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TOPOLOGICALLY BOOLEAN
AND 𝑔(𝑥)-CLEAN RINGS

Angelina Yan Mui Chin and Kiat Tat Qua

Abstract. Let 𝑅 be a ring with identity and let 𝑔(𝑥) be a polynomial in
𝑍(𝑅)[𝑥] where 𝑍(𝑅) denotes the center of 𝑅. An element 𝑟 ∈ 𝑅 is called
𝑔(𝑥)-clean if 𝑟 = 𝑢 + 𝑠 for some 𝑢, 𝑠 ∈ 𝑅 such that 𝑢 is a unit and 𝑔(𝑠) = 0.
The ring 𝑅 is 𝑔(𝑥)-clean if every element of 𝑅 is 𝑔(𝑥)-clean. We consider
𝑔(𝑥) = 𝑥(𝑥 − 𝑐) where 𝑐 is a unit in 𝑅 such that every root of 𝑔(𝑥) is central
in 𝑅. We show, via set-theoretic topology, that among conditions equivalent
to 𝑅 being 𝑔(𝑥)-clean, is that 𝑅 is right (left) 𝑐-topologically boolean.

1. Introduction

Let 𝑅 be a ring with identity and let 𝑔(𝑥) be a polynomial in 𝑍(𝑅)[𝑥] where
𝑍(𝑅) denotes the center of 𝑅. Let Id(𝑅) and 𝑈(𝑅) denote the set of idempotents
and the set of units in 𝑅, respectively. The notion of 𝑔(𝑥)-clean rings first appeared
in a 2002 paper of Camillo and Simón [1], where an element 𝑟 ∈ 𝑅 is called 𝑔(𝑥)-
clean if 𝑟 = 𝑢 + 𝑠 for some 𝑢 ∈ 𝑈(𝑅) and 𝑠 ∈ 𝑅 such that 𝑔(𝑠) = 0. The ring 𝑅 is
𝑔(𝑥)-clean if every element of 𝑅 is 𝑔(𝑥)-clean. Note that if 𝑟 ∈ 𝑅 is 𝑔(𝑥)-clean and
𝑔(𝑥) is a factor of a polynomial ℎ(𝑥) ∈ 𝑍(𝑅)[𝑥], then 𝑟 is also ℎ(𝑥)-clean.

Clearly, if 𝑔(𝑥) = 𝑥2 − 𝑥, then 𝑔(𝑥)-clean rings are clean. However, in general,
𝑔(𝑥)-clean rings are not necessarily clean. A well-known example is the group ring
Z(7)𝐶3 where Z(7) = {𝑚/𝑛 | 𝑚, 𝑛 ∈ Z, gcd(7, 𝑛) = 1} and 𝐶3 is the cyclic group of
order 3. By [7, Example 2.7], Z(7)𝐶3 is (𝑥4 −1)-clean. However, Han and Nicholson
[4] have shown that Z(7)𝐶3 is not clean.

Conversely, for a clean ring 𝑅, there may exist a 𝑔(𝑥) ∈ 𝑍(𝑅)[𝑥] such that 𝑅 is
not 𝑔(𝑥)-clean (see [3, Example 2.3]). Indeed, let 𝑅 be a Boolean ring containing
more than two elements. Let 𝑐 ∈ 𝑅 where 0 ̸= 𝑐 ̸= 1 and let 𝑔(𝑥) = 𝑥2+(1+𝑐)𝑥+𝑐 =
(𝑥 + 1)(𝑥 + 𝑐). Since 𝑅 is Boolean, so it is clean. Suppose that 𝑅 is 𝑔(𝑥)-clean.
Then 𝑐 = 𝑢 + 𝑠 for some 𝑢 ∈ 𝑈(𝑅) and 𝑠 ∈ 𝑅 such that 𝑔(𝑠) = 0. Note that
𝑢 = 1 since 𝑅 is Boolean. Therefore, 𝑠 = 𝑐 + 1. However, 𝑔(𝑐 + 1) = 𝑐 ̸= 0 which
contradicts the assumption that 𝑔(𝑠) = 0. Hence, it follows that 𝑅 is clean but not
𝑔(𝑥)-clean.
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In [2], a ring 𝑅 (not necessarily commutative) is said to be right (left) topo-
logically boolean, or a right (left) tb-ring for short, if for every pair of distinct
maximal right (left) ideals of 𝑅, there is a nontrivial idempotent in exactly one of
them. The case where 𝑅 is commutative has been considered earlier in [5]. Now let
𝑔𝑐(𝑥) = 𝑥(𝑥−𝑐) ∈ 𝑍(𝑅)[𝑥]. Here, we define a ring 𝑅 to be right (left) 𝑐-topologically
boolean, or a right (left) 𝑐-tb ring for short, if for every pair of distinct maximal
right (left) ideals of 𝑅, there is a root of 𝑔𝑐(𝑥) in exactly one of them. We say that
𝑅 is a 𝑐-tb ring if it is both right and left 𝑐-tb. Clearly, when 𝑐 = 1, a right (left)
𝑐-tb ring is just a right (left) tb-ring.

In this paper we consider 𝑔(𝑥) = 𝑥(𝑥− 𝑐) ∈ 𝑍(𝑅)[𝑥] where 𝑐 is a unit in 𝑅 such
that every root of 𝑔(𝑥) is central in 𝑅 and show via set-theoretic topology that
among conditions equivalent to 𝑅 being 𝑔(𝑥)-clean is that 𝑅 is right (left) 𝑐-tb.
Throughout this paper, all rings are assumed to be associative with identity.

