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Abstract. An asymptotic analysis in the framework of Karamata regularly
varying functions is performed for the solutions of second order linear differen-
tial and functional differential equations in the critical case i.e., when condition
(1.5) as given below, holds.

1. Introduction

As is witnessed by the recent book [9] theory of regular variation (in the sense
of Karamata) has made it possible to develop a new significant aspect of asymptotic
analysis of linear and nonlinear ordinary differential equations.

For the reader’s convenience we recall here the definition and some basic prop-
erties of regularly varying functions. A measurable function f : [0, ∞) → (0, ∞) is
said to be regularly varying of index ρ ∈ R if

lim
t→∞

f(λt)
f(t)

= λρ for all λ > 0.

The totality of regularly varying functions of index ρ is denoted by RV(ρ). We
often use the symbol SV to denote RV(0) and call members of SV slowly varying
functions. By definition any function f(t) ∈ RV(ρ) can be expressed as f(t) =
tρL(t) with L(t) ∈ SV. One of the most important properties of RV(ρ)-functions
is the following representation theorem.

Theorem 1.1. f(t) ∈ RV(ρ) if and only if f(t) is expressed in the form

(1.1) f(t) = c(t) exp
{∫ t

t0

δ(s)
s

ds

}
, t � t0,

for some t0 > 0 and some measurable functions c(t) and δ(t) such that
lim

t→∞ c(t) = c0 ∈ (0, ∞) and lim
t→∞ δ(t) = ρ.
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If c(t) ≡ c0 in (1.1), then the function f(t) is called a normalized regularly
varying function of index ρ, and the totality of such functions form an important
subclass, denoted by n-RV(ρ), of RV(ρ). The symbol n-RV stands for n-RV(0) and
its members are referred to as normalized slowly varying functions.

Let L(t) ∈ SV. What is the asymptotic behavior of L(t) as t → ∞? It may
occur that limt→∞ L(t) = const > 0, that is, L(t) is asymptotic to a positive
constant as t → ∞. In this case L(t) is said to be a trivial SV-function. Naturally
L(t) may exhibit a different behavior: limt→∞ L(t) = 0, or limt→∞ L(t) = ∞, or
otherwise, in which case L(t) is said to be a nontrivial SV-function. Thus it is
possible that a nontrivial SV-function may grow to infinity or decay to zero as
t tends to ∞, but its behavior at infinity is severely restricted as the following
theorem asserts.

Theorem 1.2. Let L(t) be a slowly varying function. Then, for any ε > 0,
lim

t→∞ tεL(t) = ∞ and lim
t→∞ t−εL(t) = 0.

Useful is the following theorem due to Karamata on the asymptotic behavior
of integrals involving slowly varying functions.

Theorem 1.3. Let L(t) be a slowly varying function.

(i) If γ > −1, then
∫ t

t0

sγL(s) ds ∼ tγ+1

γ + 1
L(t) as t → ∞.

(ii) If γ < −1, then
∫ ∞

t

sγL(s) ds ∼ − tγ+1

γ + 1
L(t) as t → ∞.

Here the symbol ∼ is used to denote the asymptotic equivalence:

F (t) ∼ G(t) ⇐⇒ lim
t→∞

F (t)
G(t)

= 1.

For a comprehensive exposition of theory of regular variation and its appli-
cations to various branches of mathematical analysis the reader is referred to the
book [1].

We are now in a position to state an example of typical results on the study of
asymptotic behavior of solutions of the linear ordinary differential equation
(A) x′′ + q(t)x = 0
in the framework of regular variation.

Theorem 1.4. (Howard and Marić [4]) Suppose that q(t) is a continuous func-
tion which is integrable on [a, ∞). Let a constant c ∈ (−∞, 1

4 ) be given and let λ0
and λ1, λ0 < λ1, be the real roots of the quadratic equation
(1.2) λ2 − λ + c = 0.

Then, equation (A) has a fundamental set of solutions {x0(t), x1(t)} such that
x0(t) ∈ n-RV(λ0), x1(t) ∈ n-RV(λ1) if and only if

(1.3) lim
t→∞ t

∫ ∞

t

q(s) ds = c.
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After the publication of [9] attempts have been made by the present authors [6,
7, 8] to establish the existence of regularly varying solutions to functional differential
equations with deviating arguments of the form

(B) x′′(t) + q(t)x(g(t)) = 0,

where q(t) and g(t) are continuous on [a, ∞), and g(t) is increasing. There holds

Theorem 1.5. [8] Let c, λ0 and λ1 be as in Theorem 1.4 with c replaced by −c.
Suppose that q(t) is eventually negative and that g(t) satisfies g(t) < t, g(t) → ∞,
as t → ∞ and g(t)/t → 1, as t → ∞.

Then, equation (B) has two solutions x0(t) ∈ n-RV(λ0) and x1(t) ∈ n-RV(λ1)
if and only if (1.3) is satisfied.

We note that if in particular c = 0, in which case λ0 = 0 and λ1 = 1,
the conclusion of Theorem 1.5 holds if the last condition on q(t) is replaced by
lim supt→∞ t/g(t) < ∞.

It should be noticed that the constant c in Theorem 1.4 is not allowed to exceed
1/4. In fact, let q(t) be eventually positive, and suppose that c > 1/4. Then, the
roots of (1.2) are imaginary and so equation (A) is oscillatory by the well-known
oscillation criterion of Hille [2]. A question then arises: What happens if c = 1/4?
This is a critical case in the sense that equation (A) may or may not be oscillatory
as is shown by the equation

(1.4) x′′ + q(t)x = 0, q(t) =
1

4t2 +
d

(t log t)2 ,

where d is a positive constant. It is clear that q(t) satisfies (1.3) with c = 1/4 and it
is known that (1.4) is oscillatory or nonoscillatory according as d > 1/4 or d � 1/4.
Therefore, additional conditions are needed to ensure oscillation or non-oscillation
of equation (A) in case c = 1/4; see e.g., the books [3] and [10]. A criterion for
non-oscillation of (A) in the language of regular variation, applicable to this case,
has been given by Howard and Marić in [4].

Theorem 1.6. [4] Let q(t) be continuous and integrable on [a, ∞). Suppose
that

(1.5) lim
t→∞ t

∫ ∞

t

q(s) ds = 1
4

.

Put φ(t) = t
∫ ∞

t
q(s) ds − 1

4 , and let the integral
∫ ∞ |φ(t)|/tdt converge. Suppose

moreover that ∫ ∞ ψ(t)
t

dt < ∞, where ψ(t) =
∫ ∞

t

|φ(s)|
s

ds.

