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Abstract. We introduce and investigate two types of the space U∗ of s-ultra-
distributions meant as equivalence classes of suitably defined fundamental se-
quences of smooth functions; we prove the existence of an isomorphism be-
tween U∗ and the respective space D′∗ of ultradistributions: of Beurling type
if ∗ = (p!t) and of Roumieu type if ∗ = {p!t}. We also study the spaces T ∗ and
T̃ ∗ of t-ultradistributions and t̃-ultradistributions, respectively, and show that
these spaces are isomorphic with the space S′∗ of tempered ultradistributions
both in the Beurling and the Roumieu case.

1. Introduction

That distributions based by Sobolev [29] and Schwartz [28] on functional anal-
ysis can be founded on a more elementary sequential approach was remarked by
Mikusiński already in [18] and [19]. This idea was accomplished by him in coop-
eration with Sikorski in [20,21] and then, in the extended form, together with the
third author Antosik in [1].

Roumieu and Beurling in [27] and [2] introduced two types of ultradistribu-
tion spaces, substantially larger than the space of distributions. However only the
famous papers [12–14] of Komatsu which substantially extended the knowledge on
the structure of these spaces gave impulse to an intensive development of the theory
of ultradistributions of both types in various directions. In particular, the theory
became an important tool of microlocal analysis.

Similarly as in the case of distributions one can expect that an ultradistribu-
tion can also be viewed as, in a sense, a limit of a sequence of functions or, more
precisely, as an equivalent class of sequences of smooth functions, suitably approx-
imating it. Our aim in this paper is to provide a sequential approach to the theory
of non-quasi-analytic ultradistributions of both Beurling and Roumieu types [12].
Analogously to the sequential theory of distributions [1], we introduce sequential
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ultadistributions, called shortly s-ultadistributions, as equivalence classes of fun-
damental sequences of smooth functions which, however, are defined by means of
ultradifferential operators instead of differential operators. The difference is intrin-
sic and requires distinct techniques: instead of polynomials we have to use functions
of sub-exponential growth and apply their specific properties. In showing that the
sequential approach is equivalent to the classical approach to ultradistribution the-
ory (see [12–14]) one needs to know intrinsic structures of ultradistributions as
well as of tempered ultradistributions (see [5–10, 17–25]); the equivalence of the
two approaches will be proved through Hermite expansions and certain structural
properties of tempered ultradistributions.

In order to simplify our exposition we will consider only the Gevrey sequence of
functions of the form Mp = p!t (p ∈ Z+) for t > 1; they satisfy all conditions usually
assumed for a general sequence (Mp)p. Therefore we use the simplified symbols

D(t)(Ω), D{t}(Ω) for the spaces D(Mp)(Ω), D{Mp}(Ω) of test functions on an open
set Ω ⊆ Rd and S(t)(Rd), S{t}(Rd) for the spaces S(Mp)(Rd), S{Mp}(Rd) of test
functions on Rd, respectively. This concerns also their duals, i.e., D′(t)(Ω), D′{t}(Ω)
are the spaces of ultradistributions of Beurling and Roumieu type on the set Ω and
S ′

(R(t))d, S ′{t}(Rd) are the spaces of tempered ultradistributions of Beurling and
Roumieu type on Rd, respectively. We traditionally use the upper index ∗ for a
common notation of the considered spaces both in the Beurling and Roumieu cases,
i.e., D∗(Ω), S∗(Rd), D′∗(Ω), S ′∗(Rd) are common symbols for the pairs of spaces
listed above. The mentioned spaces were investigated in [5, 10, 12, 16, 25] and
in many other papers. It should be noted that another approach to the theory
of ultradistributions was developed by D. Vogt, R. Meise and their collaborators.
There exists an extensive literature in this direction with many applications; we
refer here just to a few of them (and references therein): [3,4,23,30].

Our approach to ultradistributions is similar to that presented in [1] for dis-
tributions. We begin with the definition of a special kind of fundamental se-
quences of smooth functions and the corresponding equivalence classes called s-
ultradistributions which are elements of the space that we denote by U∗(Ω). This
is done in sections 2 and 3 together with an analysis of operations on s-ultradis-
tributions, the convergence structure in U∗(Ω) and actions of s-ultradistributions
on test functions belonging to D∗(Ω). In section 4 we introduce the spaces T ∗ and
T̃ ∗ of t-and t̃-ultradistributions, respectively. Again we discuss their structure, the
convergence in them and actions of considered tempered ultradistributions on ele-
ments of the respective spaces of test functions. It is well-known (see e.g. [8]) that
there exists a topological isomorphism between the space S∗(Rd) and the Köthe
echelon space s∗ of sequences of sub-exponential growth. Using this fact we prove
in section 5 that the spaces T ∗ and T̃ ∗ are topologically isomorphic with the space
S′∗(Rd). Applying the results of section 5, we prove in section 6 the existence of a
sequential topological isomorphism between the spaces U∗(Ω) and D′∗(Ω).

1.1. Preliminaries. The sets of all positive integers, nonnegative integers,
real and complex numbers are denoted by N, N0, R and C, respectively.
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For x = (x1, . . . , xd) ∈ Rd, y = (y1, . . . , yd) ∈ Rd, α = (α1, . . . , αd) ∈ Nd
0,

β = (β1, . . . , βd) ∈ Nd
0 and λ ∈ R, we use the following notation

x+ y := (x1 + y1, . . . , xd + yd) ∈ Rd; x+ λ := (x1 + λ, . . . , xd + λ) ∈ Rd;

λx := (λx1, . . . , λxd) ∈ Rd; x 6 y if xj 6 yj for j = 1, . . . , d;

xα :=

d∏

j=1

x
αj

j ; α! := α1! . . . αd!;

(
α

β

)
:=

d∏

j=1

(
αj

βj

)
for α 6 β;

|x| := (x2
1 + · · ·+ x2

d)1/2; |α| := α1 + · · ·+ αd;

Dα = Dα
x := Dα1

1 . . . Dαd

d , where D
αj

j := (−i∂/∂xj)αj (j = 1, . . . , d)

and the following summation notation

∞∑

|α|=0

:=
∑

α∈Nd
0

;
∑

06α6β

:=

β1∑

α1=0

· · ·
βd∑

αd=0

.

The symbol X◦ for X ⊂ Rd means the interior of X and the symbol K ⋐ V
for an open V ⊂ Rd means that K is a compact subset of V . By Ω we denote
a fixed open subset of Rd. By C(Rd) and C(K) for K ⋐ Ω we denote the sets

of all continuous functions on Rd and K, respectively, and by
C(Rd)−−−→ and

C(K)−−−→
the uniform convergences on Rd and K of sequences of functions in C(Rd) and
C(K), respectively; the latter is the convergence in the Banach space C(K) with
the supremum norm ‖ · ‖∞. We denote a sequence (αn)n∈N of numbers (functions,
distributions, ultradistributions) shorter by (αn) or (αn)n and the mapping Ω ∋
x 7→ F (x) by F or F (x). The norm in L2(Rd) is denoted by ‖·‖2 and the convergence

in L2(Rd) by
2−→. The support of a function (distribution, ultradistribution) f

by supp f . A function f is called compactly supported if there is a K ⋐ Rd

such that supp f ⊂ K. For the Fourier transform of ϕ ∈ S(Rd) we use the two
symbols: F(ϕ) = ϕ̂ :=

∫
Rd ϕ(x)e−i〈x,·〉dx; clearly, F(Dαϕ) = ξαϕ̂ (ξ ∈ Rd). For

the properties of the spaces of test functions D(Ω), S(Rd) and their duals D′(Ω),
S′(Rd) we refer to [28].

We recall some notions from [12]. By the associated function, corresponding
to the Gevrey sequence (p!t)p for a fixed t > 1, we mean the following function:

M(ρ) := supp∈N0
log+ ρ

p/p!t = ekρ1/t

for ρ > 0, where k > 0 is an appropriate
constant. Denote by R the set of all sequences (rp) of positive numbers strictly
increasing to infinity. By the (rp)-associated function, corresponding to (rp) ∈ R,
we mean the function: N(rp)(ρ) := supp∈N0

log+ ρp/Np for ρ > 0, where (Np)p∈N0

is defined by means of (rp) as follows

(1.1) N0 := 1; Np := p!tRp, where Rp :=

p∏

j=1

rj , for p ∈ N.

Note that if (rp) ∈ R, then for every k > 0 there is a ρ0 > 0 such that N(rp)(ρ) 6

ekρ1/t

for ρ > ρ0 (see [12]).
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Let K ⋐ Ω and h > 0. We recall the definitions of some spaces of test functions
[12]

Et,h(K) :=
{
ϕ ∈ C∞(Ω): Ph,K(ϕ) := sup

x∈K,α∈Nd
0

|Dαϕ(x)|
h|α|α!t

<∞
}

;

Dt,h
K := Et,h(K) ∩ {ϕ ∈ C∞(Ω) : suppϕ ⊂ K};
D(t)

K := lim←−
h→0

Dt,h
K ; D(t)(Ω) := lim−→

K⋐Ω

D(t)
K ;

D{t}
K := lim−→

h→∞

Dt,h
K ; D{t}(Ω) := lim−→

K⋐Ω

D{t}
K .

As already said, we use the common symbol D∗(Ω) for the spaces D(t)(Ω) and
D{t}(Ω) and D′∗(Ω) for their duals. Recall now (see [5]) the definitions of the
spaces S(t)(Rd) and S{t}(Rd), invariant under the Fourier transform

St
h(Rd) :=

{
f ∈ S(Rd) : ∃C > 0 ∀α, β ∈ Nd

0
‖xα∂βf‖2

h|α+β|α!tβ!t
6 C

}
;

S(t)(Rd) := lim←−
h→0

St
h(Rd); S{t}(Rd) := lim−→

h→∞

St
h(Rd).

Notice that the space S(t)(Rd) is nontrivial if t > 1/2, while S{t}(Rd) is nontrivial
if t > 1/2. The spaces S(t)(Rd) and S{t}(Rd) are denoted commonly by S∗(Rd)
and their duals by S′∗(Rd).

The Hermite polynomials Hn and the corresponding Hermite functions hn are
defined on R by

Hn(x) := (−1)nex2
( d

dx

)n

(e−x2

), hn(x) := (2nn!
√
π)− 1

2 e−x2/2Hn(x)

for x ∈ R, n ∈ N0. The d-dimensional Hermite functions hn are defined by

hn(x) := hn1(x1) . . . hnd
(xd), x = (x1, . . . , xd) ∈ Rd, n ∈ Nd

0.

They form an orthonormal basis for L2(Rd) and are the eigenfunctions of the prod-

uct H =
∏d

i=1(−∂2/∂x2
i +x2

i ) of the one-dimensional Hermite harmonic oscillators,

so that Hα =
∏d

i=1(−∂2/∂x2
i + x2

i )αi and

Hαhk(x) = (2k + 1)αhk(x) =

d∏

i=1

(2ki + 1)αihk(x), x ∈ Rd, α, k ∈ Nd
0.

Note that H is a self-adjoint operator. For f ∈ S(Rd), the Hermite coefficients are
ck =

∫
Rd fhk = (f, hk)L2 for k ∈ Nd

0.
We have

D∗(Rd) →֒ S∗(Rd) →֒ S(Rd) →֒ L2(Rd) →֒ S′(Rd) →֒ S′∗(Rd) →֒ D′∗(Rd),

where the symbol →֒ means that the identity mapping is a continuous and dense
embedding.
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A sequence (δn) of the form δn := ndϕ(n·), n ∈ N, where ϕ ∈ D∗(Rd), ϕ = 1 in
B(0, 1/2) and ϕ = 0 out of B(0, 1) (B(x0, r) denotes the closed ball with the center
at x0 and radius r) is called a delta sequence in D′∗(Rd).