2. Some preliminaries

Let 𝑛 be a positive integer. For a ring 𝑅 and polynomial 𝑔(𝑥) ∈ 𝑍(𝑅)[𝑥],
an element 𝑟 ∈ 𝑅 is said to be (𝑛, 𝑔(𝑥))-clean if 𝑟 = 𝑢1 + · · · + 𝑢𝑛 + 𝑠 for some
𝑢1, . . . , 𝑢𝑛 ∈ 𝑈(𝑅) and 𝑠 ∈ 𝑅 such that 𝑔(𝑠) = 0. The ring 𝑅 is (𝑛, 𝑔(𝑥))-clean if
all of its elements are (𝑛, 𝑔(𝑥))-clean. Clearly, a (1, 𝑔(𝑥))-clean ring is 𝑔(𝑥)-clean.
In [8], an element 𝑟 ∈ 𝑅 is said to be 𝑛-clean if 𝑟 = 𝑒 + 𝑢1 + · · · + 𝑢𝑛 for some
𝑒 ∈ Id(𝑅) and 𝑢1, . . . , 𝑢𝑛 ∈ 𝑈(𝑅). The ring 𝑅 is 𝑛-clean if all of its elements are
𝑛-clean.

In [7, Theorem 2.1], Wang and Chen showed that if 𝑔(𝑥) = (𝑥 − 𝑎)(𝑥 − 𝑏) ∈
𝑍(𝑅)[𝑥] with 𝑏 − 𝑎 ∈ 𝑈(𝑅), then 𝑅 is 𝑔(𝑥)-clean if and only if 𝑅 is clean. In [3,
Theorem 3.2], Fan and Yang gave another proof of the same result. In the following,
we give an extension to 𝑛-clean rings as follows:

Theorem 2.1. Let 𝑅 be a ring and let 𝑔(𝑥) = (𝑥 − 𝑎)(𝑥 − 𝑏)ℎ(𝑥) ∈ 𝑍(𝑅)[𝑥]
such that 𝑏 − 𝑎 ∈ 𝑈(𝑅). If 𝑅 is 𝑛-clean, then 𝑅 is (𝑛, 𝑔(𝑥))-clean (𝑛 ∈ N).

Proof. Let 𝑟 ∈ 𝑅. Since 𝑅 is 𝑛-clean, then (𝑟 −𝑎)(𝑏−𝑎)−1 = 𝑒+𝑢1 + · · ·+𝑢𝑛

for some 𝑒 ∈ Id(𝑅) and 𝑢𝑖 ∈ 𝑈(𝑅) (𝑖 = 1, . . . , 𝑛). Thus, 𝑟 = (𝑒(𝑏 − 𝑎) + 𝑎) +
𝑢1(𝑏 − 𝑎) + · · · + 𝑢𝑛(𝑏 − 𝑎), where 𝑢𝑖(𝑏 − 𝑎) ∈ 𝑈(𝑅) (𝑖 = 1, . . . , 𝑛). Note that
𝑔((𝑒(𝑏−𝑎)+𝑎) = 𝑒(𝑏−𝑎)(𝑒(𝑏−𝑎)− (𝑏−𝑎))ℎ(𝑒(𝑏−𝑎)+𝑎) = 0 · ℎ(𝑒(𝑏−𝑎)+𝑎) = 0.
Hence, 𝑒(𝑏 − 𝑎) + 𝑎 is a root of 𝑔(𝑥). It follows that 𝑅 is (𝑛, 𝑔(𝑥))-clean. �

By Theorem 2.1 and the fact that clean rings are 𝑛-clean for any integer 𝑛 > 1
(by [9, Lemma 2.1]), we obtain the following:

Corollary 2.1. Let 𝑅 be a ring and let 𝑔(𝑥) = (𝑥 − 𝑎)(𝑥 − 𝑏) ∈ 𝑍(𝑅)[𝑥] such
that 𝑏 − 𝑎 ∈ 𝑈(𝑅). Then 𝑅 is 𝑔(𝑥)-clean if and only if 𝑅 is 𝑛-clean for all positive
integers 𝑛.

Let 𝑅 be a ring and let 𝑔(𝑥) ∈ 𝑍(𝑅)[𝑥]. An element 𝑟 ∈ 𝑅 is called weakly
𝑔(𝑥)-clean if 𝑟 = 𝑢 + 𝑠 or 𝑟 = 𝑢 − 𝑠 for some 𝑢 ∈ 𝑈(𝑅) and 𝑠 ∈ 𝑅 such that
𝑔(𝑠) = 0. We say that 𝑅 is weakly 𝑔(𝑥)-clean if every element in 𝑅 is weakly
𝑔(𝑥)-clean. Clearly, a 𝑔(𝑥)-clean ring is weakly 𝑔(𝑥)-clean. It is also clear that if
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𝑅 is a weakly 𝑔(𝑥)-clean ring and 𝑔(𝑥) is a factor of a polynomial ℎ(𝑥) ∈ 𝑍(𝑅)[𝑥],
then 𝑅 is also a weakly ℎ(𝑥)-clean ring.

In the following we obtain some results which generalise parts of Theorem 3.5
in [3].

Proposition 2.1. Let 𝑅 be a ring which is weakly 𝑥(𝑥 − 𝑐)-clean where 𝑐 ∈
𝑍(𝑅). Then 𝑐 ∈ 𝑈(𝑅).