Then equation (A) possesses a fundamental set of solutions {x0(t), x1(t)} such that

x0(t) = t1/2L0(t), L0(t) ∈ n-RV, lim
t→∞ L0(t) ∈ (0, ∞),

x1(t) = t1/2 log tL1(t), L1(t) ∈ n-RV, lim
t→∞ L1(t) ∈ (0, ∞).
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The objective of this paper is first (in Section 2) to make a more detailed
analysis of regularly varying solutions of equation (A) under the condition (1.5),
obtaining a generalized version of Theorem 1.6, and then (in Section 3) to make use
of the results for (A) to establish the existence of similar solutions for the functional
differential equation (B) with q(t) satisfying (1.5). In what follows the function q(t)
is assumed to be integrable over [a, ∞) unless stated otherwise.

In analyzing the non-oscillation and asymptotic behavior of pertinent equations
in the critical case a crucial role is played by the concept of generalized regularly
varying functions which was introduced by Jaroš and Kusano [5].

A measurable function f : [0, ∞) → (0, ∞) is said to be a (generalized) regularly
varying function of index ρ with respect to log t if f(t) is expressed as f(t) = g(log t)
for some regularly varying function g(τ) of index ρ in the sense of Karamata. We
use the symbol RVlog t(ρ) to denote the set of all regularly varying functions of
index ρ with respect to log t. As before, SVlog t stands for RVlog t(0), and members
of SVlog t are called (generalized) slowly varying functions with respect to log t.
If, in the representation f(t) = g(log t), g(τ) is in n-RV(ρ) (or in n-RV), then
f(t) is termed a normalized regularly varying function of index ρ (or a normalized
slowly varying function) with respect to log t. The set of all normalized RV(ρ)- or
SV-functions with respect to log t will be denoted by n-RVlog t(ρ) or n-RVlog t.

Since the composition of a slowly varying function and log t is clearly slowly
varying, we see that SVlog t ⊂ SV and RVlog t(ρ) ⊂ RV(ρ). It should be noted,
however, that both inclusions are proper. For example, log t ∈ SV but log t /∈ SVlog t

because log t ∈ RVlog t(1).
The representation theorem for RV(ρ)-functions combined with the above def-

inition provides a characterization for the class RVlog t(ρ).

Theorem 1.7. f(t) ∈ RVlog t(ρ) if and only if f(t) is expressed in the form

(1.6) f(t) = exp
{∫ t

t0

δ(s)
s log s

ds

}
, t � t0,

for some t0 > 1 and some measurable functions c(t) and δ(t) such that
lim

t→∞ c(t) = c0 ∈ (0, ∞) and lim
t→∞ δ(t) = ρ.

We note that f(t) ∈ n-RVlog t(ρ) if and only if c(t) ≡ c0 in the representation
formula (1.6).

2. Regularly varying solutions of (A) in the critical case

We begin by considering equation (A) with q(t) satisfying condition (1.5). In
this case equation (A) may well be called a perturbed Euler differential equation.

First observe that a regularly varying solution of (A), if any, must have the
regularity index 1/2. This is an immediate consequence of the following lemma.

Lemma 2.1. If (A) has an n-RV(ρ)-solution, then it holds that

(2.1) lim
t→∞ t

∫ ∞

t

q(s) ds = ρ(1 − ρ).
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Proof. Let x(t) ∈ n-RV(ρ) be a solution of (A) on [t0, ∞). Define u(t) =
x′(t)/x(t) and v(t) = tu(t). It is known that u(t) satisfies the Riccati equation
(2.2) u′ + u2 + q(t) = 0, t � t0.

On the other hand, using the representation theorem (Theorem 1.1), we see that
x(t) ∈ n-RV(ρ) satisfies

lim
t→∞ v(t) = lim

t→∞
tx′(t)
x(t)

= ρ,

which implies in particular that u(t) → 0 as t → ∞ and that u(t)2 = v(t)2/t2 is
integrable on [t0, ∞). From (2.2) it then follows that q(t) is integrable on [t0, ∞),
and integration of (2.2) from t to ∞ yields

u(t) =
∫ ∞

t

u(s)2ds +
∫ ∞

t

q(s) ds, t � t0,

which, written for v(t), takes the form

(2.3) v(t) = t

∫ ∞

t

v(s)2

s2 ds + t

∫ ∞

t

q(s) ds, t � t0.

Letting t → ∞ in (2.3), we conclude that (2.1) holds as desired. �
Our task therefore is to seek RV(1/2)-solutions of equation (A) under condition

(1.5). We are based on the simple fact that the change of variables x = t1/2y
transforms (A) into the differential equation

(2.4) (ty′)′ + t
(

q(t) − 1
4t2

)
y = 0.

Thus, to obtain a solution of (A) belonging to RV(1/2) of (A) it suffices to verify
the existence of an SV-solution y(t) of (2.4) and form the function x(t) = t1/2y(t).
As is shown in [5], the class of generalized regularly varying functions with respect
to log t, which is smaller than the classical regularly varying functions, is a well-
suited framework for the asymptotic analysis of (2.4). So, our attention will be
directed to the existence of RVlog t(ρ)-solutions of differential equations of the form
(2.5) (ty′)′ + p(t)y = 0,

where p(t) is continuous and integrable on [a, ∞).
Basic to the subsequent development is the following existence theorem.

Theorem 2.1. Let d ∈ (−∞, 1
4 ) be a given constant and let μ0 and μ1, μ0 < μ1,

be the real roots of the quadratic equation
(2.6) μ2 − μ + d = 0.

Then, equation (2.5) has a fundamental set of solutions {y0(t), y1(t)} such that
(2.7) y0(t) ∈ n-RVlog t(μ0), y1(t) ∈ n-RVlog t(μ1)
if and only if

(2.8) lim
t→∞ log t

∫ ∞

t

p(s) ds = d.
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Proof. (The “only if" part) Suppose that (2.5) possesses a pair of solutions
on [t0, ∞) satisfying (2.7). Let y(t) stands for yi(t), i = 0 or 1. Put

(2.9) u(t) = ty′(t)
y(t)

, v(t) = u(t) log t.

