-
ric control” is not completely natural in the context of the controllability and the
stabilizability of Schrödinger equation and plate models. However, G. Lebeau
in [8] has proved that this geometric control condition is sufficient to ensure the
boundary controllability of Schrödinger equation in H−1(Ω) with L2(Γ0) bound-
ary controls. In the special case of Γ0 satisfying (1.2) this result was proved by
E. Machtyngier in [10] and [11]. However, the geometric control property is not
necessary to ensure the exact controllability for Schrödinger and plate equations
as in shown in A. Haraux [4] and S. Jaffard [5]. Our stabilization results must be
understood in this context: sets of the form Γ0 as in (1.2) are natural candidates
to ensure tha stabilizability of Schrödinger equation but they are not optimal
from a geometric view-point.

Theorems 1.1 and 1.2 will be proved by using multiplier methods. The method
of multipliers has been recently adapted by E. Machtyngier [10], [11] to the study
of the exact controllability of Schrödinger equation. Our proofs combine the
techniques of [10], [11] with those developed in [6] and [12] for the study of the
stabilization problem for wave equations.

Let us finally mention the work by C. Fabre [2] where, in the context of
the exact controllability of Schrödinger equation, it is proved that the boundary
control can be obtained as limit of internal controls supported on a neighborhood
of the boundary as the width of the neighborhood tends to zero. It would be
interesting to prove this type of result in the context of the boundary and internal
stabilization of Schrödinger equation.
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The rest of the paper is organizes as follows. In Section 2, we prove the
boundary stabilization result Theorem 1.1. In Section 3 we prove the internal
stabilization result Theorem 1.2. In Section 4 we prove the boundary stabilization
result Theorem 1.3.

2 – Proof of the boundary stabilization result

Taking into account that D(A) is dense in V and that S(t) : V → V is
continuous for every t ≥ 0, it is sufficient to prove (1.9) for initial data in D(A).
Thus, in the sequel, we will assume that solution y of (1.3) belongs to the class
(1.7).

For ε > 0 we introduce the functional

(2.1) Eε(t) = E(t) + ε ρ(t) ,

with

(2.2) ρ(t) = Im

∫

Ω
y(x, t)m(x) · ∇y(x, t) dx , ∀ t ≥ 0 .

Note that (1.9) follows easily from the existence of positive constants ε0, C1
and C2 such that

(2.3) |ρ(t)| ≤ C1E(t) , ∀ t ≥ 0 ,

and

(2.4)
dEε(t)

dt
≤ −C2 εEε(t) , ∀ t ≥ 0, ∀ ε ∈ (0, ε0) .

Using (1.4) we have

|ρ(t)|≤‖y(t)‖L2(Ω) ‖m · ∇y(t)‖L2(Ω)≤α ‖m‖L∞(Ω) ‖y(t)‖
2
v=2RαE(t), ∀ t≥0,

with R = ‖m‖L∞(Ω). Thus, (2.3) holds with C1 = 2Rα.
Let us now prove (2.4).
Multiplying equation (1.3) by yt and integrating by parts over Ω we obtain

0 = Re

∫

Ω

[

i |yt|
2 +∆y yt

]

dx = −Re

∫

Ω
∇y · ∇yt dx+Re

∫

Γ

∂y

∂ν
yt dΓ .

It follows that

(2.5)
dE(t)

dt
= E′(t) = Re

∫

Ω
∇y · ∇yt dx = −

∫

Γ0

(m · ν) |yt|
2 dΓ , ∀ t ≥ 0 .
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Differentiating in (2.2) we have

(2.6) ρ′(t) = Im

∫

Ω
ytm · ∇y dx+ Im

∫

Ω
ym · ∇yt dx .

By using the divergence theorem we get

Im

∫

Ω
ym · ∇yt dx = Im

∫

Γ
(m · ν) y yt dΓ− Im

∫

Ω
m · ∇y yt dx− n Im

∫

Ω
y yt dx

= Im

∫

Γ0

(m · ν) y yt dΓ + Im

∫

Ω
m · ∇y yt dx− n Im

∫

Ω
y yt dx .

On the other hand, using equation (1.3) we get

Im

∫

Ω
y yt dx=−Re

∫

Ω
∆y y dx = Re

∫

Ω
∇y · ∇y dx− Re

∫

Γ

∂y

∂ν
y dΓ

=

∫

Ω
|∇y|2 dx+Re

∫

Γ0

(m · ν) yt y dΓ

and

Im

∫

Ω
m · ∇y yt dx = Re

∫

Ω
m · ∇y ·∆y dx .

