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Abstract. We consider the class D(𝒰) of bounded derivations 𝒰 𝑑→ 𝒰*
defined on a Banach algebra 𝒰 with values in its dual space 𝒰* so that
⟨𝑥, 𝑑(𝑥)⟩ = 0 for all 𝑥 ∈ 𝒰 . The existence of such derivations is shown, but
lacking the simplest structure of an inner one. We characterize the elements
of D(𝒰) if span(𝒰2) is dense in 𝒰 or if 𝒰 is a unitary dual Banach algebra.

1. Introduction

Throughout this article let 𝒰 be a complex Banach algebra endowed with a
norm ‖∘‖. Let 𝒰 ♯ be the algebra 𝒰 plus an adjoined unit element 𝑒 with the
usual Banach algebra structure. As usual, by 𝒰* and

(︀
𝒰 ♯
)︀* we will denote the

dual spaces of 𝒰 and 𝒰 ♯ respectively. Let 𝑗 : 𝒰 →˓ 𝒰 ♯ and 𝑝 : 𝒰 ♯ → 𝒰 be the
natural injection and the corresponding projection of 𝒰 into 𝒰 ♯ and of 𝒰 ♯ onto 𝒰
respectively. Then 𝒰 ♯ = C·𝑒

⨁︀
𝑗(𝒰), i.e., any element 𝜂 ∈ 𝒰 ♯ can be written in

a unique way as 𝜂 = 𝑎𝑒 + 𝑗(𝑥), with 𝑥 ∈ 𝒰 and 𝑎 ∈ C, and its 𝒰 ♯-norm is given
as ‖𝜂‖𝒰♯ = |𝑎| + ‖𝑥‖. Indeed, since 𝑗 is an isometric homomorphism then 𝑗(𝒰)
becomes a closed ideal of 𝒰 ♯. Further, 𝑝∘ 𝑗 = Id𝒰 while 𝑗 ∘𝑝 is the linear projection
of 𝒰 ♯ onto 𝑗(𝒰). Thus, let 𝑒* ∈

(︀
𝒰 ♯
)︀* be defined as ⟨𝜂, 𝑒*⟩ , 𝑎 if 𝜂 = 𝑎𝑒+ 𝑗(𝑥) in

𝒰 ♯. Then (︀
𝒰 ♯
)︀* = C · 𝑒*

⨁︁
rank(𝑝*),

where 𝑝* : 𝒰* →
(︀
𝒰 ♯
)︀* is the adjoint operator of 𝑝. It is well known that 𝒰* admits

a Banach 𝒰-bimodule structure if for 𝑥, 𝑦 ∈ 𝒰 and 𝑥* ∈ 𝒰* we write

⟨𝑦, 𝑥𝑥*⟩ , ⟨𝑦𝑥, 𝑥*⟩ and ⟨𝑦, 𝑥*𝑥⟩ , ⟨𝑥𝑦, 𝑥*⟩ .

2000 Mathematics Subject Classification: 46H35, 47D30.
Key words and phrases: Dual Banach algebras, approximation property, dual Banach pairs,

nuclear operators, shrinking basis and associated sequence of coefficient functionals.
107



108 BARRENECHEA AND PEÑA

The 𝒰 ♯-bimodule structure on
(︀
𝒰 ♯
)︀* is given as

(𝑎𝑒+ 𝑗(𝑥))(𝑏𝑒* + 𝑝*(𝑥*)) , (𝑎𝑏+ ⟨𝑥, 𝑥*⟩)𝑒* + 𝑝*(𝑎𝑥* + 𝑥𝑥*),

(𝑏𝑒* + 𝑝*(𝑥*))(𝑎𝑒+ 𝑗(𝑥)) , (𝑎𝑏+ ⟨𝑥, 𝑥*⟩)𝑒* + 𝑝*(𝑎𝑥* + 𝑥*𝑥),

where 𝑎, 𝑏 ∈ C, 𝑥 ∈ 𝒰 , 𝑥* ∈ 𝒰*.
Given a Banach 𝒰-bimodule X let 𝒵1(𝒰 ,X) be the Banach space of bounded