Proof. Let 𝑔(𝑥) = 𝑥(𝑥−𝑐) ∈ 𝑍(𝑅)[𝑥]. Since 𝑅 is weakly 𝑔(𝑥)-clean, 𝑐 = 𝑢+𝑠
or 𝑐 = 𝑢−𝑠 for some 𝑢 ∈ 𝑈(𝑅) and 𝑠 ∈ 𝑅 such that 𝑔(𝑠) = 0. For the case 𝑐 = 𝑢+𝑠,
we have that 𝑠 = −𝑢 + 𝑐 and hence, 𝑠2 = (−𝑢 + 𝑐)2 = 𝑢2 + 𝑐𝑟 for some 𝑟 ∈ 𝑅.
Since 0 = 𝑔(𝑠) = 𝑠(𝑠 − 𝑐), we also have 𝑠2 = 𝑐𝑠. Thus, 𝑐(𝑠 − 𝑟) = 𝑢2 ∈ 𝑈(𝑅). This
implies that 𝑐 ∈ 𝑈(𝑅). For the case 𝑐 = 𝑢 − 𝑠, we have that 𝑠 = 𝑢 − 𝑐 and hence,
𝑠2 = (𝑢 − 𝑐)2 = 𝑢2 − 𝑐𝑟 for some 𝑟 ∈ 𝑅. Since 0 = 𝑔(𝑠) = 𝑠(𝑠 − 𝑐), we also have
𝑠2 = 𝑐𝑠. Thus, 𝑐(𝑠 + 𝑟) = 𝑢2 ∈ 𝑈(𝑅) which implies that 𝑐 ∈ 𝑈(𝑅). �

Lemma 2.1. Let 𝑅 be a ring and let 𝑔(𝑥) = 𝑎𝑥𝑚 − 𝑏𝑥𝑛, ℎ(𝑥) = 𝑎𝑥𝑚 + 𝑏𝑥𝑛 ∈
𝑍(𝑅)[𝑥] where 𝑚, 𝑛 are positive integers of different parity. Then 𝑅 is 𝑔(𝑥)-clean
if and only if 𝑅 is ℎ(𝑥)-clean.

Proof. (⇒): Assume that 𝑅 is a 𝑔(𝑥)-clean ring. Then for any 𝑟 ∈ 𝑅, −𝑟 =
𝑢+𝑠 where 𝑢 ∈ 𝑈(𝑅) and 𝑠 ∈ 𝑅 such that 𝑔(𝑠) = 0. It follows that 𝑟 = (−𝑢)+(−𝑠).
Note that

ℎ(−𝑠) = 𝑎(−𝑠)𝑚 + 𝑏(−𝑠)𝑛 = (−1)𝑚𝑎𝑠𝑚 + (−1)𝑛𝑏𝑠𝑛

=
{︃

𝑎𝑠𝑚 − 𝑏𝑠𝑛, if 𝑚 is even, 𝑛 is odd
−(𝑎𝑠𝑚 − 𝑏𝑠𝑛), if 𝑚 is odd, 𝑛 is even

= 0.

It follows that 𝑟 is ℎ(𝑥)-clean.
(⇐): Suppose that 𝑅 is ℎ(𝑥)-clean. Then for any 𝑟 ∈ 𝑅, −𝑟 = 𝑢 + 𝑠 where

𝑢 ∈ 𝑈(𝑅) and 𝑠 ∈ 𝑅 such that ℎ(𝑠) = 0. It follows that 𝑟 = (−𝑢) + (−𝑠). Then
since

𝑔(−𝑠) = 𝑎(−𝑠)𝑚 − 𝑏(−𝑠)𝑛 = (−1)𝑚𝑎𝑠𝑚 − (−1)𝑛𝑏𝑠𝑛

=
{︃

𝑎𝑠𝑚 + 𝑏𝑠𝑛, if 𝑚 is even, 𝑛 is odd
−(𝑎𝑠𝑚 + 𝑏𝑠𝑛), if 𝑚 is odd, 𝑛 is even

= 0,

we have that 𝑟 is 𝑔(𝑥)-clean. �

Theorem 2.2. Let 𝑅 be a ring and let 𝑐 ∈ 𝑍(𝑅). Then the following are
equivalent:

(a) 𝑅 is 𝑥(𝑥 − 𝑐)-clean;
(b) 𝑅 is 𝑥(𝑥 + 𝑐)-clean;
(c) 𝑅 is 𝑛-clean for all positive integers 𝑛 and 𝑐 ∈ 𝑈(𝑅).
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Proof. (a)⇔ (b): This follows readily by Lemma 2.1.
(a)⇒ (c): Assume (a). By Proposition 2.1, we have 𝑐 ∈ 𝑈(𝑅). It follows by
Corollary 2.1 that 𝑅 is 𝑛-clean for all positive integers 𝑛.
(c)⇒ (a): This follows readily by Theorem 2.1 (take 𝑛 = 1). �

Lemma 2.2. Let 𝑅 be a ring, let 𝑐 ∈ 𝑈(𝑅) and let all roots of 𝑔(𝑥) = 𝑥(𝑥 − 𝑐)
in 𝑅 be central. For any 𝑎, 𝑏 ∈ 𝑅, if 𝑎𝑏 = 𝑐, then 𝑏𝑎 = 𝑐.