Thus

(2.7) ρ′(t) = 2Re

∫

Ω
∆ym ·∇y dx−n

∫

Ω
|∇y|2 dx−Re

∫

Γ0

(m · ν) (i+n) y yt dΓ .

Now we use the following generalization of Grisvard’s inequality [3] proved in
[6].

Lemma 2.1. Assume that n ≤ 3. Let be ϕ,ψ ∈ V such that ∆ϕ ∈ L2(Ω)
and

∂ϕ

∂ν
= −(m · ν)ψ on Γ0 .

Then

2

∫

Ω
∆ϕm ·∇ϕdx ≤ (n−2)

∫

Ω
|∇ϕ|2 dx+2

∫

Γ

∂ϕ

∂ν
m ·∇ϕdΓ−

∫

Γ
(m ·ν) |∇ϕ|2 dΓ .

Note that in Lemma 2.1, ϕ and ψ are real valued functions. Applying Lemma
2.1 to the solution y of (1.3) we obtain that

(2.8)
Re

∫

Ω
∆ym · ∇y dx ≤

n− 2

2

∫

Ω
|∇y|2 dx+Re

∫

Γ

∂y

∂ν
m · ∇y dΓ

−
1

2

∫

Γ
(m · ν) |∇y|2 dΓ .
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Combining (2.7)–(2.8) we get that

ρ′(t) ≤ −2
∫

Ω
|∇y|2 dx− Re

∫

Γ0

(m · ν)
[

2yt(m · ∇y) + |∇y|
2 + (i+ n) y yt

]

dΓ

+ Re

∫

Γ1

(m · ν)

∣

∣

∣

∣

∂y

∂ν

∣

∣

∣

∣

2

dΓ−
∫

Γ1

(m · ν) |∇y|2 dΓ ≤(2.9)

≤ −2
∫

Ω
|∇y|2 dx− Re

∫

Γ0

(m · ν)
[

2yt(m · ∇y) + |∇y|
2 + (i+ n) y yt

]

dΓ

for every t ≥ 0 since ∇y = ∂y
∂ν ν on Γ1 × (0,∞) and m · ν < 0 on Γ1.

From (2.1), (2.5) and (2.9) we deduce that
(2.10)

E′ε(t) ≤ −4εE(t)−Re

∫

Γ0

(m · ν)
[

|yt|
2 + ε(n+ i) y yt + 2ε ytm · ∇y + ε|∇y|2

]

dΓ.

On the other hand, combining Poincare’s inequality (1.4) and the continuity of
the trace from H1(Ω) into L2(Γ) we deduce the existence of some constant β > 0
such that

∫

Γ0

(m · ν) |ϕ|2 dΓ ≤ β

∫

Ω
|∇ϕ|2 dx , ∀ϕ ∈ V .

Hence, it follows that

∣

∣

∣

∣

∫

Γ
(m · ν)(n+ i) y yt dΓ

∣

∣

∣

∣

≤
β

2
(n2 + 1)

∫

Γ0

(m · ν) |yt|
2 dΓ +

1

2β

∫

Γ0

(m · ν) |y|2 dΓ

≤
β

2
(n2 + 1)

∫

Γ0

(m · ν) |yt|
2 dΓ +

1

2

∫

Ω
|∇y|2 dx .(2.11)

On the other hand

(2.12) |2ytm · ∇y| ≤ R2|yt|
2 + |∇y|2 on Γ0 × (0,∞) .

Combining (2.10)–(2.12) we conclude that

E′ε(t) ≤ −3εE(t)− Re

∫

Γ0

(m · ν)

[

1− ε

(

R2 +
(n2 + 1)β

2

)]

|yt|
2 dΓ .

Choosing ε ≤ ε0 =
2

2R2+(n2+1)β
and taking into account that m · ν ≥ 0 on Γ0

we deduce that
E′ε(t) ≤ −3εE(t) .

This concludes the proof of (2.4). Theorem 1.1 is proved.
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3 – Proof of the internal stabilization result for Schrödinger equation

First we note that, in view of (1.14), it is sufficient to prove the existence of
a time T > 0 and a constant C0 > 0 such that

(3.1) F (T ) ≤ C0

∫ T

0

∫

Ω
a(x) |y(x, t)|2 dx dt

for every solution of (1.11) with initial data y0 ∈ L2(Ω). (In fact we will prove
that (3.1) holds for any T > 0 and some constant C = C(T ) > 0.)

Indeed, combining (1.14) and (3.1) it follows that

(3.2) F (T ) ≤
C0

1 + C0
F (0)

which, combined with the semigroup property, yields (1.15) with

(3.3) C = 1 +
1

C0
; γ =

1

T
log

(

1 +
1

C0

)

.