derivations 𝑑 : 𝒰 → X, i.e., those 𝑑 ∈ ℬ(𝒰 ,X) that satisfy the Leibnitz rule 𝑑(𝑥𝑦) =
𝑑(𝑥)𝑦+𝑥𝑑(𝑦) for all 𝑥, 𝑦 ∈ 𝒰 . A bounded derivation 𝑑 is said to be inner if there is
an element 𝜑 ∈ X so that 𝑑(𝑥) = 𝑥𝜑−𝜑𝑥 if 𝑥 ∈ 𝒰 . In that case we write 𝑑 = ad𝜑 and
the class of inner derivations from 𝒰 into X is denoted as 𝒩 1(𝒰 ,X). The quotient
ℋ1(𝒰 ,X) , 𝒵1(𝒰 ,X)/𝒩 1(𝒰 ,X) defines the first Hochschild cohomology group of
𝒰 with coefficients in X. Kamowitz lay the functional analytic overtones required
to adapt the theory of Banach algebras to the Hochschild algebraic setting (cf. [6];
see also [4]). The theory of amenable Banach algebras was greatly influenced by
Johnson’s memoire in 1972 (cf. [5]). A Banach algebra 𝒰 is called amenable if
ℋ1(𝒰 ,X*) = {0} for any Banach 𝒰-bimodule X. A Banach algebra 𝒰 it is called
weakly amenable if ℋ1(𝒰 ,𝒰*) = {0}. This last notion generalizes that introduced
by Bade, Curtis and Dales in [2].

In [3] it was proved that a non-unital abelian Banach algebra 𝒰 is weakly
amenable if and only if 𝒰 ♯ is weakly amenable but the general case still remains
open. Our goal in this article is to seek relationships between derivations on a
non-abelian non-unital Banach algebra 𝒰 with values in 𝒰* and derivations in 𝒰 ♯
with values in (𝒰 ♯)*. Our investigation naturally bring us to introduce the notion
of D-derivations on 𝒰 in Definition 2.1. Althought any element of 𝒩 1(𝒰 ,𝒰*) is a
D-derivation on 𝒰 sometimes there exist non-inner D-derivations as we will see in
the examples 2.2 and 2.3. In Proposition 2.1 we consider certain Banach projective
tensor products all of whose derivations are D-derivations. In Theorem 2.1 we
characterize D-derivations on 𝒰 on Banach algebras 𝒰 so that 𝒰2 is dense in 𝒰 ,
where 𝒰2 = span{𝑥𝑦 : 𝑥, 𝑦 ∈ 𝒰}. The relationship between D-derivations on 𝒰
and their extensions to the unitization 𝒰 ♯ are studied in Proposition 2.2. In this
context, inner D-derivations on 𝒰 are characterized in Corollary 2.1. Finally, in
Proposition 2.3 we characterize D-derivations on dual Banach algebras.

2. On D-derivations

Definition 2.1. A derivation 𝑑 ∈ 𝒵1(𝒰 ,𝒰*) is called a D-derivation on 𝒰 if
⟨𝑥, 𝑑(𝑥)⟩ = 0 for all 𝑥 ∈ 𝒰 . Let D(𝒰) be the set of D-derivations on 𝒰 .

Example 2.1. All inner 𝒰*-valued derivations on 𝒰 are D-derivations on 𝒰 .

Example 2.2. Let 𝒰 , 𝐶(1)
0 [𝑎, 𝑏] be the commutative Banach algebra of func-

tions 𝑥 : [𝑎, 𝑏]→ C with continuous derivative 𝑥̇ so that 𝑥(𝑎) = 𝑥(𝑏) endowed with
the norm ‖𝑥‖ , ‖𝑥‖∞ + ‖𝑥̇‖∞. Then we define 𝑑 : 𝒰 → 𝒰* as