1.2. Ultradifferential operators. We recall the definitions and some results
related to ultradifferential operators from [12–16]. A formal expression P (D) =∑∞

|α|=0 aαD
α (aα ∈ C), corresponding to the function P (z) =

∑∞
|α|=0 aαz

α (z ∈
Cd), is called an ultradifferential operator of the Beurling class (p!t) resp. of the
Roumieu class {p!t}) if it satisfies the condition

∃h > 0 ∃C > 0 (resp. ∀h > 0 ∃C > 0) ∀α ∈ Nd
0 |aα| 6

Ch|α|

(α!)t
;

in the Roumieu case, the condition can be expressed in the equivalent form

∃(rp) ∈ R ∃C > 0 ∀α ∈ Nd
0 |aα| 6

C

(α!)tR|α|
,

where R|α| is defined in (1.1) and t > 1 will be fixed throughout the paper. We use
the common term ultradifferential operator of the class ∗ in both cases of Beurling
and Roumieu.

If P (D) is an ultradifferential operator of the Beurling class (resp. of the
Roumieu class), then the function P (z) satisfies, by [12, Proposition 4.5], the esti-
mate

∃h > 0 ∃C > 0 (resp. ∀h > 0, ∃C > 0) ∀z ∈ Cd |P (z)| 6 Ceh|z|1/t

;

in the Roumieu case, the estimate can be written in the equivalent form

∃(rp) ∈ R ∃C > 0 ∀ξ ∈ Rd |P (ξ)| 6 Cec(|ξ|)1/t

,

where c is the subordinate function of (rp), i.e., an increasing function on [0,∞)
such that c(0) = 0 and c(ρ)/ρ→ 0 as ρ→∞ corresponding to (rp) by means of the
identity: M(c(ρ)) = N(rp)(ρ) (ρ > 0), where N(rp) is the (rp)-associated function
(see [12]).

We denote by P(t) (resp. P{t}) the class of ultradifferential operators Pr(D)
of Beurling type (resp. P(rp)(D) of Roumieu type) of the form

Pr(D) =

(
1 +

d∑

j=1

D2
j

)l ∞∏

p=1

[
1 +

( d∑

j=1

D2
j

)
/r2p2t

] (
=

∞∑

p=0

apD
p

)
,(1.2)

P(rp)(D) =

(
1 +

d∑

j=1

D2
j

)l ∞∏

p=1

[
1 +

( d∑

j=1

D2
j

)
/r2

p p
2t

] (
=

∞∑

p=0

bpD
p

)
,(1.3)

where r > 0, (rp) ∈ R and l > 0. Replacing Dj by ξj in (1.2) and (1.3) we
get the ultra-polynomials Pr(ξ) and P(rp)(ξ) of the Beurling and Roumieu type
corresponding to the ultradifferential operators Pr(D) and P(rp)(D), respectively.
They can be described in the following way (see [12]):
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Ultra-polynomials of Beurling type are of sub-exponential growth, i.e., there
are constants C1, C2, C > 0 and h1, h2, h > 0 such that

(1.4) C1e
h1|ξ|1/t

6 |Pr(ξ)| 6 C2e
h2|ξ|1/t

, ξ ∈ Rd,

and

|ap| 6 Chp/p!t, p ∈ N0.

The description of ultra-polynomials in the Roumieu case is more difficult.
One can prove, similarly to the Beurling case, that for a given (rp) ∈ R and its
subordinate function c there exists a constant C > 0 such that

(1.5) Cec(|ξ|)1/t

6 |P(rp)(ξ)|, ξ ∈ Rd.

To get a suitable upper estimate we have to find a sequence (r0,p) ∈ R and its
subordinate function c0 such that the inequality

(1.6) (1 + |ξ|2)l|P(rp)(ξ)| 6 C0e
c0(|ξ|)1/t

, ξ ∈ Rd.

holds for some C0 > 0 and all l > 0. For this aim we use the following property
of a subordinate function which is a consequence of Lemma 3.12 (see also Lemma
3.10) in [12].

Let c be an arbitrary subordinate function and put c̃ := 2c. There exists a
sequence (r0

p) ∈ R such that the (r0
p)-associated function N(r0

p) and the subordinate

function c0 corresponding to (r0
p) satisfy the inequality

M(c̃(ρ)) 6 N(r0
p)(ρ) = M(c0(ρ)), ρ > 0,

Consequently,

c0(ρ) > c̃(ρ) = 2c(ρ), ρ > 0.

The above remarks can be formulated as follows:

Lemma 1.1. For an arbitrary subordinate function c, corresponding to some
sequence (rp) ∈ R, and h > 0 there exist a sequence (r0

p) ∈ R and its subordinate
function c0 such that

c0(ρ) > hc(ρ), ρ > 0.

In particular, for a given subordinate function c there exists another subordinate
function c0 (both corresponding to appropriate sequences from R) such that c0(ρ) >
c(2ρ) for all ρ > 0.

In Subsection 4.2 we will need also the following lemma.

Lemma 1.2. (a) If Pr ∈ P(t) (resp. P(rp) ∈ P{t}), then there exist r0 > 0 (resp.

(r0
p) ∈ R), C > 0 and ε > 0 such that

|DαPr(x)| 6 Cα!

ε|α|
er0|x|1/t

, x ∈ Rd, α ∈ Nd
0

(
resp. |DαP(rp)(x)| 6 Cα!

ε|α|
e

c
(r0

p)
(|x|)1/t

, x ∈ Rd, α ∈ Nd
0

)
,

where c(r0
p) is the subordinate function corresponding to the sequence (r0

p).
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(b) If Pr̃ ∈ P(t) (resp. P(r̃p) ∈ P{t}), then there exist r̃0 > 0 (resp. (r̃0
p) ∈ R),

C > 0 and ε > 0 such that

|Dα(1/Pr(x))| 6 Cα!

ε|α|
e−r̃0|x|1/t

, x ∈ Rd, α ∈ Nd
0

(
resp. |Dα(1/P(r̃p)(x))| 6 Cα!

ε|α|
e

−c
(r̃0

p)
(|x|)1/t

, x ∈ Rd, α ∈ Nd
0

)
,

where c(r̃0
p) is the subordinate function corresponding to the sequence (r̃0

p).

Proof. In the proof of both parts we use Lemma 1.1 and the Cauchy integral
formula for ultra-polynomials on the circles K(x, ε) around x ∈ Rd. The proof of
(b) follows from the estimate

|Dα(1/P(r̃p)(x))| 6 Cα!

ε|α|
e−N(r̃p)(|x|), x ∈ Rd, α ∈ Nd

0,

shown in [26, Lemma 2.1], because we can construct c(r̃0
p) such that

N(r̃p)(|x|) = M(c(r̃p)(|x|)) = Cc(r̃p)(|x|)1/t = c(r̃0
p)(|x|)1/t

for some C > 0 and |x| > 0, in view of Lemma 3.10 in [12] and Lemma 1.1. The
proof of (a) follows from Proposition 4.5 in [12]; see also the last part of the proof
of Theorem 10.2 in [12]. �

The symbol P∗ will be common for the classes P(t) and P{t} of ultradiffer-
ential operators of Beurling and Roumieu types and P2∗ will mean the space of
t-ultradistributions of both types. The corresponding spaces of ultradifferentiabile
functions will be denoted by P∗

u and P2∗
u , respectively. This notation looks compli-

cated but it helps to distinct the different use of P : P (D), P (x), P (ξ). To simplify
the exposition we will usually consider ultradifferential operators of the form (1.2)
and (1.3), but in some proofs we need their general form.

Denote by µβ the operator acting on measurable functions G as follows:
(µβG)(ξ) := (iξ)βG(ξ) for ξ ∈ Rd and β ∈ Nd

0; in particular µ0G = G. We
will use in the sequel the following assertion: for arbitrary β ∈ Nd

0, q ∈ [1,∞]
and Pr(D) ∈ P(t) with r > 0 (resp. P(rp)(D) ∈ P{t} with (rp) ∈ R) there exists

Pr̃(D) ∈ P(t) with r̃ > r (resp. P(r̃p) ∈ P{t} with (r̃p) ∈ R, rp/r̃p ↓ 0 as p → ∞)
such that

(1.7)

µβ
Pr

Pr̃
∈ Lq(Rd) and F−1

(
µβ
Pr

Pr̃

)
∈ Lq(Rd)

(
resp. µβ

P(rp)

P(r̃p)
∈ Lq(Rd) and F−1

(
µβ

P(rp)

P(r̃p)

)
∈ Lq(Rd)

)

and, analogously, with P2∗
u instead of P∗

u, the following one

(1.8)
(Pr(2α+ 1)

Pr̃(2α+ 1)

)
α∈Zd

∈ lq
(

resp.
(P(rp)(2α+ 1)

P(r̃p)(2α+ 1)

)
α∈Zd

∈ lq
)
,

where P (2α+ 1) :=
∑∞

|k|=0 ak

∏d
i=1(2αi + 1)ki for α ∈ Nd

0.

The following well-known assertions will also be used in the sequel; their proofs
can be found e.g. in [5,25].
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Lemma 1.3. (a) A smooth function ϕ on Rd belongs to S∗(Rd) iff for arbitrary
P ∈ P∗ and P1 ∈ P∗

u we have ‖P1P (−D)ϕ‖2 <∞.
(b) If ϕn ∈ S∗(Rd) (n ∈ N0) and ϕn

S∗

−−→ ϕ0 as n → ∞, then for arbitrary

P ∈ P∗ and P1 ∈ P∗
u we have P1P (−D)ϕn

S∗

−−→ P1P (−D)ϕ0 as n→∞.
(c) If ϕn ∈ S∗(Rd) (n ∈ N0) and ϕn

S∗

−−→ ϕ0 as n→∞, then for every P ∈ P∗

we have P (H)ϕn
S∗

−−→ P (H)ϕ0 as n→∞.

2. Fundamental sequences

Let us recall that Schwartz distributions in the sequential approach presented
in [1] are equivalence classes of fundamental sequences of smooth functions defined
with the use of derivatives of finite order. We introduce s-ultradistributions of
Beurling and Roumieu type in a similar way, but our fundamental sequences are
defined by means of the ultradifferential operators Pr(D) and P(rp)(D), respectively,
instead of finite order differential operators.

If P ∈ P∗ and F is an integrable function compactly supported, then
P (z)F(F )(z) (z ∈ Cd) is an entire function of sub-exponential growth on Rd. If the

inverse Fourier transform F−1(PF̂ ) is a locally integrable function, then we define

(2.1) P (D)F (x) := F−1(PF̂ )(x), x ∈ Rd

to give the meaning for the formal acting of the ultradifferential operator P (D) on a
compactly supported smooth function. If F is a compactly supported smooth func-
tion such that suppF ⊂ K1 ⋐ Ω and P ∈ P∗ is of the form P (D) :=

∑∞
|α|=0 aαD

α,

then the left hand side of (2.1) is meant as follows

(2.2) P (D)F (x) := lim
k→∞

Pk(D)F (x), x ∈ K,

where Pk(D) :=
∑k

|α|=0 aαD
α and the limit in (2.2) is assumed to exist for every

x ∈ K and to be a smooth function on K. In this case the limit defines f(x) =
P (D)F (x) for x ∈ K and gives the meaning of (2.3) below.

Definition 2.1. A sequence (fn) of smooth functions defined on an open set
Ω ⊂ Rd is called s-fundamental (of type ∗, i.e., of Beurling or Roumieu type, re-
spectively) in Ω if for arbitrary K1 ⋐ Ω and K ⋐ K◦

1 there exist an ultradifferential
operator P (D) ∈ P∗, a sequence (Fn) of smooth functions on Ω and a continuous
function F0 on Ω such that

fn = P (D)Fn on K (n ∈ N), suppFn ⊂ K1 (n ∈ N0)(2.3)

and Fn
C(K)−−−→ F0 as n→∞.

The equality in (2.3) is meant in the sense of (2.2). In the sequel, for a given
K ⋐ Ω we will always take a set K1 ⋐ Ω with K ⋐ K◦

1 which is sufficiently close
to K, not referring explicitly about it (one can show, taking an appropriate cut-of
function, that the definition does not depend on the choice of K1).
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Remark 2.1. 1◦ One can consider in (2.3) all ultradifferential operators of
class ∗, not only belonging to P∗, which gives a more general form of the definition.
Since both formulations are equivalent, we will use the above one for simplicity.