Using the representation for y(t)

y(t) = y(t0) exp
{∫ t

t0

δ(s)
s log s

ds

}
, lim

t→∞ δ(t) = μ,

where μ = μi, i = 0 or 1, we see that
lim

t→∞ v(t) = lim
t→∞ u(t) log t = lim

t→∞ δ(t) = μ,

which implies that u(t) → 0 as t → ∞ and u(t)2/t = v(t)2/t(log t)2 is integrable
on [t0, ∞). Consequently, integrating from t to ∞ the Riccati equation

(2.10) u′ + u2

t
+ p(t) = 0, t � t0,

satisfied by u(t), we obtain

u(t) =
∫ ∞

t

u(s)2

s
ds +

∫ ∞

t

p(s) ds,

which, in view of (2.9), can be transformed into

v(t) = log t

∫ ∞

t

v(s)2

s(log s)2 ds + log t

∫ ∞

t

p(s) ds, t � t0.

Passing to the limit as t → ∞, we conclude that

lim
t→∞ log t

∫ ∞

t

p(s) ds = μ − μ2 = d,

ensuring the truth of (2.8).
(The “if" part) Suppose that (2.8) is satisfied. First we will be concerned with

the existence of a solution of (2.5) belonging to n-RVlog t(μ0). Note that μ0 < 1/2.
Put

P (t) = log t

∫ ∞

t

p(s) ds − d.

Let l be a positive constant such that
2(μ0 + 2)
1 − 2μ0

l < 1 if μ0 > 0,
2|μ0| + 2
1 + 2|μ0| l < 1 if μ0 < 0

and choose t0 � a so that |P (t)| � l2, t � t0. Define
V = {v ∈ C0[t0, ∞) : |v(t)| � l, t � t0},

where C0[t0, ∞) denotes the set of all continuous functions on [t0, ∞) that tend to 0
as t → ∞. Clearly, C0[t0, ∞) is a Banach space with the norm ‖v‖0 = supt�t0 |v(t)|.

Consider the integral operator F defined by

Fv(t) = (log t)1−2μ0

∫ ∞

t

2μ0P (s) + (v(s) + P (s))2

s(log s)2−2μ0
ds, t � t0.
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It can be shown easily that v ∈ V implies |Fv(t)| � l, t � t0, and that v1, v2 ∈ V
implies ‖Fv1 −Fv2‖0 � 4l/(1−2μ0)·‖v1 −v2‖0. This shows that F is a contraction
mapping on V , and so there exists a unique v ∈ V such that v = Fv, that is,
v = v(t) is a solution of the integral equation

(2.11) v(t) = (log t)1−2μ0

∫ ∞

t

2μ0P (s) + (v(s) + P (s))2

s(log s)2−2μ0
ds, t � t0.

With this v(t) we construct the function

y0(t) = exp
{∫ t

t0

μ0 + v(s) + P (s)
s log s

ds

}
, t � t0,

and claim that y0(t) is a solution of equation (2.5) in RVlog t(μ0). That y0(t) ∈
RVlog t(μ0) is a consequence of Theorem 1.7 since μ0 + v(t) + P (t) → μ0 as t → ∞.
To show that y0(t) is a solution of (2.5) it suffices to verify that the function
u(t) = (μ0 + v(t) + P (t))/ log t satisfies the Riccati equation (2.10) on [t0, ∞). It is
a matter of elementary calculation to see that (2.10) can then be transformed into

( v(t)
(log t)1−2μ0

)′
+ 2μ0P (t) + (v(t) + P (t))2

t(log t)2−2μ0
= 0,

But this is the differential equation that follows from differentiation of the integral
equation (2.11). This establishes the existence of an RVlog t(μ0)-solution of equation
(2.5). �

Up to this point the smaller root μ0 of (2.6) has been tacitly assumed to be
nonzero. We remark here that if μ0 = 0, which occurs in the case d = 0, the
construction of the solution y0(t) of equation (2.5) becomes slightly simpler, and
proceeds as follows. We let a constant 0 < l < 1/4 be fixed, choose T > a so that
|P (t)| � l for t � T , solve, with the help of the contraction mapping principle, the
integral equation

v(t) = log t

∫ ∞

t

(v(s) + P (s))2

s(log s)2 ds, t � T,

in the set V = {v ∈ C0[T, ∞) : 0 � v(t) � l, t � T }, and finally form the function

y0(t) = exp
{∫ t

T

v(s) + P (s)
s log s

ds

}
, t � T.

Then y0(t) is shown to be an SVlog t-solution of (2.5).
Next, we turn to the construction of an RVlog t(μ1)-solution of (2.5). We note

that μ1 > 1/2. Let m be a positive constant such that

m <
1
4

and 2(μ1 + 2)
2μ1 − 1

m � 1.

Choose t1 � a so that |P (t)| � m2, t � t1, and consider the set W and the integral
operator G defined by W = {w ∈ C0[t1, ∞) : |w(t)| � m, t � t1}, and

Gw(t) = (log t)1−2μ1

∫ t

t1

s−1(log s)2μ1−2{
2μ1P (s) + (w(s) − P (s))2}

ds, t � t1.
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It is straightforward to check that w ∈ W implies |Gw(t)| � m, t � t1, and that
w1, w2 ∈ W implies ‖Gw1 − Gw2‖0 � 4m/(2μ1 − 1)·‖w1 − w2‖0. This shows that
G is a contraction on W , so that there exists a w ∈ W such that w = Gw, which is
equivalent to the integral equation
(2.12)

w(t) = (log t)1−2μ1

∫ t

t1

s−1(log s)2μ1−2{2μ1P (s) + (w(s) − P (s))2} ds, t � t1.

Let y1(t) be defined with this w(t) by

y1(t) = exp
{∫ t

t1

μ1 − w(s) + P (s)
s log s

ds

}
, t � t1.

On the one hand, y1(t) ∈ RVlog t(μ1) since −w(t) + P (t) → 0 as t → ∞, and on
the other, y1(t) is a solution of equation (2.5) since u(t) = (μ1 − w(t) + P (t))/ log t
satisfies the Riccati equation (2.10) on [t1, ∞). In fact, substituting u(t) for (2.10)
yields

((log t)2μ1−1w(t))′ = (log t)2μ1−2{
2μ1P (t) + (w(t) − P (t))2}

,

which follows from direct differentiation of (2.12). Thus condition (2.8) is also
sufficient for equation (2.5) to possess an RVlog t(μ1)-solution. This completes the
proof of Theorem 2.1.

The main result of this section is obtained as a corollary to Theorem 2.1.
Theorem 2.2. Let d, μ0 and μ1 be as in Theorem 2.1and suppose the function

t(q(t)−1/4t2) is integrable over (t, ∞). Then equation (A) possesses a fundamental
set of solutions {x0(t), x1(t)} such that

(2.13) xi(t) = t1/2yi(t), yi(t) ∈ n-RVlog t(μi), i = 0, 1,

if and only if

(2.14) lim
t→∞ log t

∫ ∞

t

s
(

q(s) − 1
4s2

)
ds = d.