⟨𝑦, 𝑑(𝑥)⟩ =
∫︁ 𝑏
𝑎

𝑦 𝑑𝑥 if 𝑥, 𝑦 ∈ 𝒰 .
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The above Riemann–Stieltjes integral is well defined, 𝑑 becomes clearly a C-linear
functional and

|⟨𝑦, 𝑑(𝑥)⟩| 6
∫︁ 𝑏
𝑎

|𝑦| 𝑑|𝑥| 6 ‖𝑦‖∞|𝑥̇‖∞ 6 ‖𝑦‖ ‖𝑥‖,

i.e., 𝑑 ∈ ℬ(𝒰 ,𝒰*) and ‖𝑑(𝑥)‖ 6 ‖𝑥‖ for all 𝑥 ∈ 𝒰 . Indeed,

⟨𝑦, 𝑑(𝑥1𝑥2)⟩ =
∫︁ 𝑏
𝑎

𝑦
𝑑

𝑑𝑡
(𝑥1𝑥2) 𝑑𝑡

=
∫︁ 𝑏
𝑎

𝑦
(︁𝑑𝑥1

𝑑𝑡
𝑥2 + 𝑥1

𝑑𝑥2

𝑑𝑡

)︁
𝑑𝑡

=
∫︁ 𝑏
𝑎

𝑦𝑥2𝑑𝑥1 +
∫︁ 𝑏
𝑎

𝑦𝑥1𝑑𝑥2

= ⟨𝑦𝑥2, 𝑑(𝑥1)⟩+ ⟨𝑦𝑥1, 𝑑(𝑥2)⟩
= ⟨𝑦, 𝑑(𝑥1)𝑥2 + 𝑥1𝑑(𝑥2)⟩,

i.e., 𝑑 ∈ 𝒵1(𝒰 ,𝒰*). Certainly, it is a nonzero D-derivation since for 𝑥 ∈ 𝒰 we see
that

⟨𝑥, 𝑑(𝑥)⟩ =
∫︁ 𝑏
𝑎

𝑥
𝑑𝑥

𝑑𝑡
𝑑𝑡 = 𝑥

2

2

⃒⃒⃒𝑏
𝑎

= 0.

Further, 𝑑 is not inner because 𝒰 is abelian and so 𝒩 1(𝒰 ,𝒰*) = {0}.

Remark 2.1. Given a dual Banach pair (X,Y, ⟨∘, ∘⟩) by the universal property
characteristic of general tensor products there is a unique operation on X ⊗Y so
that

(𝑥1 ⊗ 𝑦1) (𝑥2 ⊗ 𝑦2) = ⟨𝑥2, 𝑦1⟩ (𝑥1 ⊗ 𝑦2) if 𝑥1, 𝑥2 ∈ X, 𝑦1, 𝑦2 ∈ Y.

Then X⊗Y becomes an algebra. Further, if for 𝑢 ∈ X⊗Y we write

‖𝑢‖
𝜋

= inf
{︂ 𝑛∑︁
𝑗=1
‖𝑥𝑗‖ ‖𝑦𝑗‖ : 𝑢 =

𝑛∑︁
𝑗=1
𝑥𝑗 ⊗ 𝑦𝑗

}︂
then (X⊗Y, ‖∘‖𝜋) becomes a normed algebra. The completion of this algebra is the
well known projective Banach tensor algebra X ⊗̂Y (cf. [8, B.2.2, p. 250]). Then,
X ⊗̂Y is amenable if and only if dim(X) = dim(Y) < ∞ (cf. [8, Th. 4.3.5, p. 98]).
So, if X is an infinite dimensional Banach space the determination of structure
theorems of bounded derivations on X ⊗̂X* has its own interest. Moreover, several
Banach operator algebras can be represented as certain tensor products of the
above type. For instance, if the Banach space X has the approximation property,
then 𝒩X*(X) ≈ X ⊗̂X*, where ≈ denotes an isometric isomorphism and 𝒩X*(X)
is the Banach space of X*-nuclear operators on X (cf. [8, Th. C.1.5, p. 256]). In
this setting the authors recently researched on structure theorems and properties
of derivations on some non-amenable nuclear Banach algebras (see [1]).