2◦ Let Ω1,Ω be open sets in Rd such that Ω1 ⊂ Ω. If a sequence (fn) is
s-fundamental in Ω, then it is s-fundamental in Ω1.

3◦ Let (fn) be a sequence of smooth functions in Ω. If for every open set
Ω0 ⊂ Ω the sequence (fn|Ω0) is s-fundamental in Ω0, then (fn) is s-fundamental
in Ω.

Definition 2.2. Let (fn) and (gn) be s-fundamental sequences in an open
set Ω. We write (fn) ∼ (gn) if for arbitrary K1 ⋐ Ω and K ⋐ K◦

1 , there exist an
ultradifferential operator P ∈ P∗ and sequences (Fn), (Gn) of smooth functions on
Ω such that

fn = P (D)Fn, gn = P (D)Gn on K (n ∈ N),

suppFn, suppGn ⊂ K1 (n ∈ N), and Fn
C(K)→← Gn as n→∞,

where the symbol Fn
C(K)→← Gn means that (Fn) and (Gn) converge in C(K) to a

common continuous function H on Ω.

Remark 2.2. It is clear that if (fn) and (gn) are s-fundamental sequences in
Ω, then (fn) ∼ (gn) iff the sequence f1, g1, f2, g2, f3, g3, . . . is s-fundamental in Ω.

Obviously, the relation ∼ is reflexive and symmetric. To prove its transitivity
we need some auxiliary statements.

Proposition 2.1. Fix K1 ⋐ Ω and K ⋐ K◦
1 . Assume that (fn) satisfies

Definition 2.1 in the Roumieu case, i.e., fn = P(rp)(D)Fn on K, suppFn ⊂ K1 for

n ∈ N0 and Fn
C(K)−−−→ F0 as n→∞ for a sequence (Fn) of smooth functions and a

continuous function F0 on Ω. Then there are a P(r̃p) ∈ P{t}, where (r̃p) ∈ R with

rp/r̃p ↓ 0 as p→∞ and F−1(P(rp)/P(r̃p)) ∈ L1(Rd), smooth functions F̃n (n ∈ N)

and a continuous function F̃0 on Ω such that

fn = P(r̃p)(D)F̃n on K (n ∈ N), supp F̃n ⊂ K1 (n ∈ N0)

and F̃n
C(K)−−−→ F̃0 as n→∞.

The same assertion holds in the Beurling case (with the corresponding notation).

Proof. By (1.7), for arbitrary β ∈ Nd
0 (in particular, for β = 0) we can find

(r̃p) ∈ R with rp/r̃p ↓ 0 as p→∞ such that

µβ

P(rp)

P(r̃p)
∈ L1(Rd) and F−1

(
µβ

P(rp)

P(r̃p)

)
∈ L1(Rd).

Define

(2.4) F̃n := κK

[
F−1

(P(rp)

P(r̃p)

)
∗ (κKFn)

]
, n ∈ N0,
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where κK is a smooth function in D{t}(Ω) such that

(2.5) κK(x) =

{
1, if x ∈ K,
0, if x ∈ Kc

1.

Then supp F̃n ⊂ K1 for n ∈ N0 and

P(r̃p)(D)F̃n(x) = P(r̃p)(D)

[
F−1

(P(rp)

P(r̃p)

)
∗ (κKFn)

]
(x)

=
[
F−1(P(rp)) ∗ (κKFn)

]
(x) = P(rp)(D)(κKFn)(x) = fn(x)

for x ∈ K and n ∈ N. Since

F−1(
P(rp)/P(r̃p)

)
∈ L1(Rd) and κKFn

C(K)−−−→ κKF0 as n→∞,

it follows that F̃n
C(K)−−−→ F̃0 as n→∞. �

Proposition 2.2. If for arbitrary K1 ⋐ Ω and K ⋐ K◦
1 there are a P ∈ P∗,

smooth functions Fn (n ∈ N) and a continuous function F0 on Ω with suppFn ⊂ K1

(n ∈ N0) such that Fn
C(K)−−−→ F0 and P (D)Fn(x) → 0 for x ∈ K as n → ∞, then

F0 = 0 on Ω. In particular, if F is a smooth function on Ω and P (D)F (x) = 0 for
x ∈ Ω, then F = 0 on Ω.

Proof. Fix K1 ⋐ Ω, K ⋐ K◦
1 and κK as in (2.5). By the assumption,

(2.6) P (D)(κKFn)(x)→ 0 (x ∈ K), κKFn
C(K)−−−→ κKF0 as n→∞.

Since limm→∞[P (D)− Pm(D)](κKFn) = 0 in Rd, it follows from (2.6) that

lim
n→∞

lim
m→∞

Pm(ξ)κ̂KFn(ξ) = lim
n→∞

P (ξ)κ̂KFn(ξ) = 0, ξ ∈ Rd.

and

lim
n→∞

P (ξ)
[
κ̂KFn(ξ)− κ̂KF0(ξ)

]
= 0, ξ ∈ Rd.

This implies P (ξ)κ̂KF0(ξ) = 0 for ξ ∈ Rd, so κK(x)F0(x) = 0 for x ∈ K. Hence
F0 = 0 in K and thus F0 = 0 in Ω, since K ⋐ Ω was arbitrarily chosen. The
particular case is clear if we take Fn = F for n ∈ N. �

Proposition 2.3. Fix K,K1 ⋐ Ω such that K ⋐ K◦
1 . Assume that, for se-

quences (rp), ( r̃p) ∈ R, smooth functions Fn, F̃n on Ω (n ∈ N) and continuous

functions F0, F̃0 on Ω, we have

fn = P(rp)(D)Fn on K (n ∈ N), suppFn ⊂ K1 (n ∈ N0),

Fn
C(K)−−−→ F0 as n→∞

and

fn(x) = P(r̃p)(D) F̃n on K (n ∈ N), supp F̃n ⊂ K1 (n ∈ N0),

F̃n
C(K)−−−→ F̃0 as n→∞.
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Then there are a sequence (r̄p) ∈ R, rp/r̄p ↓ 0, r̃p/r̄p ↓ 0 as p→∞ such that

(2.7) F−1
(P(rp)

P(r̄p)

)
, F−1

(P(r̃p)

P(r̄p)

)
∈ L1(Rd),

and sequences (Fn,1), (Fn,2) of smooth functions and continuous functions F0,1,
F0,2 on Ω, with suppFn,1, suppFn,2 ⊂ K1 (n ∈ N0), such that

(2.8) fn = P(r̄p)(D)Fn,j on K (n ∈ N), Fn,j
C(K)−−−→ F0,j as n→∞

for j = 1, 2. Moreover F0,1 = F0,2 in Ω.
The same assertion also holds in the Beurling case (with the corresponding

notation).

Proof. The existence of (r̄p) ∈ R satisfying (2.7) follows from (1.7). Define

Fn,1 := κK

[
F−1

(P(rp)

P(r̄p)

)
∗ (κKFn)

]
, Fn,2 := κK

[
F−1

(P(r̃p)

P(r̄p)

)
∗ (κK F̃n)

]
,

where κK is a smooth function in D{t}(Ω) which satisfies (2.5). Using Proposition
2.1, one can deduce (2.8). Finally, by Proposition 2.2, we conclude that F0,1 = F0,2

in Ω. �

Proposition 2.4. Relation ∼ introduced in Definition 2.2 is transitive.

Proof. We will prove the assertion only in the Roumieu case; the proof in
the Beurling case is similar. Suppose that (fn) ∼ (gn) and (gn) ∼ (hn) and fix
K,K1 ⋐ Ω so that K ⋐ K◦

1 . Now select K̃ ⋐ Ω such that K ⋐ K̃◦ and K̃ ⋐ K◦
1 .

By the assumption and Definition 2.2, there exist (rp), (r̃p) ∈ R and sequences

(Fn), (Gn), (G̃n), (Hn) of smooth functions on Ω such that

fn = P(rp)(D)Fn, gn = P(rp)(D)Gn on K (n ∈ N),

suppFn, suppGn ⊂ K̃ (n ∈ N), Fn
C(K)→← Gn as n→∞

and

gn = P(r̃p)(D)G̃n, hn = P(r̃p)(D)Hn on K̃ (n ∈ N),

supp G̃n, suppHn ⊂ K1 (n ∈ N), G̃n
C(K̃)−→←− Hn as n→∞.

In view of Proposition 2.3, there exist an appropriate (r̄p) ∈ R and convergent

sequences (Fn,1), (Gn,1), (G̃n,1), (Hn,1) of smooth functions, all having supports
contained in K1, such that

fn = P(r̄p)(D)Fn,1, gn = P(r̄p)(D)Gn,1 = P(r̄p)(D)G̃n,1, hn = P(r̄p)(D)Hn,1

on K. Moreover Fn,1
C(K)→← Gn,1 and G̃n,1

C(K)→← Hn,1 as n→∞.
If we put now

H̃n,1(x) := Gn,1(x) − G̃n,1(x) +Hn,1(x), x ∈ K,

then hn = P(r̄p)(D)H̃n,1 in K and Fn,1
C(K)→← H̃n,1 as n → ∞, which means that

(fn) ∼ (hn). This completes the proof. �
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2.1. Sequential ultradistributions.

Definition 2.3. Let (fn) be a s-fundamental sequence (of type ∗) in an open
set Ω ⊂ Rd. The class of all s-fundamental sequences equivalent to (fn) with respect
to the relation∼ is called a sequential ultradistributon or, shortly, s-ultradistribution
(of type ∗) and denoted by f = [fn]. The set of all s-ultradistributions (of type ∗)
on Ω is denoted by U∗(Ω).

Remark 2.3. 1◦ By Proposition 2.2, f = [fn] = 0 on Ω for f ∈ U∗(Ω) if for
arbitrary K1 ⋐ Ω and K ⋐ K◦

1 there exist a sequence (Fn) of smooth functions on
Ω and an ultradifferential operator P ∈ P∗ such that

fn = P (D)Fn on K (n ∈ N), suppFn ⊂ K1 (n ∈ N)

and Fn
C(K)−−−→ 0 as n→∞.

2◦ Let f ∈ U∗(Ω). If f = 0 on Ω1 for every Ω1 ⊂ Ω, then f = 0 on Ω.

Definition 2.4. By the support of an s-ultradistribution f ∈ U∗(Ω) we mean
the complement of the union of all open sets where f = 0. We say that an s-
ultradistribution f = [fn] or a s-fundamental sequence (fn) is compactly supported
if there exists K ⋐ Rd such that supp fn ⊂ K for n ∈ N. Then we write supp f ⊂ K
or supp (fn) ⊂ K. In this case there exist a sequence of smooth functions (Fn), a
continuous function F0, an ultradifferential operator P ∈ P∗ and K1 ⋐ Ω so that

fn(x) = P (D)Fn(x) on Rd (n ∈ N), suppFn ⊂ K1 (n ∈ N0)

and Fn
C(K)−−−→ F0 as n→∞.

Example 2.1. Let F be a compactly supported continuous function in Rd,
(δn) be a delta sequence in D′∗(Rd) and let Fn := F ∗ δn for n ∈ N. Then (Fn) is
a s-fundamental sequence on Rd.