Proof. Observe that equation (A) has a fundamental set of solutions xi(t),
i = 0, 1, as described in (2.13) if and only if the functions yi(t) = t−1/2xi(t), i = 0, 1,
are solutions of (2.4) belonging to RVlog t(μi), i = 0, 1, and apply Theorem 2.1 to
equation (2.4) which is a special case of (2.5) with p(t) = t(q(t) − 1/4t2). �

Remark 2.1. It should be noticed that condition (2.14) automatically implies
(1.5). In fact, (2.14) guarantees the existence of regularly varying solutions of index
1
2 for equation (A), which means by Lemma 2.1 that (1.5) must be satisfied.

Example 2.1. Consider the perturbed Euler equation

(2.15) x′′ + q(t)x = 0, q(t) = 1
4t2 + d(t)

(t log t)2 ,

where d(t) is a positive continuous function on [e, ∞) such that limt→∞ d(t) = d ∈
(0, 1

4 ). Since

lim
t→∞ log t

∫ ∞

t

s
(

q(s) − 1
4s2

)
ds = lim

t→∞ log t

∫ ∞

t

d(s)
s(log s)2 ds = d,
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it follows from Theorem 2.2 that equation (2.15) has two linearly independent
solutions xi(t) = t1/2yi(t), i = 0, 1, as described in (2.13).

Example 2.2. Our next example is the following.

(2.16) x′′ + q(t)x = 0, q(t) = 1
4t2 + 1

t2(log t)2 log log t
.

An easy calculation shows that (2.14) holds for d = 0 and so Theorem 2.2 ensures
the existence of two linearly independent solutions x(t) = t1/2yi(t), i = 0, 1, such
that y0(t) ∈ SVlog t and y1(t) ∈ RVlog t(1). Since t1/2 log log t is a solution of (2.16),
one can take x0(t) = t1/2 log log t and x1(t) = x0(t)

∫ t

T
ds/x0(s)2, T > e being

sufficiently large. As is easily seen,

t−1/2x1(t) = log log t

∫ t

T

ds

s(log log s)2 ∼ log t

log log t
∈ RVlog t(1).

Observe that Theorem 1.6 is not applicable to either of these examples.

3. Regularly varying solutions of (B) in the critical case

We now turn our attention to functional differential equations with retarded
argument of the form (B)

x′′(t) + q(t)x(g(t)) = 0,

where q(t) and g(t) are positive and continuous on [a, ∞), and g(t) is increasing
and satisfies g(t) < t and limt→∞ g(t) = ∞. We look for regularly varying solutions
of (B) under the assumption that

(3.1) lim
t→∞ t

∫ ∞

t

q(s) ds = 1
4

.

In view of Theorem 1.5 it is natural to expect that the nonoscillatory nature
of (B) would be similar to that of the ordinary differential equation (A) provided
the retarded argument g(t) is a small perturbation of t, or more specifically that
condition (3.1) would ensure the existence of RV(1

2 )-solutions as described in Theo-
rem 2.2 if g(t) is “sufficiently close" to t in some sense. The objective of this section
is to demonstrate the truth of the above expectation by proving the following the-
orem.

Theorem 3.1. Suppose that q(t) − 1/4t2 is eventually positive and that g(t)
has the property that

(3.2) g(t)
t

= 1 + O
( 1

tα

)
as t → ∞,

for some α > 0. Let a constant d ∈ [0, 1
4 ) be fixed and let μ0 and μ1, μ0 < μ1, be

the roots of the quadratic equation
(3.3) μ2 − μ + d = 0.

Then, equation (B) possesses two n-RV(1
2 )-solutions xi(t), i = 0, 1, such that

(3.4) xi(t) = t1/2yi(t), yi(t) ∈ n-RVlog t(μi), i = 0, 1,
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if and only if

(3.5) lim
t→∞ log t

∫ ∞

t

s
(

q(s) − 1
4s2

)
ds = d.

Proof. (The “only if" part) Suppose that (B) has two regularly varying solu-
tions x(t) = t1/2y(t) as described in (3.4), where y(t) stands for yi(t), i = 0 or 1.
Then, y(t) is an RVlog t(μi)-solution, i = 0 or 1, of the differential equation

(3.6) (ty′(t))′ + t

((g(t)
t

)1/2
q(t)y(g(t)) − 1

4t2 y(t)
)

= 0,

which can be regarded as a linear ordinary differential equation

(3.7) (ty′(t))′ + qy(t)y(t) = 0, qy(t) = t

((g(t)
t

)1/2 y(g(t))
y(t) q(t) − 1

4t2

)
.

From the “only if" part of Theorem 2.2 we see that

(3.8) lim
t→∞ log t

∫ ∞

t

s

((g(s)
s

)1/2 y(g(s))
y(s)

q(s) − 1
4s2

)
ds = d.

We now rewrite the integrand of (3.8) as follows:

(3.9) t

((g(t)
t

)1/2 y(g(t))
y(t) q(t) − 1

4t2

)

= t
(g(t)

t

)1/2 y(g(t))
y(t)

(
q(t) − 1

4t2

)
+

((g(t)
t

)1/2 y(g(t))
y(t)

− 1
)

1
4t

.

Since y(t) ∈ n-RVlog t(μi), y(t) is expressed in the form

y(t) = exp
{∫ t

t0

δ(s)
s log s

ds

}
, lim

t→∞ δ(t) = μi,

for some t0 > 1, so that
y(g(t))

y(t)
= exp

{
−

∫ t

g(t)

δ(s)
s log s

ds

}
,

from which, noting that 0 � δ(t) � 1 for sufficiently large t, we have

(3.10)
log g(t)

log t
� y(g(t))

y(t)
� 1 for all large t

Since (3.2) implies

(3.11) log g(t)
log t

= 1 + O
( 1

tα log t

)
and

(g(t)
t

)1/2
= 1 + O

( 1
tα

)

as t → ∞, we find from (3.10) that(g(t)
t

)1/2 y(g(t))
y(t)

= 1 + O
( 1

tα

)
as t → ∞,

which implies that

(3.12) lim
t→∞ log t

∫ ∞

t

((g(s)
s

)1/2 y(g(s))
y(s)

− 1
)

1
4s

ds = 0.
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Then, combining (3.9) with (3.8) and (3.12), we conclude that

lim
t→∞ log t

∫ ∞

t

s
(g(s)

s

)1/2 y(g(s))
y(s)

(
q(s) − 1

4s2

)
ds = d,

from which (3.5) can be derived easily.
(The “if" part) Suppose that (3.5) holds. We begin with the case where d > 0,

so that the roots of (3.3) satisfies 0 < μ0 < 1
2 < μ1 < 1. By means of the identity

t

((g(t)
t

)1/2 log g(t)
log t

q(t) − 1
4t2

)

=
(g(t)

t

)1/2 log g(t)
log t

t
(

q(t) − 1
4t2

)
+

((g(t)
t

)1/2 log g(t)
log t

− 1
) 1

4t
,

it can be shown that

(3.13) lim
t→∞ log t

∫ ∞

t

((g(s)
s

)1/2 log g(s)
log s

q(s) − 1
4s2

)
ds = d.