Proof. Let 𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑏 = 𝑐. Since 𝑐 is a root of 𝑔(𝑥), we have that 𝑐 is
central and therefore, 𝑏𝑎(𝑏𝑎−𝑐) = 𝑏𝑎𝑏𝑎−𝑐(𝑏𝑎) = 𝑏(𝑎𝑏)𝑎−𝑐(𝑏𝑎) = 𝑐(𝑏𝑎)−𝑐(𝑏𝑎) = 0.
Thus, 𝑏𝑎 is a root of 𝑔(𝑥) and hence, 𝑏𝑎 is also central. Then 𝑐𝑎 = (𝑎𝑏)𝑎 = 𝑎(𝑏𝑎) =
𝑏𝑎𝑎 and it follows that 𝑐2 = 𝑐(𝑎𝑏) = (𝑐𝑎)𝑏 = (𝑏𝑎𝑎)𝑏 = 𝑏𝑎𝑐. Since 𝑐 ∈ 𝑈(𝑅) (by the
hypothesis), it follows that 𝑐 = 𝑏𝑎. �

3. Some equivalent conditions for 𝑥(𝑥 − 𝑐)-clean rings

Let 𝑅 be a ring. A proper right (left) ideal 𝑃 of 𝑅 is said to be prime if
𝑎𝑅𝑏 ⊆ 𝑃 with 𝑎, 𝑏 ∈ 𝑅 implies that 𝑎 ∈ 𝑃 or 𝑏 ∈ 𝑃 . Given a ring 𝑅, let Spec𝑟(𝑅)
be the set of all proper right ideals of 𝑅 which are prime. It has been shown
in [10, Corollary 2.8] that if 𝑅 is not a right quasi-duo ring, then Spec𝑟(𝑅) is a
topological space with the weak Zariski topology but not with the Zariski topology.
For a right ideal 𝐼 of 𝑅, let U𝑟(𝐼) = {𝑃 ∈ Spec𝑟(𝑅) | 𝑃 + 𝐼} and V𝑟(𝐼) =
Spec𝑟(𝑅) r U𝑟(𝐼). Let 𝜏 = {U𝑟(𝐼) | 𝐼 is a right ideal of 𝑅}. Then 𝜏 contains the
empty set and Spec𝑟(𝑅). In general, 𝜏 is just a subbase of the weak Zariski topology
on Spec𝑟(𝑅). For any element 𝑎 ∈ 𝑅, let U𝑟(𝑎) = U𝑟(𝑎𝑅) and V𝑟(𝑎) = V𝑟(𝑎𝑅).
Then U𝑟(𝑎) = {𝑃 ∈ Spec𝑟(𝑅) | 𝑎 /∈ 𝑃} and V𝑟(𝑎) = {𝑃 ∈ Spec𝑟(𝑅) | 𝑎 ∈ 𝑃}. The
left prime spectrum Spec𝑙(𝑅) and the weak Zariski topology associated with it are
defined analogously. Let Max𝑟(𝑅) (Max𝑙(𝑅)) be the set of all maximal right (left)
ideals of 𝑅. Since maximal right (left) ideals are prime right (left) ideals (see [6]),
Max𝑟(𝑅) (Max𝑙(𝑅)) inherits the weak Zariski topology on Spec𝑟(𝑅) (Spec𝑙(𝑅)).
Let 𝑈𝑟(𝐼) = Max𝑟(𝑅) ∩ U𝑟(𝐼) and 𝑉𝑟(𝐼) = Max𝑟(𝑅) ∩ V𝑟(𝐼) for any right ideal 𝐼
of 𝑅. Then, in particular, 𝑈𝑟(𝑎) = Max𝑟(𝑅) ∩U𝑟(𝑎) and 𝑉𝑟(𝑎) = Max𝑟(𝑅) ∩V𝑟(𝑎)
for any 𝑎 ∈ 𝑅.

Recall that a clopen set in a topological space is a set which is both open and
closed. A topological space is said to be zero-dimensional if it has a base consisting
of clopen sets.

We begin with the following lemmas.

Lemma 3.1. Let 𝑅 be a ring, let 𝑔(𝑥) = 𝑥(𝑥 − 𝑐) ∈ 𝑍(𝑅)[𝑥] where 𝑐 ∈ 𝑈(𝑅)
and let 𝑠 ∈ 𝑅 be a central root of 𝑔(𝑥). Let 𝑁 be a maximal right ideal of 𝑅. If
𝑠 /∈ 𝑁 , then 𝑐 − 𝑠 ∈ 𝑁 .

Proof. Since 𝑔(𝑠) = 0, we have that 𝑠(𝑠 − 𝑐) = 0 ∈ 𝑃 for any prime right
ideal 𝑃 of 𝑅. Then since 𝑠 is central, it follows that every prime right ideal of 𝑅
contains either 𝑠 or 𝑠 − 𝑐. Now since 𝑐 = 𝑠 + (𝑐 − 𝑠) and 𝑐 ∈ 𝑈(𝑅), we have that
1 = 𝑠𝑐−1 + (𝑐 − 𝑠)𝑐−1. Hence, every prime right ideal of 𝑅 contains either 𝑠 or 𝑐 − 𝑠
but not both. Since maximal right ideals are prime right ideals (by [6]), it follows
that if 𝑠 /∈ 𝑁 , then 𝑐 − 𝑠 ∈ 𝑁 . �
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Lemma 3.2. Let 𝑅 be a ring and let 𝑔(𝑥) = 𝑥(𝑥−𝑐) ∈ 𝑍(𝑅)[𝑥] where 𝑐 ∈ 𝑈(𝑅).
Let 𝑠, 𝑡 ∈ 𝑅 be central roots of 𝑔(𝑥). Then 𝑐−1𝑠𝑡, 𝑠 + 𝑡 − 𝑐−1𝑠𝑡 and 𝑐 − 𝑠 are also
roots of 𝑔(𝑥).