Example 2.2. Let (fn) be a s-fundamental sequence on Ω ⊆ Rd and (Kn)
be an increasing sequence of compact sets such that Kn ⊂ K◦

n+1 for n ∈ N. Put
Ω :=

⋃
n∈N

Kn and consider the open sets

Ωn := {x ∈ Ω: d(x, ∂Ω) > 1/n}, Ωn,n := {x ∈ Ωn : d(x, ∂Ωn) > 1/n}
and functions κn ∈ C∞

0 (Ω) such that

κn(x) =

{
1, if x ∈ Ωn,n,

0, if x ∈ Ωc
n,

for n ∈ N. Then the sequence (f̃n), where

f̃n(x) =

{
((κnfn) ∗ δn)(x), if x ∈ Ωn,

0, if x ∈ Ωc
n,

is s-fundamental on Ω and (fn) ∼ (f̃n).
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Example 2.3. Let f ∈ D′(Ω) for an open Ω ⊆ Rd, let Ωn, Ωn,n and κn be as

in Example 2.2 and let P(rp) ∈ P{t}. Put

(2.9) Fn(x) :=

{
F−1(f̂n/P(rp))(x), if x ∈ Ω,

0, if x ∈ Ωc
n,

for n ∈ N, where fn := (κnf) ∗ δn = P(rp)(D)Fn and P(rp) means in (2.9) the

function corresponding to an ultra-differential operator P(rp). Since κ̂nf , for every
n ∈ N, is bounded by a polynomial, it follows from (1.6) that (fn) is a s-fundamental
sequence of the Roumieu type on Ω, that is [fn] ∈ U{t}(Ω). In a similar way, we
can also represent f as an element of U (t)(Ω) by the use Pr(D) instead of P(rp)(D).

Remark 2.4. If (fn) is a s-fundamental sequence in the sense of Definition

2.1, then Fn
C(K)−−−→ F0 as n → ∞ for every K ⋐ Ω. Examples 2.1 and 2.3 show

that every s-fundamental sequence (fn) for which (2.3) holds can be identified with
the formal representation f = P (D)F0 on K, since from the general theory of
ultradistributions we know that for arbitrary K1 ⋐ Ω and K ⋐ K◦

1 there exist
P ∈ P∗ and F0 ∈ C(Ω) such that

f = P (D)F0 on K and suppF0 ⊂ K1.

This will be justified by (3.3) and the last section.

2.2. Operations on s-ultradistributions. We start from the operations of
addition and multiplication by a constant. Let f, g ∈ U∗(Ω) and λ ∈ C, where
f = [fn], g = [gn] for some s-fundamental sequences (fn), (gn). Using Proposition
2.3, one can prove that (fn + gn) and (λfn) are s-fundamental sequences on Ω, so
we may define s-ultradistributions f + g := [fn + gn] and λf := [λfn]. By Remark
2.2, the definitions are consistent. Consequently, U∗(Ω) is a vector space.

Next consider the operation of differentiation. If f = [fn] ∈ U{t}(Ω), i.e.,
(fn) is a s-fundamental sequence of the Roumieu type, and let β ∈ Nd

0. We will

show that the sequence (f
(β)
n ) is s-fundamental of the Roumieu type. For arbitrary

K1 ⋐ Ω and K ⋐ K◦
1 take (Fn) and P(rp)(D) according to Definition 2.1. Since

f
(β)
n = P(rp)(D)F

(β)
n on K, it follows from (1.7) as in the proof of Proposition 2.1

for β = 0 that there exist P(r̃p) ∈ P{t}, a sequence (F̃n) of smooth functions and a

continuous function F̃0 on Ω defined by (cf. (2.4))

F̃n := κK

[
F−1

(
µβ

P(rp)

P(r̃p)

)
∗ (κKFn)

]
, n ∈ N0,

with supp F̃n ⊂ K1 (n ∈ N0), such that P(rp)(D)F
(β)
n = P(r̃p)(D)F̃n on K and

F̃n
C(K)−−−→ F̃0 as n → ∞. Consequently, (f

(β)
n ) is s-fundamental and we define

f (β) = [f
(β)
n ]. By Remark 2.2, the definition is consistent and f (β) ∈ U{t}(Ω). An

analogous assertion holds in the Beurling case.
Let us discuss now the operations of multiplication and convolution by a func-

tion from E∗(Ω). We consider only the Roumieu case. The Beurling case is similar.
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Fix ω ∈ E{t}(Ω) and let f = [fn] ∈ U{t}(Ω). We will show that the sequence
(ωfn) is s-fundamental, so one can define ωf := [ωfn] ∈ E{t}(Ω) and the definition
is consistent, by Remark 2.2. For every K ⋐ Ω there exist P(rp) ∈ P{t}, a sequence
(Fn) of smooth functions and a continuous function F0 in Ω with suppFn ⊂ K1

(n ∈ N0) such that ωfn = ωP(rp)(D)Fn in K and Fn
C(K)−−−→ F0, n → ∞. We can

assume that ω is compactly supported multiplying it by a cut-of function equal to
1 on K. We have

ω̂(ξ) 6 Ce−h|ξ|1/t

and |P(rp)(ξ)F̂n| 6 C1e
c(|ξ|)1/t

, ξ ∈ Rd

for some constants C > 0, C1 > 0, h > 0 and a subordinate function c, in view
of (1.6). By (1.7), there exists a P(r̃p) ∈ P{t}, where (r̃p) ∈ R with rp/r̃p ↓ 0 as

p→∞, such that (ω̂ ∗ (P(rp)F̂n))/P(r̃p) ∈ L1(Rd). Now, defining

Gn := κKF−1
(
ω̂ ∗ (P(rp)F̂n)

P(r̃p)

)
, n ∈ N0,

we have ωfn = P(r̃p)(D)Gn on K (n ∈ N), suppGn ⊂ K1 (n ∈ N0) and Gn
C(K)−−−→

G0 as n→∞. Hence, (ωfn) is a s-fundamental sequence on Ω.
Moreover, if f = [fn] and ω ∈ D{t}(Ω), then ω∗f = [ω∗fn], since ω∗P (D)Fn =

P (D)(ω ∗ Fn) on every compact set K ⊂ Rd for n ∈ N.
More generally, we have the following assertion: if (fn) and (gn) are s-fun-

damental sequences on Rd and supp(gn) ⊂ K0 ⋐ Rd, then (fn ∗ gn) is a s-
fundamental sequence on Rd.

3. Sequences of s-ultradistributions

Definition 3.1. Let fm ∈ U∗(Ω) for m ∈ N0, i.e., fm = [(fm
n )n], where

(fm
n )n means a s-fundamental sequence representing fm for m ∈ N0. We say that

the sequence (fm) converges to f0 in U∗(Ω) and write fm s−→ f0 as m → ∞ or
s-limm→∞ fm = f0 if for arbitrary K1 ⋐ Ω and K ⋐ K◦

1 there exist a P ∈ P∗,
smooth functions Fm

n on Ω (m ∈ N0, n ∈ N) and continuous functions Fm on Ω
(m ∈ N0), all supported by K1, such that

fm
n = P (D)Fm

n on K (n ∈ N, m ∈ N0);

Fm
n

C(K)−−−→ F 0
n as m→∞ uniformly in n ∈ N;

Fm
n

C(K)−−−→ Fm as n→∞ (m ∈ N0) and Fm C(K)−−−→ F 0 as m→∞.
We know that the above assumptions imply that

lim
m→∞

lim
n→∞

Fm
n = lim

n→∞
lim

m→∞
Fm

n in C(K).

Theorem 3.1. If the limit s-limm→∞ fm exists, then it is unique.

Proof. Assume that fm s−→ f and fm s−→ g, where f = [fn], g = [gn] ∈ U∗(Ω)
and fm = [(fm

n )n] ∈ U∗(Ω) for m ∈ N. We will prove that f = g.
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Fix arbitrary K1 ⋐ Ω and K ⋐ K◦
1 . According to Definition 3.1, there exist

P, P̃ ∈ P∗, smooth functions Fm
n , Fn, Gm

n , Gn, on Ω and continuous functions Fm,
F , Gm, G on Ω (n,m ∈ N), all supported by K1, such that

fm
n = P (D)Fm

n , fn = P (D)Fn on K (n, m ∈ N);

Fm
n

C(K)−−−→ Fn as m→∞ uniformly in n ∈ N; Fn
C(K)−−−→ F as n→∞;

Fm
n

C(K)−−−→ Fm as n→∞ (m ∈ N); Fm C(K)−−−→ F as m→∞;

and, on the other hand,

fm
n = P̃ (D)Gm

n , gn = P̃ (D)Gn on K (n, m ∈ N);

Gm
n

C(K)−−−→ Gn as m→∞ uniformly in n ∈ N; Gn
C(K)−−−→ G as n→∞;

Gm
n

C(K)−−−→ Gm as n→∞ (m ∈ N); Gm C(K)−−−→ G as m→∞.
By Proposition 2.3, there exist an ultradifferential operator P̄ ∈ P∗, smooth func-
tions F̄m

n , Ḡm
n , F̄n, Ḡn and Hm

n := F̄m
n − Ḡm

n , Hn := F̄n − Ḡn on Ω as well as
continuous functions F̄m, Ḡm, F̄ , Ḡ and Hm := F̄m − Ḡm, H := F̄ − Ḡ on Ω
(n,m ∈ N), all supported by K1, such that

0 = P̄ (D)Hm
n , fn − gn = P̄ (D)Hn on K (n,m ∈ N);

Hm
n

C(K)−−−→ Hn as m→∞ uniformly in n ∈ N; Hn
C(K)−−−→ G as n→∞;

Hm
n

C(K)−−−→ Hm as n→∞ (m ∈ N) and Hm C(K)−−−→ H as m→∞.
Hence Hm

n = 0 on K◦ for n,m ∈ N, by Proposition 2.2. This implies that
H = 0, i.e., F̄ = Ḡ on K◦. Since K ⋐ Ω was fixed arbitrarily, we conclude that
f = g on Ω. �

3.1. Action on test functions from D
∗(Ω). Let f = [fn] ∈ U∗(Ω), where

(fn) is a s-fundamental sequence satisfying Definition 2.1, i.e., for arbitrary
K,K1 ⋐ Ω with K ⋐ K◦

1 there exist P (D) ∈ P∗, smooth functions Fn (n ∈ N) and
a continuous function F0 on Ω such that

fn = P (D)Fn on K (n ∈ N), suppFn ⊂ K1 (n ∈ N0)(3.1)

and Fn
C(K)−−−→ F0 as n→∞.

By the action of f on the test functions from D∗(Ω) we mean the mapping

(3.2) D∗(Ω) ∋ ϕ 7→ (f, ϕ)U∗(Ω) ∈ R,

where

(3.3) (f, ϕ)U∗(Ω) := lim
n→∞

∫

K

fn(x)ϕ(x)dx =

∫

K

F0(x)[P (−D)ϕ](x)dx.

If, beside (3.1), we have

fn = P̃ (D)F̃n on K (n ∈ N), supp F̃n ⊂ K1 (n ∈ N0)

and F̃n
C(K)−−−→ F̃0 as n→∞
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for some P̃ (D) ∈ P∗, smooth functions F̃n (n ∈ N) and a continuous function F̃0

on Ω, then

lim
n→∞

∫

K

fn(x)ϕ(x)dx =

∫

K

F̃0(x)[P̃ (−D)ϕ](x)dx,

i.e., definition in (3.3) is consistent.
Clearly, 3.2 is a linear mapping. To prove that mapping (3.2) is sequentially

continuous we need the following result from [12]: if ϕn → ϕ0 in D∗(Ω), then
P (D)ϕn → P (D)ϕ0 in D∗(Ω) for every P (D) ∈ P∗.

Theorem 3.2. (a) Let f ∈ U∗(Ω) and ϕm → ϕ0 as m → ∞ in D∗(Ω). Then
(f, ϕm)U∗(Ω) → (f, ϕ0)U∗(Ω) as m→∞.

(b) Let fm → f0 as m → ∞ in U∗(Ω). Then (fm, ϕ)U∗(Ω) → (f0, ϕ)U∗(Ω) as
m→∞ for every ϕ ∈ D∗(Ω).

Proof. (a) Supose that f = [fn], where (fn) is a s-fundamental sequence,
i.e., (3.1) holds for given K1 ⋐ Ω and K ⋐ K◦

1 and suitable P (D) ∈ P∗ and Fn

(n ∈ N0). By (3.3), we have

lim
m→∞

[(f, (ϕm − ϕ0)U∗(Ω)] = lim
m→∞

∫

K

F0(x)[P (−D)(ϕn − ϕ0)](x)dx = 0.