Proposition 2.1. Let X is an infinite dimensional Banach space endowed with
and shrinking basis {𝑥𝑛}

∞
𝑛=1 and an associated sequence of coefficient functionals

{𝑥*𝑛}
∞
𝑛=1 and let 𝒰 , X ⊗̂X*. Then D(𝒰) ⊇ 𝒵1(𝒰 ,𝒰*).
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Proof. Let 𝑑 ∈ 𝒵1(𝒰 ,𝒰*). The system of basic tensor products 𝑧𝑛,𝑚 ,
𝑥𝑛 ⊗ 𝑥*𝑚 can be arranged into a basis {𝑧𝑛,𝑚}

∞
𝑛,𝑚=1 of X ⊗̂X* (the reader can see

[9], or else [10, Th. 18.1, p. 172]). Given 𝑝, 𝑞, 𝑟, 𝑠, 𝑡 ∈ N we have

⟨𝑧𝑝,𝑞, 𝑑(𝑧𝑟,𝑡)⟩ = ⟨𝑧𝑝,𝑞, 𝑑(𝑧𝑟,𝑠) · 𝑧𝑠,𝑡 + 𝑧𝑟,𝑠 · 𝑑(𝑧𝑠,𝑡)⟩(2.1)
= ⟨𝑧𝑠,𝑡 · 𝑧𝑝,𝑞, 𝑑(𝑧𝑟,𝑠)⟩+ ⟨𝑧𝑝,𝑞 · 𝑧𝑟,𝑠, 𝑑(𝑧𝑠,𝑡)⟩
= 𝛿𝑝,𝑡⟨𝑧𝑠,𝑞, 𝑑(𝑧𝑟,𝑠)⟩+ 𝛿𝑞,𝑟⟨𝑧𝑝,𝑠, 𝑑(𝑧𝑠,𝑡)⟩,

where 𝛿 denotes the usual Kronecker’s symbol. By (2.1), ⟨𝑧𝑝,𝑞, 𝑑(𝑧𝑟,𝑡)⟩ = 0 if 𝑝 ̸= 𝑡
and 𝑞 ̸= 𝑟. Using (2.1) we also get

(2.2) ⟨𝑧𝑝,𝑞, 𝑑(𝑧𝑞,𝑝)⟩ = ⟨𝑧𝑠,𝑞, 𝑑(𝑧𝑞,𝑠)⟩+ ⟨𝑧𝑝,𝑠, 𝑑(𝑧𝑠,𝑝)⟩

if 𝑝, 𝑞, 𝑠 ∈ N. By (2.2) we see that

(2.3) ⟨𝑧𝑝,𝑝, 𝑑(𝑧𝑝,𝑝)⟩ = 0 if 𝑝 ∈ N.

On the other hand, by (2.1) we obtain

(2.4) ⟨𝑧𝑝,𝑞, 𝑑(𝑧𝑝,𝑞)⟩ = 0 if 𝑝, 𝑞 ∈ N, 𝑝 ̸= 𝑞.

Now, let 𝐹 be a finite subset of N× N,
{︀
𝜆(𝑛,𝑚)

}︀
(𝑛,𝑚)∈𝐹 ⊆ C and let

𝑢 =
∑︁

(𝑛,𝑚)∈𝐹

𝜆(𝑛,𝑚)𝑧𝑛,𝑚.

By (2.3) and (2.4) we see that

(2.5) ⟨𝑢, 𝑑(𝑢)⟩ =
∑︁

(𝑛,𝑚),(𝑝,𝑞)∈𝐹

𝜆(𝑛,𝑚)𝜆(𝑝,𝑞)[⟨𝑧𝑛,𝑚, 𝑑(𝑧𝑝,𝑞)⟩+ ⟨𝑧𝑝,𝑞, 𝑑(𝑧𝑛,𝑚)⟩].

As we already observed, those summands in (2.5) so that 𝑛 ̸= 𝑞 and 𝑚 ̸= 𝑝 are
zero. By symmetry, it suffices to consider 𝑛 = 𝑞 and then

⟨𝑧𝑛,𝑚, 𝑑(𝑧𝑝,𝑛)⟩+ ⟨𝑧𝑝,𝑛, 𝑑(𝑧𝑛,𝑚)⟩ = ⟨𝑧𝑛,𝑛, 𝑧𝑛,𝑚 · 𝑑(𝑧𝑝,𝑛) + 𝑑(𝑧𝑛,𝑚) · 𝑧𝑝,𝑛⟩
= ⟨𝑧𝑛,𝑛, 𝑑(𝑧𝑛,𝑛)⟩
= 0.