Proof. We first note that since 𝑠(𝑠 − 𝑐) = 0 and 𝑡(𝑡 − 𝑐) = 0, we thus have
𝑠 = 𝑐−1𝑠2 and 𝑡 = 𝑐−1𝑡2. Then

𝑔(𝑐−1𝑠𝑡) = 𝑐−1𝑠𝑡(𝑐−1𝑠𝑡 − 𝑐) = 𝑐−2(𝑠𝑡)2 − 𝑠𝑡

= 𝑐−2(𝑠𝑡)2 − 𝑐−1𝑠2𝑡 = 𝑐−2(𝑠2𝑡)(𝑡 − 𝑐) = 0.

We also have that

𝑔(𝑠 + 𝑡 − 𝑐−1𝑠𝑡) = (𝑠 + 𝑡 − 𝑐−1𝑠𝑡)(𝑠 + 𝑡 − 𝑐−1𝑠𝑡 − 𝑐)
= 𝑠(𝑠 − 𝑐) + 𝑠(𝑡 − 𝑐−1𝑠𝑡) + 𝑡(𝑠 − 𝑐−1𝑠𝑡)

+ 𝑡(𝑡 − 𝑐) − 𝑐−1𝑠𝑡(𝑠 − 𝑐−1𝑠𝑡) − 𝑐−1𝑠𝑡(𝑡 − 𝑐) = 0.

Finally, we note that 𝑔(𝑐 − 𝑠) = (𝑐 − 𝑠)((𝑐 − 𝑠) − 𝑐) = (𝑠 − 𝑐)𝑠 = 𝑔(𝑠) = 0. �

Let 𝑅 be a ring and let 𝑔(𝑥) = 𝑥(𝑥 − 𝑐) ∈ 𝑍(𝑅)[𝑥] where 𝑐 ∈ 𝑈(𝑅). Let
𝜉 = {𝑈𝑟(𝑠) | 𝑠 ∈ 𝑅 is a central root of 𝑔(𝑥) = 𝑥(𝑥 − 𝑐)}. By Lemma 3.2 and the
following lemma, we may deduce that 𝜉 is closed under intersection and union.

Lemma 3.3. Let 𝑅 be a ring and let 𝑔(𝑥) = 𝑥(𝑥 − 𝑐) ∈ 𝑍(𝑅)[𝑥] with 𝑐 ∈ 𝑈(𝑅)
such that every root of 𝑔(𝑥) is central in 𝑅. If 𝑠, 𝑡 ∈ 𝑅 are roots of 𝑔(𝑥), then the
following hold.

(a) 𝑈𝑟(𝑠) ∩ 𝑈𝑟(𝑡) = 𝑈𝑟(𝑐−1𝑠𝑡);
(b) 𝑈𝑟(𝑠) ∪ 𝑈𝑟(𝑡) = 𝑈𝑟(𝑠 + 𝑡 − 𝑐−1𝑠𝑡);
(c) 𝑈𝑟(𝑠) = 𝑉𝑟(𝑐 − 𝑠). In particular, every set in 𝜉 is clopen.

Proof. (a) Let 𝑃 ∈ U𝑟(𝑠) ∩ U𝑟(𝑡). Then 𝑃 ∈ Spec𝑟(𝑅) with 𝑠, 𝑡 /∈ 𝑃 . Note
that 𝑐 /∈ 𝑃 . Since 𝑐, 𝑠, 𝑡 are central in 𝑅 and 𝑃 is a prime right ideal of 𝑅, it
follows that 𝑐−1𝑠𝑡 /∈ 𝑃 . Hence, 𝑃 ∈ U𝑟(𝑐−1𝑠𝑡) and therefore, U𝑟(𝑠) ∩ U𝑟(𝑡) ⊆
U𝑟(𝑐−1𝑠𝑡). Conversely, suppose that 𝑃 ∈ U𝑟(𝑐−1𝑠𝑡). If 𝑠 or 𝑡 belongs to 𝑃 , then
since 𝑠, 𝑡 are central in 𝑅 and 𝑃 is a right ideal of 𝑅, it follows that 𝑐−1𝑠𝑡 ∈ 𝑃 ; a
contradiction. Thus 𝑠 and 𝑡 do not belong to 𝑃 , that is, 𝑃 ∈ U𝑟(𝑠) ∩U𝑟(𝑡). Hence,
U𝑟(𝑐−1𝑠𝑡) ⊆ U𝑟(𝑠) ∩ U𝑟(𝑡). The equality U𝑟(𝑠) ∩ U𝑟(𝑡) = U𝑟(𝑐−1𝑠𝑡) thus follows.
Then 𝑈𝑟(𝑠)∩ 𝑈𝑟(𝑡) = U𝑟(𝑠)∩ U𝑟(𝑡)∩Max𝑟(𝑅) = U𝑟(𝑐−1𝑠𝑡)∩Max𝑟(𝑅) = 𝑈𝑟(𝑐−1𝑠𝑡).