(b) Let ϕ ∈ D∗
K . Using the notation of Definition 3.1 we obtain

lim
m→∞

(fm − f0, ϕ)U∗(Ω) = lim
m→∞

lim
n→∞

(fm
n − fn, ϕ)U∗(Ω)

= lim
m→∞

lim
n→∞

∫

K

(Fm
n − Fn)(x)[P (−D)ϕ](x)dx.

Since Fm
n

C(K)−−−→ Fn as m→∞ uniformly in n ∈ N and Fn
C(K)−−−→ F 0 as n→∞, we

have

lim
n→∞

lim
m→∞

∫

K

(Fm
n − Fn)(x)[P (−D)ϕ](x)dx = 0. �

4. Tempered sequential ultradistributions

4.1. t-Tempered sequential ultradistributions. Recall that

Hα =

d∏

i=1

(−∂2/∂xi
2 + x2

i )αi , α = (α1, . . . , αd) ∈ Nd
0

and that the symbol P2∗ means either P(2t) or P{2t}. Let P ∈ P2∗. We will
use ultradifferential operators of the form P (H) =

∑∞
|α|=0 aαH

α of Beurling class

(p!2t) (resp. of Roumieu class {p!2t}) such that

∃h > 0 ∃C > 0 (resp.∀h > 0 ∃C > 0) ∀α ∈ Nd
0 |aα| 6

Ch|α|

(α!)2t
;

in the Roumieu case the given condition is equivalent to

∃(rp) ∈ R ∃C > 0 ∀α ∈ Nd
0 |aα| 6

C

(α!)2tR|α|
,

where R|α| is defined in (1.1).
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Definition 4.1. A sequence (fn) of functions from L2(Rd)∩C∞(Rd) is called
t-fundamental (of type ∗) in Rd if there exist an ultradifferential operator P ∈ P2∗,
functions Fn ∈ L2(Rd)∩C∞(Rd) of the form Fn =

∑∞
|α|=0 cα,nhα with (cα,n)α∈Nd

0
∈

l2 for n ∈ N and a function F0 ∈ L2(Rd) such that

(4.1) fn = P (H)Fn on Rd and Fn
2−→ F0 as n→∞,

where P (H)Fn in (4.1) is meant in L2(Rd) ∩ C∞(Rd) as follows

lim
k→∞

Pk(H)Fn = lim
k→∞

k∑

|α|=0

aαH
αFn =

∞∑

|α|=0

cα,nP (2α+ 1)hα, (n ∈ N).

We will need later the following assertion which enables us to change in representa-
tions of t-fundamental sequences an L2-convergent sequence with a sequence which
converges both in L2(Rd) and uniformly on Rd.

Lemma 4.1. Assume that Fn ∈ L2(Rd) ∩ C∞(Rd) for n ∈ N0 and Fn
2−→ F0 as

n→∞. Denote F̃n := F−1(Gn), where Gn(ξ) := (1+ |ξ|)−d/2F̂n(ξ) for ξ ∈ Rd and

n ∈ N0. Then (F̃n) is a bounded sequence of smooth functions such that F̃n
2−→ F̃0

as n→∞ and F̃n
C(Rd)−−−→ F̃0 as n→∞.

Proof. It is clear that the sequence (F̃n) is bounded and F̃n
2−→ F̃0, due to

the Parseval identity. By the Schwarz inequality, we have

‖F̃n − F̃0‖∞ = ‖F−1(Gn −G0)‖∞ 6

( ∫

Rd

(1 + |ξ|2)−ddξ
)1/2
‖F̂n − F̂0‖2,

which proves the uniform convergence. �

Definition 4.2. Let (fn) and (gn) be t-fundamental sequences. We write
(fn) ∼1 (gn) if there exist sequences (Fn), (Gn) of functions Fn, Gn ∈ L2(Rd) ∩
C∞(Rd) (n ∈ N), both convergent in L2(Rd), and an operator P ∈ P2∗ such that

fn = P (H)Fn, gn = P (H)Gn on Rd and Fn −Gn
2−→ 0 as n→∞.

The following two assertions will be used in the sequel.

Proposition 4.1. If there exist P ∈ P2∗, functions Fn ∈ L2(Rd) ∩ C∞(Rd)
for n ∈ N and F0 ∈ L2(Rd) such that Fn =

∑∞
|α|=0 cα,nhα with (cα,n)α∈Nd

0
∈ l2 for

n ∈ N0 and, moreover, Fn
2−→ F0 and P (H)Fn

2−→ 0 as n→∞, then F0 = 0 on Rd.
In particular, if F ∈ L2(Rd) ∩C∞(Rd) and P (H)F = 0 in L2(Rd), then F = 0 on
Rd.

Proof. By the assumption, we have (cα,n)α∈Nd
0
→ (cα,0)α∈Nd

0
in l2 and

P (H)Fn =

∞∑

|α|=0

P (2α+ 1)cα,nhα
2−→ 0

as n → ∞. Consequently, (cα,n)α∈Nd
0
→ 0 in l2 as n → ∞. Hence F0 = 0. The

particular case is clear. �
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Proposition 4.2. Assume that fn = P(rp)(H)Fn = P(r̃p)(H)F̃n on Rd (n ∈ N)

and Fn
2−→ F0, F̃n

2−→ F̃0 as n → ∞ for some P(rp), P(r̃p) ∈ P{2t} and functions

Fn, F̃n ∈ L2(Rd) ∩ C∞(Rd) and F0, F̃0 ∈ L2(Rd) of the form

Fn =

∞∑

|α|=0

cα,nhα, F̃n =

∞∑

|α|=0

c̃α,nhα (n ∈ N0),

where (cα,n)α∈Nd
0
, (c̃α,n)α∈Nd

0
∈ l2 for n ∈ N0. Then there are a P(r̄p) ∈ P{2t},

where (r̄p) ∈ R with rp/r̄p ↓ 0 and r̃p/r̄p ↓ 0 as p→∞, such that

(4.2)

(
P(rp)(2α+ 1)

P(r̄p)(2α+ 1)

)

α∈Nd
0

∈ l∞,
(
P(r̃p)(2α+ 1)

P(r̄p)(2α+ 1)

)

α∈Nd
0

∈ l∞,

and functions Gn, G̃n ∈ L2(Rd) ∩ C∞(Rd) and G0, G̃0 ∈ L2(Rd) of the form

Gn =

∞∑

|α|=0

P(rp)(2α+ 1)

P(r̄p)(2α+ 1)
cα,nhα, G̃n =

∞∑

|α|=0

P(r̃p)(2α+ 1)

P(r̄p)(2α+ 1)
c̃α,nhα

for n ∈ N0, satisfying the conditions

fn = P(r̄p)(H)Gn = P(r̄p)(H)G̃n on Rd (n ∈ N)

and

(4.3) Gn
2−→ G0, G̃n

2−→ G̃0 as n→∞.
Moreover, Gn = G̃n on Rd for n ∈ N0.

The same holds in the Beurling case with an appropriate notation.

Proof. The existence of P(r̄p)(H) follows from (1.8). It is clear that Hβhα =

(2α+ 1)βhα for α, β ∈ Nd
0. By 4.2, we have

Gn =

∞∑

|α|=0

P(rp)(2α+ 1)

P(r̄p)(2α+ 1)
cα,nhα = P(rp)(H)

∞∑

|α|=0

cα,nhα

P(r̄p)(2α+ 1)

for n ∈ N0 and a similar representation holds for G̃n (n ∈ N0). Hence

P(r̄p)(H)Gn = P(r̄p)(H)P(rp)(H)

∞∑

|α|=0

cα,nhα

P(r̄p)(2α+ 1)

= P(rp)(H)P(r̄p)(H)

∞∑

|α|=0

cα,nhα

P(r̄p)(2α+ 1)
= P(rp)(H)Fn = fn

and, similarly, P(r̄p)(H)G̃n = fn on Rd forn ∈ N. We deduce from (4.2) that Gn

and G̃n are smooth L2 functions and (4.3) holds. By Proposition 4.1, we conclude
that Gn = G̃n on Rd for n ∈ N and, consequently, G0 = G̃0. �

It is clear that the relation ∼1 is reflexive and symmetric. We shall prove that
∼1 is transitive.

Proposition 4.3. Relation ∼1 is transitive.
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Proof. We prove the assertion in the Roumieu case; the proof in the Beurling
case is similar. Let (fn) ∼1 (gn) and (gn) ∼1 (hn). Then there exist P(rp), P(r̃p) ∈
P{2t} and sequences (Fn), (Gn), (G1

n), (Hn) of functions in L2(Rd) ∩ C∞(Rd), all
convergent in L2(Rd), such that

fn = P(rp)(H)Fn, gn = P(rp)(H)Gn = P(r̃p)(H)G1
n, hn = P(r̃p)(H)Hn

on Rd for n ∈ N and Fn −Gn
2−→ 0, G1

n −Hn
2−→ 0 as n→∞.

By Proposition 4.2, there is a P(r̄p) ∈ P{2t}, where (r̄p) ∈ R with rp/r̄p ↓ 0 and

r̃p/r̄p ↓ 0 as p → ∞, and there are suitable functions F̄n, Ḡn, Ḡ
1
n, H̄n on Rd such

that fn = P(r̄p)(H)F̄n, gn = P(r̄p)(H)Ḡn = P(r̄p)(H)Ḡ1
n, hn = P(r̄p)(H)H̄n on Rd

for n ∈ N and F̄n−Ḡn
2−→ 0, Ḡ1

n−H̄n
2−→ 0 as n→∞. Putting Φn := Ḡn−Ḡ1

n +H̄n,

we have hn = P(r̄p)(H)Φn on Rd and, moreover, F̄n − Φn
2−→ 0 as n → ∞. Hence

(fn) ∼1 (hn), i.e., ∼1 is transitive. �

Definition 4.3. Let (fn) be a t-fundamental sequence (of type ∗) in an open
set Ω ⊂ Rd. The class of all t-fundamental sequences equivalent to (fn) with
respect to the relation ∼1 is called a t-tempered sequential ultradistributon or,
shortly, t-ultradistribution (of type ∗) and denoted by f = [fn]. The set of all
t-ultradistributions (of type ∗) in Ω ⊂ Rd is denoted by T ∗ = T ∗(Rd).

Remark 4.1. As in the space U∗(Ω) (see Section 2.2) we can consider appro-
priate operations in T ∗. But we do not go into details, remarking only that the
operations of addition and multiplication by a constant are well defined in this set,
i.e., T ∗ is a vector space.

Example 4.1. Let F0 ∈ L2(Rd) and let (δn) be a delta-sequence in D∗(Rd).
Define Fn := F0 ∗ δn for n ∈ N. Then (Fn) is a sequence of smooth functions in
L2(Rd) which is t-fundamental in both the Beurling and Roumieu cases.

Example 4.2. Let f = [fn] ∈ T ∗ be of the form fn = P (H)Fn, where P ∈ P2∗

and Fn ∈ L2(Rd) ∩ C∞(Rd) for n ∈ N. Moreover, assume that Fn
2−→ F0 as n→∞

for some function F0 ∈ L2(Rd). Define f̃n := P (H)(Fn ∗ δn) for n ∈ N. Then (f̃n)
is a t-fundamental sequence in Rd and (fn) ∼1 (f̃n).

Definition 4.4. Let fm ∈ T ∗ for m ∈ N0, i.e., fm = [(fm
n )n], where (fm

n )n

means a t-fundamental sequence representing fm for m ∈ N0. We say that the

sequence (fm) converges to f0 in T ∗ and write fm t−→ f0 as m → ∞ or t-
limm→∞ fm = f0 if there exist a P ∈ P2∗, smooth functions Fm

n ∈ L2(Rd)
(m ∈ N0, n ∈ N) and functions Fm ∈ L2(Rd) (m ∈ N0) such that

fm
n = P (H)Fm

n on Rd (n ∈ N, m ∈ N0);

Fm
n

2−→ F 0
n as m→∞, uniformly in n ∈ N;

Fm
n

2−→ Fm as n→∞ (m ∈ N0) and Fm 2−→ F 0 as m→∞.
Assumptions in the definition imply that

lim
m→∞

lim
n→∞

Fm
n = lim

n→∞
lim

m→∞
Fm

n in L2(Rd).
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Theorem 4.1. If the limit t-limm→∞ fm exists, then it is unique.