Consequently ⟨𝑢, 𝑑(𝑢)⟩ = 0. Finally, the result holds since 𝑢→ ⟨𝑢, 𝑑(𝑢)⟩ is contin-
uous on 𝒰 and X⊗ X* is dense in 𝒰 . �

Example 2.3. Let 𝒰 , 𝑙𝑝 ̂︀⊗ 𝑙𝑞, with 1 < 𝑝, 𝑞 < ∞, 1/𝑝 + 1/𝑞 = 1. If 𝑥 ∈ 𝑙𝑝,
𝑥* ∈ 𝑙𝑞 let

𝑑𝑥,𝑥* : 𝑙𝑝 × 𝑙𝑞 → C, 𝑑𝑥,𝑥* (𝑦, 𝑦*) , ⟨𝑥, 𝑦*⟩ − ⟨𝑦, 𝑥*⟩ .
Then 𝑑𝑥,𝑥* ∈ ℬ2(𝑙𝑝, 𝑙𝑞,C), i.e., 𝑑𝑥,𝑥* is a bounded bilinear form between 𝑙𝑝 × 𝑙𝑞
and C. By the universal characteristic property of the projective tensor product
of Banach spaces there is a unique 𝑑𝑥,𝑥* ∈ 𝒰* so that ‖𝑑𝑥,𝑥*‖ = ‖𝑑𝑥,𝑥*‖ and
⟨𝑦 ⊗ 𝑦*, 𝑑𝑥,𝑥*⟩ = 𝑑𝑥,𝑥*(𝑦, 𝑦*) if 𝑦 ∈ 𝑙𝑝, 𝑦* ∈ 𝑙𝑞. The following map is then induced

𝑑 : 𝑙𝑝 × 𝑙𝑞 → 𝒰*, 𝑑(𝑥, 𝑥*) , 𝑑𝑥,𝑥* .
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It is readily seen that 𝑑 ∈ ℬ2(𝑙𝑝, 𝑙𝑞,𝒰*) and so there is a unique 𝑑 ∈ ℬ(𝒰 ,𝒰*) so
that ‖𝑑‖ = ‖𝑑‖ and 𝑑(𝑥 ⊗ 𝑥*) = 𝑑(𝑥, 𝑥*) if 𝑥 ∈ 𝑙𝑝, 𝑥* ∈ 𝑙𝑞. Consequently, the
following identity

⟨𝑦 ⊗ 𝑦*, 𝑑(𝑥⊗ 𝑥*)⟩ = ⟨𝑥, 𝑦*⟩ − ⟨𝑦, 𝑥*⟩

holds if 𝑥, 𝑦 ∈ 𝑙𝑝 and 𝑥*, 𝑦* ∈ 𝑙𝑞. It is straightforward to see that 𝑑 ∈ 𝒵1(𝒰 ,𝒰*)
and hence it is a D-derivation. Let us see that 𝑑 /∈ 𝒩 1(𝒰 ,𝒰*). For, let us assume
that 𝑑 is inner, say 𝑑 = ad𝑇 for some 𝑇 ∈ 𝒰*. Let us consider the usual basis
{𝑥𝑛}

∞
𝑛=1 of 𝑙𝑝, 𝑥𝑛 = {𝛿𝑛,𝑚}

∞
𝑚=1 if 𝑛 ∈ N. So, {𝑥𝑛}

∞
𝑛=1 is obviously a shrinking

basis and its associated sequence of coefficient functionals are 𝑥*𝑛 = {𝛿𝑛,𝑚}
∞
𝑚=1 if

𝑛 ∈ N. With the notation of Proposition 2.1, since ⟨𝑧𝑛,𝑚, 𝑑(𝑧𝑝,𝑞)⟩ = 𝛿𝑚,𝑝 − 𝛿𝑛,𝑞 for
all 𝑛,𝑚, 𝑝, 𝑞 ∈ N we deduce that 𝑇 (𝑧𝑛,𝑚) = 1 if 𝑛,𝑚 ∈ N and 𝑛 ̸= 𝑚. However, let
us write