In order to prove (3.1) we write the solution y of (1.11) as y = ϕ + z where
ϕ = ϕ(x, t) solves

(3.4)



















i ϕt +∆ϕ = 0 in Ω× (0,∞)

ϕ = 0 on ∂Ω× (0,∞)

ϕ(0) = y0 in Ω

and z = z(x, t) satisfies

(3.5)



















i zt +∆z = −i a(x) y in Ω× (0,∞)

z = 0 on ∂Ω× (0,∞)

z(0) = 0 in Ω .

Using the non-increasing character of the energy F ( · ) we get

(3.6) F (T ) ≤ F (0) =
1

2
‖ϕ(0)‖2L2(Ω) .

Now we use the following observability estimate wich is due to E. Machtyngier,
[10], [11].
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Proposition 3.1 ([10], [11]). Let Ω and ω be as in the statement of Theorem
1.2. Then, for every T > 0 there exists a positive constant C1 = C1(T ) such that

(3.7) ‖ϕ(0)‖2L2(Ω) ≤ C1

∫ T

0

∫

ω
|ϕ(x, t)|2 dx dt

for every solution of (3.4) with initial data y0 ∈ L2(Ω).

Combining (3.6)-(3.7) and using (1.10) we get

(3.8)

F (T ) ≤
C1

2

∫ T

0

∫

ω
|ϕ(x, t)|2 dx dt

≤
C1

2a0

∫ T

0

∫

Ω
a(x) |ϕ(x, t)|2 dx dt

≤
C1

a0

∫ T

0

∫

Ω
a(x)

[

|y|2 + |z|2
]

dx dt

≤
C1

a0

∫ T

0

∫

Ω
a(x) |y|2 dx dt +

C1‖a‖∞
a0

∫ T

0
‖z(t)‖2L2(Ω) dt .

By classical estimates on Schrödinger equation we have

(3.9)

‖z‖2L∞(0,T ;L2(Ω)) ≤ C ‖i a(x) y‖2L2(Ω×(0,T ))

≤ C ‖a‖∞

∫ T

0

∫

Ω
a(x) |y(x, t)|2 dx dt .

Combining (3.8)–(3.9), (3.1) follows. This completes the proof of Theorem
1.2.

4 – Boundary stabilization of the plate model

Given {y0, y1} ∈ D(A) satisfying

(4.1)



























−∆v0 =
i

2
y1 −

1

2
∆y0 in Ω

v0 = 0 on Γ1
∂v0

∂ν
= − (m·ν)2 (y1 + i∆y0) on Γ0 .
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Define v = v(x, t) as the solution of

(4.2)







































−i vt +∆v = 0 in Ω× (0,∞)

v = 0 on Γ1 × (0,∞)

∂v

∂ν
= −(m · ν) vt on Γ0 × (0,∞)

v(0) = v0 .

Solution v of (4.2) is given by v(t) = S(t) v0 and belongs to C([0,∞); D(A)) ∩
C1([0,∞); V ).

It is easy to check that y(x, t) = v(x, t) + v(x, t) satisfies (1.16)–(1.18). Thus,
(1.16)–(1.18) we have a contraction semigroup {S̃(t)}t≥0 in W associated to sys-
tem (1.16)–(1.18) such that

{y(t), yt(t)} = S̃(t) {y0, y1} =
{

S(t) v0 + S(t) v0, i(∆S(t)) v0 −∆S(t) v0)
}

is the unique solution of (1.16)–(1.18) in C([0,∞);W ) for every {y0, y1} ∈W .

In order to prove Theorem 1.3 it is sufficient to prove the stabilization of
Schrödinger equation (4.2) in D(A), i.e.

(4.3) ‖∇∆v(t)‖2L2(Ω) ≤ C e−γt‖∇∆v0‖2L2(Ω) .

In Section 2 we have proved the exponential decay in V. In order to prove it
in D(A) it is sufficient to observe that, if v ∈ C([0,∞); D(A))∩C1([0,∞); V ) is
solution of (4.2) then

vt(t) = i∆v(t) = S(t) [i∆v0] ∈ C([0,∞);V )

is weak solution of (4.2) with initial data i∆v0 ∈ V . In view of the exponential
decay of the semigroup {S(t)}t≥0 in V we have

‖∆v(t)‖2V ≤ C e−γt ‖∆v0‖2V

which is equivalent to (4.3).

This conclude the proof of Theorem 1.3.
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[3] Grisvard, P. – Contrôlabilité exacte des solutions de l’équation des ondes en
présence de singularités, J. Math. pures et appl., 68 (1989), 215–259.
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CP 68530, Rio de Janeiro, R.J. CEP 21944 – BRASIL

and

E. Zuazua
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