Proof. In the Roumieu case, let fm s−→ f and fm s−→ g, where fm = [(fm
n )n] ∈

T {t} for m ∈ N and f = [fn], g = [gn] ∈ T {t}. We will show that f = g.
By Definition 4.4, there exist ultradifferential operators P(rp), P(r̃p) ∈ P{2t}

with (rp), (r̃p) ∈ R, smooth functions Fm
n , Fn, G

m
n , Gn ∈ L2(Rd) and functions

Fm, F,Gm, G ∈ L2(Rd) (n,m ∈ N) such that

fm
n = P(rp)(H)Fm

n , fn = P(rp)(H)Fn on Rd (n,m ∈ N);

Fm
n

2−→ Fn as m→∞ uniformly in n ∈ N; Fn
2−→ F as n→∞;

Fm
n

2−→ Fm as n→∞ (m ∈ N); Fm 2−→ F as m→∞
and, on the other hand,

fm
n = P(r̃p)(H)Gm

n , gn = P(r̃p)(H)Gn on Rd (n,m ∈ N);

Gm
n

2−→ Gn as m→∞ uniformly in n ∈ N; Gn
2−→ G as n→∞;

Gm
n

2−→ Gm as n→∞ (m ∈ N); Gm 2−→ G as m→∞.
By Proposition 4.2, there exist a P(r̄p) ∈ P{2t}, where (r̄p) ∈ R, with rp/r̄p ↓ 0

and r̃p/r̄p ↓ 0 as p → ∞, smooth functions F̄m
n , Ḡm

n , F̄n, Ḡn in L2(Rd) and

functions F̄m, Ḡm, F̄ , Ḡ in L2(Rd) for n,m ∈ N such that the following conditions
are satisfied

0 = P(r̄p)(H)Φm
n , fn − gn = P̄ (D)(H)Φn on Rd (n,m ∈ N);

Φm
n

2−→ Φn as m→∞ uniformly in n ∈ N; Φn
2−→ Φ as n→∞;

Φm
n

2−→ Φm as n→∞ (m ∈ N) and Φm 2−→ Φ as m→∞,
where Φm

n := F̄m
n − Ḡm

n , Φn := F̄n − Ḡn, Φm := F̄m − Ḡm for n,m ∈ N and
Φ := F̄ − Ḡ. Hence P(r̄p)(H)Φn = limm→∞ P(r̄p)(H)(Φm

n −Φn) = 0 on Rd (n ∈ N).

As in Proposition 4.1, we conclude that F̄ = Ḡ on Rd and thus f = g.
The proof in the Beurling case is similar. �

We need the following assertion:

Lemma 4.2. Let ϕ be a function in D∗(Ω) equal to 1 on B(0, 1/2) and let
ϕm(x) := ϕ(x/m) for x ∈ Rd and m ∈ N. If f = [fn] is a t-ultradistribution, then

fϕm
t−→ f as m→∞.

Proof. Let P ∈ P2∗ (Fn) be a sequence of functions corresponding to (fn)
according to Definition 4.1. Put Fm

n := ϕmFn for m,n ∈ N. Then fm =

P (H)ϕmFn ∈ T ∗, because ϕmFn
2−→ ϕmF0 as n→∞ for every fixed m. Since

‖Fm
n − Fn‖2

2 6

∫

|x|> m
2

|ϕ2(x/m)− 1| |Fn(x)|2dx, n,m ∈ N,

we have Fm
n

2−→ Fn as m→∞ uniformly in n. This completes the proof. �
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Corollary 4.1. For every t-ultradistribution f0 there exists a sequence (fm)

of t-ultradistributions such that fm t−→ f0 as m→∞.

Remark 4.2. As in the case of s-fundamental sequences commented in Remark
2.4, every t-fundamental sequence (fn) for which (4.1) holds can be identified with
the formal representation f = P (H)F0, since any other representation defines the
same element of T ∗ (see (4.15) of Subsection 4.3).

4.2. t̃-Tempered sequential ultradistributions. In this subsection we de-
velop a sequential theory of tempered ultradistributions closely related to the se-
quential approach of sections 2 and 3.

Definition 4.5. A sequence (fn) of smooth functions is called t̃-fundamental
(of type ∗) in Rd if there exist an ultradifferential operator P ∈ P∗, a function
P1 ∈ P∗

u and functions F0 ∈ L2(Rd) and Fn ∈ L2(Rd) ∩ C∞(Rd) for n ∈ N such
that

(4.4) fn = P (D)(P1Fn) on Rd and Fn
2−→ F0 as n→∞.

The action of P (D) on P1Fn is understood as in Section 2; it is the limit of∑m
|α|=0 aαD

α(P1Fn)(x) as m → ∞ for x ∈ Rd. The following assertion will en-

able us to transfer one form of a fundamental sequence into another one.
For a given h > 0 and a subordinate function c denote for simplicity

E±h(u) := e±hu1/t

and E±c(u) := e±c(u)1/t

for u > 0.

Lemma 4.3. Let P1, Fn and F0 be as in (4.4). For P1 assume (1.4) in the
Beurling case (resp. (1.6) in the Roumieu case) in the form

|P1(x)| 6 CEh1 (|x|) (resp. |P1(x)| 6 CEc1 (|x|)), x ∈ Rd,

where h1 > 0 is a constant (resp. c1 is a subordinate function). Then
(a) for a given h > 0 (resp. for a given subordinate function c) there exists

r > 0 (resp. (rp) ∈ R) such that
∣∣[EhF−1(P1/Pr)](x)

∣∣ <∞ (resp.
∣∣[EcF−1(P1/P(rp))](x)

∣∣ <∞)

for every x ∈ Rd.
(b) there exists r > 0 (resp. (rp) ∈ R) such that

E−2h1

[
(P1Fn − P1F0) ∗ F−1(P1/Pr)

] 2−→ 0
(
resp. E−c

[
(P1Fn − P1F0) ∗ F−1(P1/P(rp))

] 2−→ 0
)

as n→∞, where c is a subordinate function such that 2c
1/t
1 6 c1/t.

Proof. We will prove the assertions only in the Roumieu case; the proof in
the Beurling case is similar.

To prove (a) choose (r0
p) ∈ R such that Ec(|x|) 6 P(r0

p)(x) for x ∈ Rd.

The proof will be completed if we show that there exists (rp) ∈ R such that
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P(r0
p)(D)(P1/P(rp)) ∈ L1(Rd), since then the function P(r0

p)F−1(P1/P(rp)) belongs

to L∞(Rd). For all x ∈ Rd, we have

(4.5) P(r0
p)(D)(P1/P(rp))(x) =

∞∑

|α|=0

aα

∑

06γ6α

(
α

γ

)
[Dα−γP1D

γ(1/P(rp))](x),

where

(4.6) |aα| 6
C

(α!)tR0
|α|

(
R0

|α| :=
∏

i6|α|

r0
i

)
, α ∈ Nd

0

for some C > 0. By Lemma 1.2, there exist a subordinate function c̃1 (related
to P1) and a subordinate function c̃(rp) (suitably chosen to fulfill the inequality

c̃1(|x|) 6 c̃(rp)(|x|) for x ∈ Rd) such that

|Dα−γP1(x)| 6 C(α − γ)!

ε|α−γ|
E c̃1(|x|), x ∈ Rd, α, γ ∈ Nd

0, γ 6 α;(4.7)

|Dγ(1/P(rp))(x)| 6 Cγ!

ε|γ|
E−c̃(rp) , x ∈ Rd, γ ∈ Nd

0,(4.8)

By (4.5), (4.6), (4.7) and (4.8), we get

∣∣P(r0
p)(D)(P1/P(rp))(x)

∣∣ 6 C2
( ∞∑

|α|=0

(2/ε)α

(α!)t−1R0
|α|

)
E c̃1(|x|)E−c̃(rp)(|x|).

This proves (a), since the sum on the right-hand side is finite.
To prove (b) note that, by Lemma 4.1, we can assume that (Fn) is a bounded

sequence of smooth functions in L2(Rd). By the assumption and (1.5), there exists
a suitable subordinate function c0 (depending on (rp) ∈ R) satisfying

(4.9) C0 :=

∫

Rd

E4c1(|s|)E−2c0 (|s|)ds <∞

and there is a constant C > 0 such that
∣∣[(P1Fn − P1F0)∗F−1(

P1/P(rp)
)]

(x)
∣∣

6 C‖Fn − F0‖2

( ∫

Rd

E2c1(|x− s|)E−2c0 (|s|)ds
)1/2

6 CC0‖Fn − F0‖2E
2c1 (|x|)

for all x ∈ Rd, due to (4.9). Hence assertion (b) easily follows. �

Definition 4.6. Let (fn) and (gn) be t̃-fundamental sequences. We write
(fn) ∼2 (gn), if there exist sequences (Fn), (Gn) of functions Fn, Gn ∈ L2(Rd) ∩
C∞(Rd) (n ∈ N), both convergent in L2(Rd), an operator P ∈ P∗ and a function
P1 ∈ P∗

u such that

fn = P (D)(P1Fn), gn = P (D)(P1Gn) on Rd

and Fn −Gn
2−→ 0 as n→∞.



SEQUENTIAL APPROACH TO ULTRADISTRIBUTION SPACES 39

Proposition 4.4. If the assumptions of Definition 4.6 are satisfied for (fn)

and if P (D)(P1Fn)
2−→ 0, then Fn

2−→ 0 as n→∞. In particular, if P (D)(P1F ) = 0,
then F = 0.

Proof. Using the Fourier transform, we have PP̂1Fn
2−→ 0. The same is true

for P̂1Fn, then for P1Fn and, finally, for Fn. The particular case is clear. �

The key assertion in this subsection is related to the change of representative
of some t̃-ultradistribution (see Definition 4.7 below). We consider the Roumieu
case.

Assume that P(rp), P(r̃p) ∈ P{t}, P 1
(rp), P

2
(r̃p) ∈ P

{t}
u and (Fn), (F̃n) are se-

quences of functions in L2(Rd) ∩ C∞(Rd), both convergent in L2(Rd), satisfying
Definition 4.5, i.e.,

(4.10) fn = P(rp)(D)(P 1
(rp)Fn) = P(r̃p)(D)(P 2

(r̃p)F̃n) on Rd (n ∈ N),

so that

(4.11) max
{
|P(rp)(x)|, |P(r̃p)(x)|, |P 1

(rp)(x)|, |P 2
(r̃p)(x)|

}
6 Cec(|x|)1/t

for a suitable subordinate function c and x ∈ Rd. We may assume, without loosing
generality, that P 1

(rp) = P 2
(r̃p) = P(r̄p). Actually one can use in (4.10) instead of

P 1
(rp)(x)Fn(x) and P 2

(r̃p)(x)F̃n(x), the following expressions

P(r̄p)(x)
P 1

(rp)(x)Fn(x)

P(r̄p)(x)
and P(r̄p)(x)

P 2
(r̃p)(x)F̃n(x)

P(r̄p)(x)
, x ∈ Rd,

respectively, where the sequence (r̄p) ∈ R is increasing slowly enough to guarantee
L2-convergence of the sequences

(
P 1

(rp)(x)Fn(x)

P(r̄p)(x)

)
,

(
P 2

(r̃p)(x)F̃n(x)

P(r̄p)(x)

)
.

The above remarks concern the following proposition.