(b) Let 𝑃 ∈ U𝑟(𝑠) ∪ U𝑟(𝑡). Then 𝑠 /∈ 𝑃 or 𝑡 /∈ 𝑃 . Without loss of generality,
suppose that 𝑠 /∈ 𝑃 . Since 𝑠(𝑠 − 𝑐) = 0 ∈ 𝑃 and 𝑠 /∈ 𝑃 with 𝑠 central in 𝑅, it
follows that 𝑠−𝑐 ∈ 𝑃 . Then (1−𝑐−1𝑠)𝑡 = −𝑐−1(𝑠−𝑐)𝑡 ∈ 𝑃 . If 𝑠+(1−𝑐−1𝑠)𝑡 ∈ 𝑃 ,
then it will follow that 𝑠 ∈ 𝑃 ; a contradiction. Thus, 𝑠 + (1 − 𝑐−1𝑠)𝑡 /∈ 𝑃 and
hence, 𝑃 ∈ U𝑟(𝑠 + (1 − 𝑐−1𝑠)𝑡). The inclusion U𝑟(𝑠) ∪ U𝑟(𝑡) ⊆ U𝑟(𝑠 + (1 − 𝑐−1𝑠)𝑡)
therefore holds. For the reverse inclusion, suppose that 𝑃 ∈ U𝑟(𝑠 + (1 − 𝑐−1𝑠)𝑡).
Then 𝑠 + (1 − 𝑐−1𝑠)𝑡 /∈ 𝑃 . If 𝑠 and 𝑡 both belong to 𝑃 , then 𝑠 + (1 − 𝑐−1𝑠)𝑡 ∈ 𝑃 ;
a contradiction. Hence, either 𝑠 /∈ 𝑃 or 𝑡 /∈ 𝑃 , that is, 𝑃 ∈ U𝑟(𝑠) or 𝑃 ∈ U𝑟(𝑡).
Therefore, 𝑃 ∈ U𝑟(𝑠) ∪ U𝑟(𝑡) and the inclusion U𝑟(𝑠 + (1 − 𝑐−1𝑠)𝑡) ⊆ U𝑟(𝑠) ∪ U𝑟(𝑡)
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follows. Hence, U𝑟(𝑠) ∪ U𝑟(𝑡) = U𝑟(𝑠 + (1 − 𝑐−1𝑠)𝑡). It follows that
𝑈𝑟(𝑠) ∪ 𝑈𝑟(𝑡) = (U𝑟(𝑠) ∩ Max𝑟(𝑅)) ∪ (U𝑟(𝑡) ∩ Max𝑟(𝑅))

= (U𝑟(𝑠) ∪ U𝑟(𝑡)) ∩ Max𝑟(𝑅)
= U𝑟(𝑠 + (1 − 𝑐−1𝑠)𝑡) ∩ Max𝑟(𝑅) = 𝑈𝑟(𝑠 + (1 − 𝑐−1𝑠)𝑡).

(c) By using Lemma 3.1, we have 𝑈𝑟(𝑠) = Max𝑟(𝑅)r𝑈𝑟(𝑐 − 𝑠) = 𝑉𝑟(𝑐 − 𝑠). It
follows that every set in 𝜉 is clopen. �

Next, we extend Proposition 2.4 in [2] as follows:
Proposition 3.1. Let 𝑅 be an 𝑥(𝑥 − 𝑐)-clean ring with 𝑐 ∈ 𝑍(𝑅) such that

every root of 𝑥(𝑥 − 𝑐) is central in 𝑅. Then 𝑅 is a right 𝑐-tb ring.
Proof. By Proposition 2.1, 𝑐 ∈ 𝑈(𝑅). Let 𝑀 and 𝑁 be distinct maximal right

ideals of 𝑅. Then there exists 𝑎 ∈ 𝑀 r𝑁 and 𝑁 + 𝑎𝑅 = 𝑅. Hence, 1 − 𝑎𝑟 ∈ 𝑁 for
some 𝑟 ∈ 𝑅. Since 𝑁 is a right ideal of 𝑅, 𝑐 − 𝑎𝑟𝑐 = (1 − 𝑎𝑟)𝑐 ∈ 𝑁 . Let 𝑦 = 𝑎𝑟𝑐.
Then 𝑐 − 𝑦 ∈ 𝑁 and 𝑦 ∈ 𝑀 r𝑁 . Since 𝑅 is 𝑥(𝑥 − 𝑐)-clean, there exist a unit 𝑢 ∈ 𝑅
and a root 𝑠 ∈ 𝑅 of 𝑥(𝑥 − 𝑐) such that 𝑦 = 𝑢 + 𝑠. If 𝑠 ∈ 𝑀 , then 𝑢 = 𝑦 − 𝑠 ∈ 𝑀
from which it follows that 𝑀 = 𝑅; a contradiction since 𝑀 is a maximal right
ideal of 𝑅. Thus, 𝑠 /∈ 𝑀 . If 𝑠 /∈ 𝑁 , then 𝑐 − 𝑠 ∈ 𝑁 (by Lemma 3.1) and hence,
𝑢 = 𝑦 − 𝑠 = (𝑦 − 𝑐) + (𝑐 − 𝑠) ∈ 𝑁 . It follows that 𝑁 = 𝑅 which is also not possible
since 𝑁 is a maximal right ideal of 𝑅. We thus have that 𝑠 is a root of 𝑥(𝑥 − 𝑐)
belonging to 𝑁 only. Hence, 𝑅 is a right 𝑐-tb ring. �

Proposition 3.2. Let 𝑅 be a ring and let 𝑔(𝑥) = 𝑥(𝑥 − 𝑐) ∈ 𝑍(𝑅)[𝑥] with
𝑐 ∈ 𝑈(𝑅) such that every root of 𝑔(𝑥) in 𝑅 is central. If 𝑅 is a right 𝑐-tb ring, then
𝜉 forms a base for the weak Zariski topology on Max𝑟(𝑅). In particular, Max𝑟(𝑅)
is a compact, zero-dimensional Hausdorff space.