In fact, using the relation(g(t)
t

)1/2 log g(t)
log t

= 1 + O
( 1

tα

)
as t → ∞,

(cf. (3.11)), we see that

lim
t→∞ log t

∫ ∞

t

((g(s)
s

)1/2 log g(s)
log s

− 1
)

1
4s

ds = 0

and
lim

t→∞ log t

∫ ∞

t

(g(s)
s

)1/2 log g(s)
log s

s
(

q(s) − 1
4s2

)
ds = d,

from which (3.13) follows immediately.
Our first task is to prove the existence of an RV(1

2 )-solution x0(t) of equation
(A) such that

x0(t) = t1/2y0(t), y0(t) ∈ n-RVlog t(μ0).
Let l be a positive constant such that

2(μ0 + 2)
1 − 2μ0

l < 1,

and choose T > a so large that g(T ) � a and

(3.14)
∣∣∣∣log t

∫ ∞

t

s
(

q(s) − 1
4s2

)
ds − d

∣∣∣∣ � l2,

and

(3.15)
∣∣∣∣log t

∫ ∞

t

s
((g(s)

s

)1/2 log g(s)
log s

q(s) − 1
4s2

)
ds − d

∣∣∣∣ � l2,

for t � T . Let Ξ denote the set consisting of all functions ξ(t)∈C[g(T ), ∞)∩C1[T, ∞)
that are expressed in the form

(3.16) ξ(t) = 1, g(T ) � t � T, ξ(t) = exp
{∫ t

T

δξ(s)
s log s

ds

}
, t � T,
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where δξ(t) satisfies 0 � δξ(t) � 1 and limt→∞ δξ(t) = μ0. The set Ξ can be
regarded as a closed and convex subset of the locally convex space C1[T, ∞) of all
continuously differentiable functions on [T, ∞) with the metric topology of uniform
convergence of functions and their derivatives on compact subintervals of [T, ∞).
Let {ξn(t)} be a sequence in Ξ consisting of

(3.17) ξn(t) = exp
{∫ t

T

δn(s)
s log s

ds

}
, t � T, n = 1, 2, . . . ,

where δn(t) satisfies 0 � δn(t) � 1, n = 1, 2, .., and limt→∞ δn(t) = μ0. Sup-
pose that {ξn(t)} and {ξ′

n(t)} converge, respectively, to ξ(t) and ξ′(t) on compact
subintervals of [T, ∞). Since by (3.17)

(3.18) t log t
ξ′

n(t)
ξn(t)

= δn(t), t � T, n = 1, 2, . . . ,

we find that

δ(t) := lim
n→∞ δn(t) = t log t

ξ′(t)
ξ(t)

, t ∈ [T, ∞).

It is clear that δ(t) is continuous on [T, ∞), and satisfies 0 � δ(t) � 1 and
limt→∞ δn(t) = μ0. It follows that

ξ(t) = exp
{∫ t

T

δ(s)
s log s

ds

}
, t � T,

which implies that ξ(t) ∈ Ξ, showing that Ξ is a closed subset of C1[T, ∞). To make
sure the convexity of Ξ let ξ1(t), . . . , ξN (t) be N functions in Ξ and let c1, . . . , cN

be N positive constants such that
∑N

k=1 ck = 1. Then, using (3.18), we see that
the function

∑N
k=1 ckξk(t) is expressed in the form

(3.19)
N∑

k=1

ckξk(t) = exp
{∫ t

T

δN (s)
s log s

ds

}
, t � T,

in terms of the continuous function δN (t) defined by

δN (t) =
∑N

k=1 ckδk(t)ξk(t)∑N
k=1 ckξk(t)

.

As easily checked, 0 � δN (t) � 1 and limt→∞ δN (t) = μ0, and hence (3.19) ensures
that

∑N
k=1 ckξk(t) ∈ Ξ, proving that Ξ is a convex set.

Another important property of Ξ is that

(3.20) log g(t)
log t

� ξ(g(t))
ξ(t)

� 1, t � T,

for all ξ(t) ∈ Ξ. This is an immediate consequence of the relation

ξ(g(t))
ξ(t)

= exp
{

−
∫ t

g(t)

δξ(s)
s log s

ds

}
, 0 � δξ(t) � 1,
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following from (3.16). In fact, if t � T1, where T1 > T is such that T = g(T1), then
we have

exp
{

−
∫ t

g(t)

δξ(s)
s log s

ds

}
� exp

{
−

∫ t

g(t)

1
s log s

ds

}
= log g(t)

log t
,

and if T � t � T1, then we have
ξ(g(t))

ξ(t)
� exp

{
−

∫ t

T

1
s log s

ds

}
= log T

log t
� log g(t)

log t
.

Using (3.20), we find that for all ξ(t) ∈ Ξ
(3.21)

t

((g(t)
t

)1/2 log g(t)
log t

q(t) − 1
4t2

)
� t

((g(t)
t

)1/2 ξ(g(t)
ξ(t)

q(t) − 1
4t2

)
� t

(
q(t) − 1

4t2

)
.

For simplicity we put for any ξ(t) ∈ Ξ

(3.22) qξ(t) = t

((g(t)
t

)1/2 ξ(g(t))
ξ(t) q(t) − 1

4t2

)
,

and

(3.23) Qξ(t) = log t

∫ ∞

t

qξ(s) ds − d.