Proposition 4.5. Assume that P(rp), P(r̃p) ∈ P{t}, P(r̄p) ∈ P{t}
u and functions

Fn, F̃n ∈ L2(Rd) ∩ C∞(Rd) for n ∈ N, and F0, F̃0 ∈ L2(Rd) satisfy Definition 4.5,

i.e., fn = P(rp)(D)(P(r̄p)Fn) = P(r̃p)(D)(P(r̄p)F̃n) on Rd (n ∈ N) and Fn
2−→ F0,

F̃n
2−→ F̃0 as n → ∞, so that (4.11) holds. Then there exist P(r0

p) ∈ P{t} with

(r0
p) ∈ R and functions F̄n ∈ L2(Rd) ∩ C∞(Rd) for n ∈ N and F̄0 ∈ L2(Rd) such

that

fn = P(r0
p)(D)(P(r̄p)F̄n) on Rd and F̄n

2−→ F̄0 as n→∞.

Proof. We know that there exists (r0
p) ∈ R such that if we put

Gn := F−1(Fn/P(r0
p)) and G̃n := F−1(F̃n/P(r0

p)) on Rd (n ∈ N0),

then fn = P(r0
p)(D)(P(r̄p)Gn) = P(r0

p)(D)(P(r̄p)G̃n) on Rd (n ∈ N) and, more-

over, Gn
2−→ G0 and G̃n

2−→ G̃0 as n→∞.



40 MAKSIMOVIĆ, MINCHEVA-KAMIŃSKA, PILIPOVIĆ, AND SOKOLOSKI

By Proposition 4.4, Gn = G̃n on Rd for n ∈ N0, so the assertion follows for the
functions F̄n := Gn = G̃n (n ∈ N0). �

To prove that ∼2, introduced in Definition 4.6, is an equivalence relation, it
suffices to show that it is transitive.

Proposition 4.6. The relation ∼2 is transitive.

We omit the proof of the proposition, because it is similar to the proofs of
Propositions 2.4 and 4.3. One has to use appropriate representations as it was
demonstrated in those proofs.

Definition 4.7. Let (fn) be a t̃-fundamental sequence (of type ∗) in Rd. The
class of all t̃-fundamental sequences equivalent to (fn) with respect to the relation
∼2 is called a t̃-tempered sequential ultradistributon or, shortly, t̃-ultradistribution
(of type ∗) and denoted by f = [fn]. The set of all t̃-ultradistributions (of type ∗)
in Rd is denoted by T̃ ∗ = T̃ ∗(Rd).

We give the convergence structure in T̃ ∗.

Definition 4.8. Let fm ∈ T̃ ∗ for m ∈ N0, i.e., fm = [(fm
n )n], where (fm

n )n

means a t̃-fundamental sequence representing fm for m ∈ N0. We say that the

sequence (fm) converges to f0 in T̃ ∗ and write fm t̃−→ f0 as m → ∞ or t̃-
limm→∞ fm = f0 if there exist P ∈ P∗ and P1 ∈ P∗

u, smooth functions Fm
n ∈

L2(Rd) (m ∈ N0, n ∈ N) and functions Fm ∈ L2(Rd) (m ∈ N0) such that

fm
n = P (D)(P1F

m
n ) on Rd (n ∈ N, m ∈ N0);

Fm
n

2−→ F 0
n as m→∞, uniformly in n ∈ N;

Fm
n

2−→ Fm as n→∞ (m ∈ N0) and Fm 2−→ F 0 as m→∞.
The assumptions of the definition imply that

lim
m→∞

lim
n→∞

Fm
n = lim

n→∞
lim

m→∞
Fm

n in L2(Rd).

By suitable modifications of the proofs of Proposition 4.4 and Theorem 4.1,
one can prove the following theorem

Theorem 4.2. If the limit t̃-limn→∞ fn exists, then it is unique.

By [25] we know that every f ∈ S′∗(Rd) can be identified with the formal
representation f = P (D)(P1F0), where P ∈ P∗, P1 ∈ P∗

u and F0 ∈ L2(Rd) is a
function of the form F0 =

∑∞
|α|=0 cα,0hα ∈ L2(Rd) with (cα,0)α∈Nd

0
∈ l2.

Actually, we need the following assertion:

Lemma 4.4. An f is an element of the space S′∗(Rd) if and only if

(4.12) f = P (D)(P1F0)

for some P ∈ P∗, P1 ∈ P∗
u and F0 ∈ L2(Rd) of the form

(4.13) F0 =

∞∑

|α|=0

cα,0hα with (cα,0) ∈ l2,
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that is

(f, ϕ)S′∗ =

∫

Rd

F0(x)P1(x)P (−D)ϕ(x)dx, ϕ ∈ S∗(Rd).

The proof is a consequence of the well known representation theorem based on
the Hahn–Banach theorem and assertions (a) and (b) of Lemma 1.3.

We may formulate the above assertion in the form of the proposition which will
be needed in Section 5.

Proposition 4.7. Let f ∈ S′∗(Rd) be of the form (4.12)–(4.13). Then the
sequence (fn), where fn := (P (D)(P1Fn) and Fn :=

∑n
|α|=0 cα,0hα for n ∈ N, is

t̃-fundamental and determines f̃ = [fn] ∈ T̃ ∗.
Conversely, if f̃ = [fn] ∈ T̃ ∗, where (fn) is a t̃-fundamental sequence of the

form (4.4) in Definition 4.5, then the corresponding f = P (D)(P1F0), where F0 is
the L2-limit of the sequence (Fn), is an element of S′∗(Rd).

The above correspondence between S′∗(Rd) and T̃ ∗ defines a linear bijection
between these spaces.

4.3. Tempered ultradistributions as functionals. Let f = [fn] be an
element of T ∗, where the functions fn are of the form fn = P (H)Fn on Rd with

P ∈ P2∗ and Fn ∈ L2(Rd) for n ∈ N such that Fn
2−→ F0 as n → ∞ for some

F0 ∈ L2(Rd).
We define the action of f = [fn] on S∗(Rd) as the mapping

(4.14) S∗(Rd) ∋ ϕ 7→ f(ϕ) := (f, ϕ)T ∗ ∈ R,

where

(4.15) (f, ϕ)T ∗ := lim
n→∞

(fn, ϕ) =

∫

Rd

(F0P (H)ϕ)(x)dx = (F0, P (H)ϕ)L2 .

As in the case of s-ultradistributions, if there is another representation of fn in the

form fn = P̃ (H)F̃n on Rd for n ∈ N, where P̃ ∈ P2∗ and F̃n
2−→ F̃0 as n→∞, then

we have

lim
n→∞

(fn, ϕ) =

∫

Rd

(F̃0P̃ (H)ϕ)(x)dx =

∫

Rd

(F0P (H)ϕ)(x)dx,

i.e., the definition of (f, ϕ)T ∗ in (4.15) is consistent. Lemma 1.3 implies that the
mapping in (4.14) is linear.

We prove now the same for f = [fn] ∈ T̃ ∗, where the functions fn are of the

form fn = P (D)(P1Fn) for P ∈ P∗, P1 ∈ P∗
u, Fn ∈ L2(Rd) (n ∈ N) and Fn

2−→ F
as n→∞ for some F ∈ L2(Rd).

The action of f = [fn] ∈ T̃ ∗ on ϕ ∈ S∗(Rd) is defined as the mapping

(4.16) S∗(Rd) ∋ ϕ 7→ (f, ϕ)T̃ ∗ ∈ R,

where

(4.17) (f, ϕ)T̃ ∗ := lim
n→∞

(Fn, P1P (−D)ϕ) =

∫

Rd

(F0P1P (−D)ϕ)(x)dx.
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Note that the limit in (4.16) exists, because P1P (−D)ϕ ∈ S∗(Rd), in view of part
(b) of Lemma 1.3.

If fn is represented in another form: fn = P̃ (D)(P̃1F̃n) on Rd with P̃ (D) ∈ P∗,

P̃1 ∈ P∗
u, F̃n ∈ L2(Rd) for n ∈ N and F̃n

2−→ F̃0 as n → ∞ for some F̃0 ∈ L2(Rd),
then

lim
n→∞

(F̃n, P̃1P̃ (−D)ϕ) = lim
n→∞

(Fn, P1P (−D)ϕ), ϕ ∈ S∗(Rd),

i.e., the definition in (4.17) is consistent. The linearity of the mapping (4.16) follows
by Lemma 1.3.

The continuity of the mappings (4.14) and (4.16) follows from the following
assertion.

Proposition 4.8. Let f ∈ T ∗ (resp. f ∈ T̃ ∗) and let ϕn ∈ S∗(Rd) for n ∈ N0

be functions such that ϕn
S∗

−−→ ϕ0 as n→∞. Then

(f, ϕn)T ∗ → (f, ϕ0)T ∗ (resp. (f, ϕn)T̃ ∗ → (f, ϕ0)T̃ ∗) as n→∞.

Proof. If f ∈ T ∗, then we have (f, ϕn)T ∗ = (F0, P (H)ϕn)L2 for n ∈ N0,
according to (4.1) and (4.15). Hence, by the Schwarz inequality, we get

|(f, ϕn)T ∗ − (f, ϕ0)T ∗ | = |(F0, P (H)(ϕn − ϕ0))L2 |
6 ‖F0‖2 · ‖P (H)(ϕn − ϕ0)‖2

and the assertion follows, in view of part (c) of Lemma 1.3. The proof in the case
f ∈ T̃ ∗ is analogous. �

The above result can be generalized in the following way:

Proposition 4.9. Let fm ∈ T ∗ (resp. fm ∈ T̃ ∗) and ϕm ∈ S∗(Rd) for

m ∈ N0. If fm t−→ f0 (resp. fm t̃−→ f0) and ϕm
S∗

−−→ ϕ0 as m → ∞, then
(fm, ϕm)T ∗ → (f0, ϕ0)T ∗ (resp. (fm, ϕm)T̃ ∗ → (f0, ϕ0)T̃ ∗) as m→∞.

Proof. We give the proof only in the T ∗ case. By Definition 4.4, we have

lim
m→∞

(fm, ϕm)T ∗ = lim
m→∞

lim
n→∞

(Fm
n , P (H)ϕm)L2 ,

where Fm
n

2−→ Fm as n → ∞ for every m ∈ N and Fm 2−→ F 0 as m → ∞. Hence,
using the Schwarz inequality, we have

|(Fm, P (H)ϕm)L2−(F 0, P (H)ϕ0)L2 |
6 |(Fm, P (H)(ϕm − ϕ0))L2 |+ |(Fm − F 0, P (H)ϕ0)L2 |
6 ‖Fm‖2 · ‖P (H)(ϕm − ϕ0)‖2 + ‖Fm − F 0‖2 · ‖P (H)ϕ0‖2.

It suffices now to use again part (c) of Lemma 1.3 to complete the proof. �
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5. Relations between spaces of tempered ultradistributions

In connection with the spaces S∗(Rd) and S′∗(Rd), where ∗ = (t) in the Beurling
case (resp. ∗ = {t} in the Roumieu case) consider the following spaces of numerical
sequences

s∗ =

{
(aα)α∈Nd

0
: ∀h > 0 (resp. ∃h > 0)

∞∑

|α|=0

|aα|2eh|α|1/(2t)

<∞
}

s′∗ =

{
(bα)α∈Nd

0
: ∃k > 0 (resp. ∀k > 0)

∞∑

|α|=0

|bα|2e−k|α|1/(2t)

<∞
}
.

By the Köthe theory of echelon and co-echelon spaces (see [11]) the spaces s∗ and
s′∗ with their natural convergence structure constitute a dual pair.

It is well known that the mapping

(5.1) s∗ ∋ (aα)α∈Nd
0
7→

∞∑

|α|=0

aαhα ∈ S∗(Rd)

is a bijective isomorphism between the spaces s∗ and S∗(Rd).
On the other hand, to every f ∈ T ∗ we can assign a unique (bα)α∈Nd

0
∈ s′∗.

In fact, assume that f = [fn] ∈ T ∗ satisfies (4.1), i.e.,

(5.2) fn = P (H)Fn on Rd (n ∈ N) and Fn
2−→ F0 as n→∞,

where

(5.3) Fn =

∞∑

|α|=0

cα,nhα with (cα,n)α∈Nd
0
∈ l2 (n ∈ N0).