Proof. Note that if 𝑀1 and 𝑀2 are two distinct maximal right ideals of 𝑅,
then since 𝑅 is a right 𝑐-tb ring, there exists a root 𝑠 ∈ 𝑅 of 𝑔(𝑥) such that 𝑠 /∈ 𝑀1,
𝑠 ∈ 𝑀2 (that is, 𝑀1 ∈ 𝑈𝑟(𝑠), 𝑀2 /∈ 𝑈𝑟(𝑠)). The points in Max𝑟(𝑅) can therefore
be separated by disjoint clopen sets belonging to 𝜉. Hence, Max𝑟(𝑅) is Hausdorff.
By [2, Lemma 2.1] we have that Max𝑟(𝑅) is compact.

To show that 𝜉 forms a base for the weak Zariski topology on Max𝑟(𝑅), let
𝐾 ⊆ Max𝑟(𝑅) be a closed subset and take 𝑀 /∈ 𝐾. For each 𝑁 ∈ 𝐾, since 𝑁 ̸= 𝑀 ,
there exists a clopen set 𝑈𝑟(𝑠𝑁 ) ∈ 𝜉 separating 𝑀 and 𝑁 , say 𝑁 ∈ 𝑈𝑟(𝑠𝑁 ). The
collection {𝑈𝑟(𝑠𝑁 ) | 𝑁 ∈ 𝐾} is therefore an open cover of the set 𝐾. Since 𝐾 is
compact, it has a finite subcover, that is, 𝐾 is contained in a finite cover of sets
of the form 𝑈𝑟(𝑠𝑁 ) with 𝑁 ∈ 𝐾. By Lemma 3.3, there exists a clopen set 𝐶 ∈ 𝜉
separating 𝑀 from 𝐾. Hence, 𝜉 forms a base for the weak Zariski topology on
Max𝑟(𝑅). Since every set in 𝜉 is clopen (by Lemma 3.3), it follows that Max𝑟(𝑅)
is zero-dimensional. �

Proposition 3.3. Let 𝑅 be a ring and let 𝑔(𝑥) = 𝑥(𝑥 − 𝑐) ∈ 𝑍(𝑅)[𝑥] with
𝑐 ∈ 𝑈(𝑅) such that every root of 𝑔(𝑥) in 𝑅 is central. If 𝜉 forms a base for the
weak Zariski topology on Max𝑟(𝑅), then for any 𝑎 ∈ 𝑅, there exists a root 𝑠 of 𝑔(𝑥)
such that 𝑠 /∈ 𝑀 for every 𝑀 ∈ 𝑉𝑟(𝑎) and 𝑠 ∈ 𝑁 for every 𝑁 ∈ 𝑉𝑟(𝑎 − 𝑐).
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Proof. Consider the disjoint closed sets 𝑉𝑟(𝑎) and 𝑉𝑟(𝑎 − 𝑐). Since 𝜉 forms
a base for the weak Zariski topology on Max𝑟(𝑅) and Max𝑟(𝑅) is compact, there
is a clopen set 𝑈𝑟(𝑠) ∈ 𝜉 separating the sets 𝑉𝑟(𝑎) and 𝑉𝑟(𝑎 − 𝑐). Without loss of
generality, assume that 𝑉𝑟(𝑎) ⊆ 𝑈𝑟(𝑠) and 𝑉𝑟(𝑎 − 𝑐) ⊆ 𝑉𝑟(𝑠). Then it follows that
𝑠 /∈ 𝑀 for every 𝑀 ∈ 𝑉𝑟(𝑎) and 𝑠 ∈ 𝑁 for every 𝑁 ∈ 𝑉𝑟(𝑎 − 𝑐). �

Proposition 3.4. Let 𝑅 be a ring and let 𝑔(𝑥) = 𝑥(𝑥 − 𝑐) ∈ 𝑍(𝑅)[𝑥] with
𝑐 ∈ 𝑈(𝑅) such that every root of 𝑔(𝑥) in 𝑅 is central. If for every 𝑎 ∈ 𝑅 there
exists a root 𝑠 ∈ 𝑍(𝑅) of 𝑔(𝑥) such that 𝑉𝑟(𝑎) ⊆ 𝑈𝑟(𝑠) and 𝑉𝑟(𝑎 − 𝑐) ⊆ 𝑉𝑟(𝑠), then
𝑅 is 𝑔(𝑥)-clean.