Because of (3.14) and (3.15) we have |Qξ(t)| � l2, t � T , ξ(t) ∈ Ξ. This inequality
makes it possible to apply Theorem 2.1 to each member of the family of ordinary
differential equations

(3.24) (ty′)′ + qξ(t)y = 0, ξ(t) ∈ Ξ,

obtaining a solution yξ(t) in n-RVlog t(μ0) of the form

(3.25) yξ(t) = exp
{∫ t

T

μ0 + vξ(s) + Qξ(s)
s log s

ds

}
, t � T,

where vξ(t) solves the integral equation

(3.26) vξ(t) = (log t)1−2μ0

∫ ∞

t

2μ0Qξ(s) + (vξ(s) + Qξ(s))2

s(log s)2−2μ0
ds, t � T,

and |vξ(t)| � l for t � T and limt→∞ vξ(t) = 0.
Our final procedure is to show that the set {yξ(t) : ξ(t) ∈ Ξ} contains at

least one member which provides an RVlog t(μ0)-solution of the retarded differential
equation (3.7) with the help of the Schauder–Tychonoff fixed point theorem. To
this end we define Φ to be the mapping which assigns to each ξ(t) ∈ Ξ the function
Φξ(t) given by

(3.27) Φξ(t) = 1 for g(T ) � t � T, Φξ(t) = yξ(t) for t � T.

(i) Φ maps Ξ into itself. This follows immediately from (3.25). Put δξ(t) =
μ0 + vξ(t) + Qξ(t). Since |vξ(t) + Qξ(t)| � 2l, t � T , vξ(t) + Qξ(t) → 0 as t → ∞
and μ0 ∈ (0, 1

2 ), we have 0 � δξ(t) � 1 for t � T and limt→∞ δξ(t) = μ0, which
ensures that Φξ(t) ∈ Ξ.
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(ii) Φ(Ξ) is relatively compact in C1[T, ∞). In virtue of (3.25) we obtain for
any ξ(t) ∈ Ξ and for t � T

yξ(t) � exp
{∫ t

T

1
s log s

ds

}
= log t

log T
,

|y′
ξ(t)| = yξ(t) |μ0 + vξ(t) + Qξ(t)|

t log t
� 1

T log T
,

and

|(ty′
ξ(t))′| = |qξ(t)|yξ(t) � t

(
q(t) + 1

4t2

) log t

log T
.

This clearly establishes, via the Arzela–Ascoli lemma, the relative compactness of
the set Φ(Ξ).

(iii) Φ is a continuous mapping. Let {ξn(t)} be a sequence in Ξ converging
to ξ(t) in C1[T, ∞). This means that ξn(t) → ξ(t) and ξ′

n(t) → ξ′
n(t) as n → ∞

uniformly on compact subintervals of [T, ∞). We have to prove that

(3.28) Φξn(t) → Φξ(t) and (Φξn)′(t) → (Φξ)′(t)

uniformly on any compact subinterval of [T, ∞). Using (3.25), we obtain for t � T

|Φξn(t) − Φξ(t)| = |yξn(t) − yξ(t)|

�
∣∣∣∣exp

{∫ t

T

μ0 + vξn(s) + Qξn(s)
s log s

ds

}
− exp

{∫ t

T

μ0 + vξ(s) + Qξ(s)
s log s

ds

}∣∣∣∣
� log t

log T

∫ t

T

|vξn(s) − vξ(s)| + |Qξn(s) − Qξ(s)|
s log s

ds,

and

|(Φξn)′(t) − (Φξ)′(t)| = |y′
ξn

(t) − y′
ξ(t)|

=
∣∣∣yξn(t)μ0 + vξn (t) + Qξn(t)

t log t
− yξ(t)μ0 + vξ(t) + Qξ(t)

t log t

∣∣∣
�

∣∣∣(yξn(t) − yξ(t))μ0 + vξn(t) + Qξn(t)
t log t

+ yξ(t) (vξn (t) − vξ(t)) + (Qξn(t) − Qξ(t))
s log s

∣∣∣
� |yξn(t) − yξ(t)|

t log t
+

log t

log T

|vξn (t) − vξ(t)| + |Qξn(t) − Qξ(t)|
t log t

.

Consequently, in order to verify (3.28) it suffices to prove that the two sequences

(3.29) |vξn(t) − vξ(t)|
t log t

,
|Qξn(t) − Qξ(t)|

t log t

converge to 0 uniformly on compact subintervals of [T, ∞). As a matter of fact,
one can prove the uniform convergence on [T, ∞) of the sequences

(3.30) |vξn(t) − vξ(t)|
log t

and |Qξn(t) − Qξ(t)|
log t

.
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As for the second sequence in (3.30) we have from (3.23)
|Qξn(t) − Qξ(t)|

log t
�

∫ ∞

t

|qξn(s) − qξ(s)|ds,

and estimate the integrand as follows:

(3.31) |qξn(s) − qξ(s)| �
(g(s)

s

)1/2∣∣∣ξn(g(s))
ξn(s) − ξ(g(s))

ξ(s)

∣∣∣s(
q(s) − 1

4s2

)

+
∣∣∣(g(s)

s

)1/2 ξn(g(s))
ξn(s)

− 1
∣∣∣ 1
4s

+
∣∣∣(g(s)

s

)1/2 ξ(g(s))
ξ(s)

− 1
∣∣∣ 1
4s

� 2s
(

q(s) − 1
4s2

)
+ 2

(
1 −

(g(s)
s

log g(t)
log t

)1/2
)

1
4s

,

which shows that |qξn(t) − qξ(t)| is bounded by an integrable function on [T, ∞)
independent of n. Since qξn(t) → qξ(t) as n → ∞ for every t � T , from the
Lebesgue convergence theorem it follows that |Qξn(t) − Qξ(t)|/ log t converges to 0
uniformly on [T, ∞), and hence so does the second sequence in (3.29). To examine
the first sequence in (3.31) we proceed as follows. Using (3.26), we have
(3.32)
|vξn(t) − vξ(t)|

(log t)1−2μ0
� 4l

∫ ∞

t

|vξn(s) − vξ(s)|
s(log s)2−2μ0

ds + (4l + 2μ0)
∫ ∞

t

|Qξn(s) − Qξ(s)|
s(log s)2−2μ0

ds

for t � T . Putting

z(t) =
∫ ∞

t

|vξn(s) − vξ(s)|
s(log s)2−2μ0

ds,

(3.32) is transformed into the differential inequality

(3.33)
(
(log t)4lz(t)

)′
� − 4l + 2μ0

t(log t)1−4l

∫ ∞

t

|Qξn(s) − Qxi(s)|
s(log s)2−2μ0

ds, t � T.