𝑢 ,
1

𝜁(𝑞)1/𝑞

∞∑︁
𝑛=1

1
𝑛
· 𝑧1,1+𝑛,

where 𝜁 denotes the Riemann zeta function. Then 𝑢 ∈ 𝒰 is well defined,

‖𝑢‖
𝜋

= lim
𝑁→∞

⃦⃦⃦⃦
1

𝜁(𝑞)1/𝑞

𝑁∑︁
𝑛=1

1
𝑛
· 𝑧1,1+𝑛

⃦⃦⃦⃦
𝜋

= 1
𝜁(𝑞)1/𝑞 lim

𝑁→∞

⃦⃦⃦⃦
𝑥1 ⊗

𝑁∑︁
𝑛=1

1
𝑛
𝑥*𝑛+1

⃦⃦⃦⃦
𝜋

= 1
𝜁(𝑞)1/𝑞 lim

𝑁→∞

⃦⃦⃦⃦ 𝑁∑︁
𝑛=1

1
𝑛
𝑥*𝑛+1

⃦⃦⃦⃦
𝑙𝑞

= 1,

and as

𝑇 (𝑢) = 1
𝜁(𝑞)1/𝑞

∞∑︁
𝑛=1

1
𝑛

=∞

then 𝑇 can not be bounded.

Theorem 2.1. Let 𝒰 be a Banach algebra so that 𝒰2 is dense in 𝒰 . Let us
denote 𝑘𝒰 : 𝒰 →˓ 𝒰** to the usual isometric embedding of 𝒰 into its second dual
space 𝒰** by means of evaluations. Given 𝑑 ∈ 𝒵1(𝒰 ,𝒰*) the following assertions
are equivalent:

(i) 𝑑 ∈ D(𝒰).
(ii) ⟨𝑥, 𝑑(𝑦)⟩+ ⟨𝑦, 𝑑(𝑥)⟩ = 0 for all 𝑥, 𝑦 ∈ 𝒰 .
(iii) 𝑑* ∘ 𝑘𝒰 ∈ 𝒵1(𝒰 ,𝒰*).
(iv) 𝑑+ 𝑑* ∘ 𝑘𝒰 = 0.

Proof. (i) ⇒ (ii) Given 𝑥, 𝑦 ∈ 𝒰 we have

0 = ⟨𝑥+ 𝑦, 𝑑(𝑥+ 𝑦)⟩ = ⟨𝑥, 𝑑(𝑦)⟩+ ⟨𝑦, 𝑑(𝑥)⟩.
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(ii) ⇒ (iii) If 𝑥, 𝑦, 𝑧 ∈ 𝒰 we have

⟨𝑧, (𝑑* ∘ 𝑘𝒰 )(𝑥𝑦)⟩ = ⟨(𝑑(𝑧), 𝑘𝒰 (𝑥𝑦))⟩
= ⟨𝑥𝑦, 𝑑(𝑧)⟩
= ⟨𝑥, 𝑦𝑑(𝑧)⟩
= ⟨𝑥, 𝑑(𝑦𝑧)− 𝑑(𝑦)𝑧⟩
= ⟨𝑥, 𝑑(𝑦𝑧)⟩ − ⟨𝑧𝑥, 𝑑(𝑦)⟩
= ⟨𝑑(𝑦𝑧), 𝑘𝒰 (𝑥)⟩+ ⟨𝑦, 𝑑(𝑧𝑥)⟩
= ⟨𝑦𝑧, 𝑑*(𝑘𝒰 (𝑥))⟩+ ⟨𝑑(𝑧𝑥), 𝑘𝒰 (𝑦)⟩
= ⟨𝑧, 𝑑*(𝑘𝒰 (𝑥))𝑦⟩+ ⟨𝑧, 𝑥𝑑*(𝑘𝒰 (𝑦))⟩
= ⟨𝑧, (𝑑* ∘ 𝑘𝒰 )(𝑥)𝑦 + 𝑥(𝑑* ∘ 𝑘𝒰 )(𝑦)⟩.

(iii) ⇒ (iv) For 𝑥, 𝑦, 𝑧 ∈ 𝒰 we have

⟨𝑥𝑦, 𝑑(𝑧)⟩ = ⟨𝑑(𝑧), 𝑘𝒰 (𝑥𝑦)⟩
= ⟨𝑧, (𝑑* ∘ 𝑘𝒰 )(𝑥𝑦)⟩
= ⟨𝑧, (𝑑* ∘ 𝑘𝒰 )(𝑥)𝑦 + 𝑥(𝑑* ∘ 𝑘𝒰 )(𝑦)⟩
= ⟨𝑦𝑧, (𝑑* ∘ 𝑘𝒰 )(𝑥)⟩+ ⟨𝑧𝑥, (𝑑* ∘ 𝑘𝒰 )(𝑦)⟩
= ⟨𝑥, 𝑑(𝑦)𝑧 + 𝑦𝑑(𝑧)⟩+ ⟨𝑦, 𝑑(𝑧)𝑥+ 𝑧𝑑(𝑥)⟩
= ⟨𝑧𝑥, 𝑑(𝑦)⟩+ 2⟨𝑥𝑦, 𝑑(𝑧)⟩+ ⟨𝑦𝑧, 𝑑(𝑥)⟩.