Morepover, let ϕ ∈ S∗(Rd) be of the form

(5.4) ϕ =

∞∑

|α|=0

rαhα.

We know that (rα)α∈Nd
0
∈ s∗ (see 5.1).

By (4.15), (5.2), (5.3) and (5.4), we have

(5.5) (f, ϕ)T ∗ = lim
n→∞

∞∑

|α|=0

P (2α+ 1)cα,nrα =

∞∑

|α|=0

bαrα,

where

(5.6) bα := P (2α+ 1)cα,0, α ∈ Nd
0,

because cα,n → cα,0 in l2 as n→∞ for α ∈ Nd
0.

Assign to f = [fn] ∈ T ∗ the sequence (bα)α∈Nd
0
∈ s′∗ defined in (5.6) which

does not depend on a representation (fn) of f , by Proposition 4.2.
The described mapping is a bijective isomorphism between T ∗ and s′∗.
Let us recall the following well known assertion (see [5]- [10]):
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Proposition 5.1. The bijective isomorphism (5.1) induces the isomorphism
of s′∗ onto S′∗(Rd) given by

s′∗ ∋ (bα)α∈Nd
0
7→

∞∑

|α|=0

bαhα ∈ S′∗(Rd).

According to the preceding remarks and Proposition 5.1 to each f = [fn] ∈ T ∗

one can uniquely assign an element of S′∗(Rd) of the form
∑∞

|α|=0 bαhα. On the

other hand, we can assign to f = [fn] ∈ T ∗ the functional T on S∗(Rd) given
by T (ϕ) := (f, ϕ)T ∗ , ϕ ∈ S∗(Rd), where (f, ϕ)T ∗ is defined in (5.5). Clearly, the
functional T is linear and continuous on S∗(Rd), i.e., T ∈ S′∗(Rd).

Conversely, if T ∈ S′∗(Rd) is of the form T =
∑∞

|α|=0 bαhα, then the sequence

(fn) of functions fn given by (5.2), where

Fn =

n∑

|α|=0

bαhα

P (2α+ 1)
(n ∈ N) and F0 =

∞∑

|α|=0

bαhα

P (2α+ 1)
,

is t-fundamental and f = [fn] is the element of T ∗ corresponding to T .
Thus we have

Proposition 5.2. The mapping B : T ∗ → S′∗(Rd) given by

T ∗ ∋ f 7→ T = B(f) ∈ S′∗(Rd),

where T (ϕ) := (f, ϕ)T ∗ for ϕ ∈ S∗(Rd), is a linear and sequentially continuous
bijection.

We formulate now the concluding theorem of this section.

Theorem 5.1. (i) For each continuous linear functional T on S∗(Rd) there
exists a unique t-ultradistribution f ∈ T ∗ such that

(5.7) T (ϕ) = (f, ϕ)T ∗ , ϕ ∈ S∗(Rd).

Conversely, for each t-ultradistribution f , formula (5.7) defines a sequentially con-
tinuous linear functional on S∗(Rd).

The correspondence between continuous linear functionals on S∗(Rd) and t-
ultradistributions in T ∗, described by (5.7), is bijective.

(ii) A sequence (fm) of t-ultradistributions fm ∈ T ∗, represented by t-funda-
mental sequences (fm

n )n for m ∈ N, converges to f0 ∈ T ∗ if and only if

(5.8) lim
m→∞

lim
n→∞

(fm
n , ϕ)T ∗ = (f0, ϕ)T ∗ , ϕ ∈ S∗(Rd).

Proof. Assertion (i) is already proved above.

In order to show (ii) it suffices to prove that (5.8) implies fm t−→ f0 as m→∞.
We apply the notation from Definition 4.4. Assume that the Hermite expansions of
the functions Fm

n ∈ L2(Rd) (m ∈ N0, n ∈ N), Fm ∈ L2(Rd) (m ∈ N0) in Definition
4.4, and of a given function ϕ ∈ S∗(Rd) are of the form

Fm
n =

∞∑

|α|=0

am
α,nhα, Fm =

∞∑

|α|=0

am
α hα (m ∈ N0, n ∈ N), ϕ =

∞∑

|α|=0

rαhα.
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By the duality of s∗ and s′∗, we have
∞∑

|α|=0

am
α,nrα →

∞∑

|α|=0

a0
α,nrα as m→∞, uniformly in n ∈ N.

Moreover, An → A0 as n → ∞ in s′∗, where An := (a0
α,n)α∈Nd

0
∈ s′∗ for n ∈ N0.

This implies the assertion. �

Remark 5.1. We have shown in Propositions 4.7 and 4.9 that there exists a
linear continuous bijection between the spaces S′∗(Rd) and T̃ ∗, i.e., the spaces are
isomorphic: S′∗(Rd) ∼= T̃ ∗.

Remark 5.1, together with Theorem 5.1, leads to the following conclusion.

Theorem 5.2. The spaces T ∗ and T̃ ∗ are isomorphic: T ∗ ∼= T̃ ∗. This means
that every f ∈ T ∗ can be represented as an equivalence class of t̃-fundamental se-
quences in the sense of Definition 4.5. Conversely, every f ∈ T̃ ∗ can be represented
as an equivalence class of t-fundamental sequence in the sense of Definition 4.1.
The convergence structures described in Definitions 4.4 and 4.8 are equivalent.

6. s-Ultradistributions as continuous linear functionals

We recall that a linear functional f on the corresponding space of test functions
is an ultradistiribution or tempered ultradistribution if it is sequentially continuous.

Using our approach to the t̃-ultradistributions we prove:

Theorem 6.1. If f ∈ T ∗ ∼= T̃ ∗, then f ∈ U∗(Ω).

Proof. We know that there exist P ∈ P∗ and P1 ∈ P∗
u and there are functions

Fn ∈ L2(Rd) ∩ C∞(Rd) for n ∈ N and F0 ∈ L2(Rd) such that Fn
2−→ F0 as n → ∞

and fn = P (D)(P1Fn) on Rd for n ∈ N.
Fix K,K1 ⋐ Ω such that K ⋐ K◦

1 and a function κK ∈ D∗(Ω) as in (2.5). We
have P1Fn = κKP1Fn on K for n ∈ N and the inequality

( ∫

Rd

∣∣[κKP1(Fn − F0)
]
(x)

∣∣2
dx

)1/2

6 sup
x∈K
|P1(x)| · ‖Fn − F0‖2

implies κKP1Fn
2−→ κKP1F0 as n→∞, so

F(κKP1Fn)
2−→ F(κKP1F0) as n→∞.

Moreover, by Proposition 4.1, we have

F̃n
C(K)−−−→ F̃0 as n→∞ and supp F̃n ⊂ K1 (n ∈ N0),

where
F̃n := κKF−1(

〈·〉−d ̂κKP1Fn

)
for n ∈ N0

with 〈·〉−d meaning the function: 〈ξ〉−d = (1 + |ξ|2)−d/2 for ξ ∈ Rd.
If P̃ (D) := (1 +D2

1 + . . .+D2
d)d/2P (D), then P̃ ∈ P∗ and fn = P̃ (D)F̃n on K,

so (fn) is an s-fundamental sequence in the sense od Definition 2.1. �

The following assertion follows from the proof of Theorem 6.1.
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Corollary 6.1. Let f ∈ T ∗ ∼= T̃ ∗, let Ω be an open set in Rd and let θ ∈
D∗(Rd) be a function such that supp θ ⊂ Ω. Then θf = [fn] ∈ U∗(Rd) for some
s-fundamental sequence (fn) having the following properties: for every K ⋐ Ω there
exist P ∈ P∗ and functions Fn such that

fn = P (D)Fn on K (n ∈ N) and Fn
C(Rd)−−−→ F0 as n→∞.

Moreover

suppFn ⊂ Ω for n ∈ N0.

Now, we are able to prove the main result of this section.

Main Theorem 6.2. (i) For every continuous linear functional T on D∗(Ω)
there exists a unique s-ultradistribution f ∈ U∗(Ω) such that

(6.1) T (ϕ) = (f, ϕ)U∗(Ω), ϕ ∈ D∗(Ω),

where (f, ϕ)U∗(Ω) is defined by (3.3).
Conversely, for every s-ultradistribution f ∈ U∗(Ω), formula (6.1) defines a

continuous linear functional T on D∗(Ω).
The correspondence between continuous linear functionals on D∗(Ω) and s-

ultradistributions in U∗(Ω), described by (6.1), is bijective.
(ii) A sequence of s-ultradistributions fm ∈ U∗(Ω) converges to an s-ultradistri-

bution f0 ∈ U∗(Ω) if and only if

lim
m→∞

(fm, ϕ)U∗(Ω) = (f0, ϕ)U∗(Ω) for all ϕ ∈ D∗(Ω).

Proof. It suffices to prove only the first part of assertion (i).
Consider a locally finite covering of Ω consisting of bounded open subsets Ωi

and Ω̃i of Ω such that Ωi ⋐ Ω̃i and let functions ϕi ∈ D∗(Ω) form a partition of
unity for i ∈ N, i.e., ϕi(x) = 1 if x ∈ Ωi and suppϕi ⊂ Ω̃i for i ∈ N. If T is
a continuous linear functional on D∗(Ω), then Ti, defined by Ti(ψ) = T (ϕiψ) for
ψ ∈ S∗(Rd), is a continuous linear functional on S∗(Rd).

By Lemma 4.4 and Theorem 5.1, there is a sequence of f i ∈ T ∗ ∼= T̃ ∗ such
that Ti(ψ) = (f i, ψ)T ∗ in the sense of (4.15) and Ti(ψ) = (f i, ψ)T̃ ∗ in the sense of
(4.16) for ψ ∈ S∗(Rd) and i ∈ N. By Corollary 6.1, each f i can be represented in
the form f i = [(f i

n)n] ∈ U∗(Rd), where

f i
n = Pi(D)F i

n (n ∈ N), F i
n

C(Rd)−−−→ F i as n→∞, suppF i
n ⊂ Ω̃i (n ∈ N0)

for some Pi ∈ P∗ and functions F i
n (n ∈ N0) with suitable properties.

Fix a pair of different i, j such that Ωi ∩ Ωj 6= ∅. We have

T (ϕ) = (f i, ϕ)U∗(Ω) = (f j , ϕ)U∗(Ω) for ϕ ∈ D∗(Ωi ∩ Ωj).

Consider f i − f j ∈ U∗(Rd) as an s-ultradistribution restricted to Ωi ∩ Ωj . There
exists an s-fundamental sequence of ri,j

n such that f i−f j = [(ri,j
n )n] on Ωi∩Ωj . This

means f i − f j = [(ri,j
n )n], where ri,j

n are smooth functions with supp ri,j
n ⊂ Ω̃i ∩ Ω̃j

such that for every K ⋐ Ωi∩Ωj we have ri,j
n = Pi,j(D)Ri,j

n on K for some Pi,j ∈ P∗

and functions Ri,j
n for n ∈ N; moreover, Ri,j

n → 0 as n → ∞ uniformly on K. By
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Proposition 2.2, we have f i = f j on Ωi ∩ Ωj . Since our covering of Ω is locally
finite, we may define

(6.2) f :=
∑

i∈N

f iϕi ∈ U∗(Ω) with f |Ωi = f i (i ∈ N).

Consequently, T (ϕ) = (f, ϕ)U∗(Ω) for ϕ ∈ D∗(Ω) (see (3.3)).

Suppose T (ϕ) = (f1, ϕ)U∗(Ω) and T (ϕ) = (f2, ϕ)U∗(Ω) for f1, f2 ∈ U∗(Ω) and

for ϕ ∈ D∗(Ω). Let f1 − f2 = [gn], where (gn) is an s-fundamental sequence of the
form gn = P (D)(Gn) on K ⋐ Ω for suitable P and Gn. By (3.3), limn→∞ gn = 0
on Ω. Hence, by Proposition 2.2, f1 − f2 = [gn] = 0, so the s-ultradistribution f
defined in (6.2) is unique. �
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