We now integrate (3.33) from t to ∞. Noting that (log t)4lz(t) → 0 as t → ∞ and
that the right-hand side of (3.33) is integrable over [T, ∞), we obtain

(3.34) z(t) � 4l + 2μ0

4l(log t)4l

∫ ∞

t

|Qξn(s) − Qξ(s)|
s(log s)2−2μ0−4l

ds, t � T.

Note that 2 − 2μ0 − 4l > 1. Using (3.34) in (3.32), we have

|vξn(t) − vξ(t)|
(log t)1−2μ0

� 4l + 2μ0

(log t)4l

∫ ∞

t

|Qξn(s) − Qξ(s)|
s(log s)2−2μ0−4l

ds + (4l + 2μ0)
∫ ∞

t

|Qξn(s) − Qξ(s)|
s(log s)2−2μ0

ds

� 2(4l + 2μ0)
(log t)4l

∫ ∞

t

|Qξn(s) − Qξ(s)|
s(log s)2−2μ0−4l

ds

for t � T . This shows that |vξn(t) − vξ(t)|/(log t)1−2μ0 converges to 0 uniformly on
[T, ∞), and hence so does the sequence |vξn (t)−vξ(t)|/ log t. We therefore conclude
that the mapping Φ defined by (3.27) is continuous in the topology of C1[T, ∞).
Thus all the hypotheses of the Schauder–Tychonoff fixed point theorem are fulfilled,
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and so there exists ξ0(t) ∈ Ξ such that ξ0(t) = Φξ0(t), that is, ξ0(t) = yξ0(t) for
t � T . This means that ξ0(t) satisfies the linear differential equation

(tξ0(t))′ + t
((g(t)

t

)1/2 ξ0(g(t))
ξ0(t)

q(t) − 1
4t2

)
ξ0(t) = 0,

which is rewritten as

(tξ0(t))′ + t

((g(t)
t

)1/2
q(t)ξ0(g(t)) − 1

4t2 ξ0(t)
)

, t � T.

This implies that equation (3.6) has an RV(μ0)-solution ξ0(t) existing on [T, ∞).
The function x0(t) = t1/2ξ0(t) then provides a solution of equation (B) enjoying
the first property in (3.4) with i = 0.

Next, we will be concerned with the construction of a solution x1(t) of equation
(B) such that x1(t) = t1/2y1(t) with y(t) ∈ RV(μ1). Note that μ1 ∈ (1

2 , 1). Let m
be any positive constant such that

2(2μ1 + 2)
2μ1 − 1

m � 1,

and choose T > a large enough so that g(T ) � a,

(3.35)
∣∣∣∣log t

∫ ∞

t

s
(

q(s) − 1
4s2

)
ds − d

∣∣∣∣ � m2,

and

(3.36)
∣∣∣∣log t

∫ ∞

t

((g(s)
s

)1/2 log g(s)
log s

q(s) − 1
4s2

)
ds − d

∣∣∣∣ � m2,

for t � T . Define H to be the set of all functions C[g(T ), ∞)∩C1[T, ∞) such that

(3.37) η(t) = 1, g(T ) � t � T ; η(t) = exp
{∫ t

T

δη(s)
s log s

ds

}
, t � T,

where δη(t) is continuous and satisfies 0 � δη(t) � 1 and limt→∞ δη(t) = μ1. As
in the preceding case the set H can be regarded as a closed convex subset of the
locally convex space C1[T, ∞). Also note that there hold the inequalities (3.20)
and (3.21) with ξ(t) replaced by η(t). Put

qη(t) = t

((g(t)
t

)1/2 η(g(t))
η(t)

q(t) − 1
4t2

)
,

and
Qη(t) = log t

∫ ∞

t

qη(s) ds − d.

Since Qη(t) satisfies |Qη(t)| � m2, t � T , for all η(t) ∈ H , by (3.35) and (3.36),
applying Theorem 2.1 to the family of linear ordinary differential equations

(ty′)′ + qη(t)y = 0, η(t) ∈ H,

we obtain for each η ∈ H a solution Yη(t) ∈ RVlog t(μ1) having the expression

(3.38) Yη(t) = exp
{∫ t

T

μ1 − wη(s) + Qη(s)
s log s

ds

}
, t � T,
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where wη(t) is a solution of the integral equation

(3.39) wη(t) = (log t)1−2μ1

∫ t

T

2μ1Qη(s) + (wη(s) − Qη(s))2

s(log s)2−2μ1
ds,

satisfying |wη(t)| � m for t � T and limt→∞ wη(t) = 0.
We define by Ψ the mapping which assigns to each η(t) ∈ H the function

Ψη(t) = 1, g(T ) � t � T, Ψη(t) = Yη(t), t � T.

Our final step is to verify that Ψ is continuous and sends H into a relatively compact
subset of H so that the Schauder–Tychonoff fixed point theorem is applicable to Ψ.
The same arguments as employed in the case of Φ defined by (3.27) are sufficient
for this purpose. To avoid tedious duplications only a brief mention will be made of
the continuity of Ψ. Let {ηn(t)} be a sequence in H converging to η(t) in C1[T, ∞).
Our goal is attained if it is shown that
(3.40) Yηn(t) → Yη(t) and Y ′

ηn
(t) → Y ′

η(t) as n → ∞.

uniformly on any compact subinterval of [T, ∞). In view of (3.38) we see that
(3.40) is assured if the two sequences

|wηn (t) − wη(t)|
log t

and
|Qηn(t) − Qη(t)|

log t

converge to 0 uniformly on compact subintervals of [T, ∞). We need only to consider
the first sequence in (3.41). From (3.39) we obtain the inequality

(3.41)
|wηn (t) − wη(t)|

(log t)1−2μ1

� 4m

∫ t

T

|wηn(s) − wη(s)|
s(log s)2−2μ1

ds + (4m + 2μ1)
∫ t

T

|Qηn(s) − Qη(s)|
s(log s)2−2μ1

ds, t � T.

Using the function

z(t) =
∫ t

T

|wηn (s) − wη(s)|
s(log s)2−2μ1

ds,

we transform (3.41) into
( z(t)

(log t)4m

)′
� 4m + 2μ1

t(log t)4m+1

∫ t

T

|Qηn(s) − Qη(s)|
s(log s)2−2μ1

ds, t � T,

which, after integration over [T, t], yields

(3.42) z(t) � 4m + 2μ1

4m
(log t)4m

∫ t

T

|Qηn(s) − Qη(s)|
s(log s)2−2μ1+4m

ds,

for t � T . Combining (3.41) with (3.42), we have

|wηn(t) − wη(t)|
log t

� 4m + 2μ1

(log t)2μ1−4m

∫ t

T

|Qηn(s) − Qη(s)|
s(log s)2−2μ1+4m

ds

+ (4m + 2μ1)(log t)2μ1

∫ t

T

|Qηn(s) − Qη(s)|
s(log s)2−2μ1

ds, t � T,
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whence it follows that
|wηn (t) − wη(t)|

log t
� 2(4m + 2μ1)

∫ t

T

|Qηn(s) − Qη(s)|
s(log s)2 ds, t � T.

