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ON GAUSS-BONNET THEOREM

Jovo Jarié

ABSTRACT. A very simple proof of the Gauss—Bonnet theorem is given in
invariant form, i.e., independent of the coordinate system of a surface.

The Gauss—Bonnet theorem is one of the most important theorem of the theory
of surfaces. This theorem is an example of differential geometry in the large. More-
over, it is analogous to Green’s theorem and can be obtained from this theorem

.

THEOREM. Let S be a simple connected portion of a surface for which a repre-
sentation x(u',u?) of class r > 3 ewists and whose boundary C is a simple closed
curve which has a representation x(u'(s),u?(s)) of class v* > 2, where s is the
arc length of C. Let kg be the geodesic curvature of C' and let K be the Gaussian
curvature of S. Then

(1) /kgds —|—/ Kda = 2m,
c s

where da is the element of area of C. The integration along C has to be carried out
in such direction that S stays on the left side.

The integral f f g Kda occurring in the Gauss-Bonnet theorem is called the
integral curvature of a surface under consideration [2].

The proof of the theorem can be found in every good book on differential
geometry. There are many different approaches to the proof. The proof is simplified
by the use of special coordinate systems u®, a = 1,2, on the surface S. But then
the invariant approach to the proof of the theorem is lost. Therefore it is desirable
to give the proof the theorem independently of the choice of coordinate system
on S. This gives the theorem the right sense to its invariant property. Here we
present an approach of this kind, so far unknown to me. For that purpose the
standard notation of tensor calculus of the surface S is applied: aqg is the metric
tensor, a = det(ang), €*” is the Ricci tensor of alternation; (-), denote covariant

2010 Mathematics Subject Classification: Primary 53A04; Secondary 53A05.
Dedicated to the memory of Professor Antun Bilimovich, the founder of the journal Publi-
cations de L’Institut Mathematique de .’ Academie Serbe des Sciences.

59



60 JARIC

derivative. The Greek indices «, 3, ..., indicate values from 1 to 2. The summation
over repeated indices is understood.

Further we shall require the following:

I. If A* and A, are the contravariant and covariant components of a unit vector,
one has A Aq = A A% = 0, from which it follows that

(2) /\?2-3 = pvg, Aa,8 = Hal/gs
where p® is the vector perpendicular to the given vector Ay, and vg is a vector, [3].
Now, it is easy to show that

(3) 50‘/3575)\7&)\% =0.
I1. Next we have

(4) Ma,fy — Ma,yg = mtsRi/Bw
where
(5) Ra,@v& = Kgaﬂg'yé

is the Riemann—Christoffel tensor. Then from (4) and (5) we have
(6) M gy = Kmeqq.

ITI. From the Green theorem [4] we have

(7) j{AaAa ds = // e Ap ., da.
S

IV. Now, let C': u® = u®(s) and C, : p(u',u?) = a be family of curves on
S; s is the arc length of C, and a is an arbitrary constant. Further, A* = du®/ds
denotes the unit tangent vector of C' and mq = ¢ o /| grad ¢| the unit vector normal
on Cy; |grad | = \/a*Pp op 3. We assume that C intersects with the family of
curves C,. At the point of intersection the angle between C' and C, will be denoted
by 6.

We want to calculate the rate of change with respect to s along C of the angle 6.
This can be done making use of § = 3 — 4, where ¥ is the angle between the unit

vectors \* and m,, at the point of intersection since then % = —%. Obviously,
tang = asA7m”
a,ﬂ;/\'Vm‘;
so that
dy 69 ) )
— = — =cap— (£asAMP) ars XM’ — 0 \mP — (a,s\Tm?
dt ds P55 ( op ) 78 ef ds ( 78 )

S\ 0O\ AN
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Thus,
dy ON? \ om®
ds For 0s For 0s m
and from this
ﬁ =k, —¢ _5ma m’
ds 7 7T §s
since e = k4v7 and €570 A" = —1. Hence,
s
do om?
(8) E —kg—f—E(ﬂ—?m .

Now we are ready to give the proof of the theorem.

PRrROOF. From (8) we have

7{ df — y{kg ds = %EUTémamT = ][smmfamT}\o‘ ds

where we make use of Sme
m
= mo‘g)\g.
0s ’

But, in view of Green’s theorem (7), (2), (3) and (6),

%ngmfamTAa ds = // gh (ngmfamT) 8 da

S
— [[ #ocar g™ + Ty da

s
= —//KmvgwgngT da = //Kda.
s s
%d@—j{kgdsz//Kda
s

from which (1) follows. O

Thus,

Of course the Gauss—Bonnet theorem can be formulated for more general cases,
for example for a simply-connected portion of a surface which is bounded by piece-
wise regular curves, but the procedure is the same. Then instead of (1) we have

(9) ]{kgds+zn:(w—9i)+//Kda_2w,
=1 s

where 6; are the corresponding exterior angles of C' at the points of cusps. Usually
we make use of interior angles «;, i.e. of the relation a; = m — 6;, so that we write
(9) as

(10) (n—z)w+j§kgds+//Kda_zn:ai.
S =1
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REMARK. The approach is a quite general one. For instance, in [3] it is assumed
that ¢ = u® = const, o = fixed (usually o = 2). Then ¢ , = 62, |grad p| = vVa*e,

1
my = W&g = #(52‘, (no sum over «, 8 # «). Then, from (8) we have
db, Imy 10
o kg, +€°7 gz m, = kg, + Eﬁa%%ma, (no sum over a, 3).
But 5 s s
omg  dmg du du a du
_— = — PQ _— = — ]_—‘Q e T —
s ds e B8 gs e 887 g \ ags 7 ds
and hence s
dbe d
—qua—s'eo‘ﬁ g(;i_
ds ‘ agg ds

2 = const, from (10) we obtain

dfs Va o, du®
rFl kg, — a—llFlth.
If p = u? = const is geodesic, then kg, = 0 and
d_92 @1’*2 d_u6
ds ' an Y ds

Particularly, for p = u

=0,
see [3, (32.14)].
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