Proof. Let 𝑎 ∈ 𝑅. By the hypothesis, there exists a root 𝑠 ∈ 𝑍(𝑅) of 𝑔(𝑥)
such that 𝑉𝑟(𝑎) ⊆ 𝑈𝑟(𝑠) and 𝑉𝑟(𝑎 − 𝑐) ⊆ 𝑉𝑟(𝑠). We claim that 𝑎 − 𝑠 is a unit. Let
𝑀 be a maximal right ideal of 𝑅. Note that if 𝑎 ∈ 𝑀 , then 𝑎−𝑠 /∈ 𝑀 , since 𝑠 /∈ 𝑀 .
Next, suppose that 𝑎 /∈ 𝑀 . If 𝑎 − 𝑠 ∈ 𝑀 , then 𝑠 /∈ 𝑀 , and hence, 𝑐 − 𝑠 ∈ 𝑀 (by
Lemma 3.1). Then since (𝑎−𝑐)+(𝑐−𝑠) = 𝑎−𝑠 ∈ 𝑀 , it follows that 𝑎−𝑐 ∈ 𝑀 and
hence, 𝑠 ∈ 𝑀 (because 𝑉𝑟(𝑎 − 𝑐) ⊆ 𝑉𝑟(𝑠)); a contradiction. Thus, 𝑎 − 𝑠 /∈ 𝑀 . We
have therefore shown that 𝑎 − 𝑠 /∈ 𝑀 for any maximal right ideal 𝑀 of 𝑅. Hence,
𝑎 − 𝑠 has a right inverse, that is, (𝑎 − 𝑠)𝑣 = 1 for some 𝑣 ∈ 𝑅. Then (𝑎 − 𝑠)(𝑣𝑐) = 𝑐
and by Lemma 2.2, we have that (𝑣𝑐)(𝑎 − 𝑠) = 𝑐. Since 𝑐 ∈ 𝑈(𝑅) ∩ 𝑍(𝑅), we can
conclude that 𝑎 − 𝑠 is a unit in 𝑅. Hence, 𝑎 is the sum of a unit and a root of 𝑔(𝑥)
in 𝑅. Since 𝑎 is arbitrary in 𝑅, it follows that 𝑅 is 𝑔(𝑥)-clean. �

We are now ready for the main result.

Theorem 3.1. Let 𝑅 be a ring and let 𝑥(𝑥 − 𝑐) ∈ 𝑍(𝑅)[𝑥] with 𝑐 ∈ 𝑈(𝑅). If
every root of 𝑥(𝑥 − 𝑐) is central in 𝑅, then the following conditions are equivalent.

(a) 𝑅 is 𝑥(𝑥 − 𝑐)-clean;
(b) 𝑅 is 𝑥(𝑥 + 𝑐)-clean;
(c) 𝑅 is 𝑛-clean for all positive integers 𝑛;
(d) 𝑅 is a right 𝑐-tb ring;
(e) The collection 𝜉 = {𝑈𝑟(𝑠) | 𝑠 ∈ 𝑅 is a root of 𝑥(𝑥 − 𝑐)}

forms a base for the weak Zariski topology on Max𝑟(𝑅);
(f) For every 𝑎 ∈ 𝑅, there exists a root 𝑠 ∈ 𝑍(𝑅) of 𝑥(𝑥 − 𝑐)

such that 𝑉𝑟(𝑎) ⊆ 𝑈𝑟(𝑠) and 𝑉𝑟(𝑎 − 𝑐) ⊆ 𝑉𝑟(𝑠);
(g) 𝑅 is a left 𝑐-tb ring;
(h) The collection 𝜉 = {𝑈𝑙(𝑠) | 𝑠 ∈ 𝑅 is a root of 𝑥(𝑥 − 𝑐)}

forms a base for the weak Zariski topology on Max𝑙(𝑅).

Proof. By Theorem 2.2, it follows readily that (a) ⇔ (b) ⇔ (c). By Propo-
sition 3.1, we readily have (a) ⇒ (d). The implications (d) ⇒ (e) ⇒ (f) follow by
Propositions 3.2 and 3.3, respectively. The implication (f) ⇒ (a) is straightforward
by using Proposition 3.4. By using the left analogue of the arguments in the proofs
of (a) ⇒ (d) ⇒ (e) ⇒ (f) ⇒ (a), we obtain the equivalence (a) ⇔ (g) ⇔ (h). �

A ring 𝑅 is said to be strongly clean if every element of 𝑅 is the sum of an
idempotent and a unit which commute with one another. A strongly clean ring is
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therefore clean and hence, 𝑥(𝑥 − 1)-clean. On the other hand, an abelian 𝑥(𝑥 − 1)-
clean ring is clearly strongly clean. We thus have the following as a consequence of
Theorem 3.1:

Corollary 3.1. Let 𝑅 be an abelian ring. The following conditions are equiv-
alent:

(a) 𝑅 is clean;
(b) 𝑅 is strongly clean;
(c) 𝑅 is 𝑥(𝑥 + 1)-clean;
(d) 𝑅 is 𝑛-clean for all positive integers 𝑛;
(e) 𝑅 is a right tb-ring;
(f) The collection 𝜉 = {𝑈𝑟(𝑠) | 𝑠 ∈ Id(𝑅)}

forms a base for the weak Zariski topology on Max𝑟(𝑅);
(g) For every 𝑎 ∈ 𝑅, there exists 𝑠 ∈ Id(𝑅)

such that 𝑉𝑟(𝑎) ⊆ 𝑈𝑟(𝑠) and 𝑉𝑟(𝑎 − 1) ⊆ 𝑉𝑟(𝑠);
(h) 𝑅 is a left tb-ring;
(i) The collection 𝜉 = {𝑈𝑙(𝑠) | 𝑠 ∈ Id(𝑅)}

forms a base for the weak Zariski topology on Max𝑙(𝑅).
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