This ensures the desired convergence of the sequence |wηn (t) − wη(t)|/ log t.
Thus the continuity of the mapping Ψ has been assured. Let η1(t) ∈ H be a

fixed point of Ψ : η1(t) = Ψη1(t). Since η1(t) = Yη1 (t) for t � T , η1(t) satisfies the
differential equation

(tη′
1(t))′ + t

((g(t)
t

)1/2 η1(g(t))
η1(t)

q(t) − 1
4t2

)
η1(t) = 0,

or

(tη′
1(t))′ + t

((g(t)
t

)1/2
q(t)η1(g(t)) − 1

4t2 η1(t)
)

= 0, t � T.

Since η1(t) ∈ RVlog t(μ1), the function x1(t) defined by x1(t) = t1/2η1(t) gives a
second solution of equation (B).

It remains to deal with the case where d = 0. In this case the roots of the
quadratic equation (3.2) are μ0 = 0 and μ1 = 1, and we are required to look for
the solutions yi(t) ∈ n-RVlog t(i), i = 0, 1, of equation (3.6). Such solutions can be
found in essentially the same manner as in the previous case d > 0. Only a brief
explanation will be given about how to construct a solution y0(t) ∈ n-RV(0) =
n-RV. This time, instead of (3.16), we choose the set Ξ consisting of all functions
ξ(t) ∈ C[g(T ), ∞)∩C1[T, ∞) such that

ξ(t) = 1, g(T ) � t � T ; ξ(t) = exp
{∫ t

T

δξ(s)
s log s

ds

}
, t � T,

where δξ(t) satisfies −1 � δξ(t) � 1 and limt→∞ δξ(t) = 0, and T > a will be
determined later. It is clear that

log g(t)
log t

� ξ(g(t))
ξ(t)

� log t

log g(t)
, t � T,

for all ξ(t) ∈ Ξ. Consequently,

(3.43) t

((g(t)
t

)1/2 log g(t)
log t

q(t) − 1
4t2

)
� t

((g(t)
t

)1/2 ξ(g(t))
ξ(t)

q(t) − 1
4t2

)

� t

((g(t)
t

)1/2 log t

log g(t)
q(t) − 1

4t2

)
, t � T.

Let a constant 0 < l < 1
4 be fixed, and choose T > a so that g(T ) � a and both

(3.15) (with l2 replaced by l) and the following inequality are satisfied:

(3.44)
∣∣∣∣log t

∫ ∞

t

s

((g(s)
s

)1/2 log s

log g(s)
q(s) − 1

4s2

)
ds − d

∣∣∣∣ � l, t � T.

Therefore, by (3.15), (3.43) and (3.44), the function Qξ(t) defined by (3.23) and
(3.22) satisfies |Qξ(t)| � l, t � T , for all ξ(t) ∈ Ξ, because of which Theorem 2.2
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guarantees, for every ξ(t) ∈ Ξ, the existence of a solution yξ(t) ∈ SVlog t of equation
(3.24) having the representation

yξ(t) = exp
{∫ t

T

vξ(s) + Qξ(s)
s log s

ds

}
, t � T,

where vξ(t) solves the integral equation

vξ(t) = log t

∫ ∞

t

(vξ(s) + Qξ(s))2

s(log s)2 ds, t � T.

Let us define the mapping Φ by (3.27) and repeat the same (somewhat simpli-
fied) argument as that applied to the case of positive d. Then, via the Schauder-
Tychonoff fixed point theorem, we are led to the conclusion that Φ has a fixed point
ξ0(t) ∈ Ξ, which generates a solution x0(t) = t1/2ξ0(t) of (A) with the desired first
property.

In order to obtain a solution x1(t) of (A) with the second property of (3.4) (with
μ1 = 1), we need only to define H replacing (3.37) to be the set of all functions
η(t) ∈ C[g(T ), ∞)∩C1[T, ∞) such that

η(t) = 1, g(T ) � t � T ; η(t) = exp
{∫ t

T

δη(s)
s log s

ds

}
, t � T,

where δη(t) satisfies 0 � δη(t) � 2 and limt→∞ δη(t) = 1, and apply almost the
same argument as in the case of d > 0 on the basis of the inequality

( log g(t)
log t

)2
� η(g(t))

η(t)
� log t

log g(t)
, t � T,

holding for all η(t) ∈ H . No further explanation will be necessary. This completes
the proof of Theorem 3.1. �

Example 3.1. Consider the retarded differential equation

(3.45) x′′(t) + q(t)x(g(t)) = 0, q(t) = 1
4t2 + d(t)

(t log t)2 , t � e,

where g(t) is a retarded argument satisfying the conditions given in Theorem 3.1
and d(t) is a positive continuous function such that limt→∞ d(t) = d ∈ [0, 1

4 ). Since
condition (3.5) holds for q(t) (cf. Example 2.1), by Theorem 3.1 equation (3.45)
possesses two solutions xi(t), i = 0, 1, such that t−1/2xi(t) ∈ RVlog t(μi), i = 0, 1,
where μi, i = 0, 1, are the roots of (3.3). Admissible retarded arguments g(t)
include t − τ, t − tθ, t − log t, where τ and θ < 1 are positive constants.

Example 3.2. Consider the retarded differential equation

(3.46) x′′(t) + q(t)x(t − τ) = 0,

where

q(t) = 1
4t3/2(t − τ)1/2

( log t

log(t − τ)

)1/8
+ 7

64t3/2(t − τ)1/2(log t)15/8(log(t − τ))1/8 .
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It ia a matter of elementary computation to see that

lim
t→∞ log t

∫ ∞

t

s
(

q(s) − 1
4s2

)
ds =

7
64 .

This implies via Theorem 3.1 that equation (3.46) possesses two solutions xi(t) =
t1/2yi(t), i = 0, 1, such that y0(t) ∈ RVlog t(1

8 ) and y1(t) ∈ RVlog t(7
8 ). One such

solution is x0(t) = t1/2(log t)1/8.
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