Therefore,

⟨𝑧, 𝑑(𝑥𝑦)⟩ = −⟨𝑥𝑦, 𝑑(𝑧)⟩ = −⟨𝑑(𝑧), 𝑘𝒰 (𝑥𝑦)⟩ = −⟨𝑧, (𝑑* ∘ 𝑘𝒰 )(𝑥𝑦)⟩,

i.e., (𝑑+ 𝑑* ∘ 𝑘𝒰 )(𝑥𝑦) = 0 if 𝑥, 𝑦 ∈ 𝒰 . Since 𝒰2 is dense in 𝒰 the claim follows.
(iv) ⇒ (i) If 𝑥 ∈ 𝒰 then

0 = ⟨𝑥, 𝑑(𝑥) + (𝑑* ∘ 𝑘𝒰 )(𝑥)⟩ = 2⟨𝑥, 𝑑(𝑥)⟩. �

Proposition 2.2. Let 𝒰 be a Banach algebra and let 𝑑 ∈ D(𝒰). There is a
unique 𝑑♯ ∈ D

(︀
𝒰 ♯
)︀

so that the following diagram commutes

𝒰 𝑑−−−−→ 𝒰*

𝑗

⎮⎮⌄ ⎮⎮⌄𝑝*
𝒰 ♯ 𝑑♯−−−−→ 𝑡(𝒰 ♯)*.

Proof. Consider 𝑑♯ , 𝑝* ∘ 𝑑 ∘ 𝑝. Thus, 𝑑♯ ∈ ℬ
(︀
𝒰 ♯, (𝒰 ♯)*

)︀
and 𝑑♯ ∘ 𝑗 = 𝑝* ∘ 𝑑.

If 𝜂, 𝜇 ∈ 𝒰 ♯ we get

(2.6) ⟨𝜂, 𝑑♯(𝜂)⟩ = ⟨𝑝(𝜂), 𝑑(𝑝(𝜂))⟩ = 0
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and if 𝜂 = 𝑎𝑒 + 𝑗(𝑥), 𝜇 = 𝑏𝑒 + 𝑗(𝑦) for uniquely determined 𝑎, 𝑏 ∈ C and 𝑥, 𝑦 ∈ 𝒰
then

𝑑♯(𝜂)𝜇+ 𝜂𝑑♯(𝜇) = 𝑝*(𝑑(𝑥))(𝑏𝑒+ 𝑗(𝑦)) + (𝑎𝑒+ 𝑗(𝑥))𝑝*(𝑑(𝑦))(2.7)
= (⟨𝑦, 𝑑(𝑥)⟩+ ⟨𝑥, 𝑑(𝑦)⟩)𝑒* + 𝑝*(𝑎𝑑(𝑦) + 𝑏𝑑(𝑥) + 𝑑(𝑥𝑦)
= 𝑎𝑑♯(𝑦) + 𝑏𝑑♯(𝑥) + 𝑝*(𝑑(𝑥𝑦))
= 𝑝*(𝑑(𝑎𝑦 + 𝑏𝑥+ 𝑥𝑦))
= 𝑑♯(𝜂𝜇).

Thus, by (2.6) and (2.7) we conclude that 𝑑♯ ∈ D(𝒰 ♯). As we already observed,
𝑗 ∘ 𝑝 projects 𝒰 ♯ onto 𝑗(𝒰). Since 𝑗(𝒰) is complemented in 𝒰 ♯ by C·𝑒 then 𝑑♯ is
uniquely determined. �

Corollary 2.1. A D-derivation on 𝒰 is inner if and only if its associated
derivation 𝑑♯ : 𝒰 ♯ →

(︀
𝒰 ♯
)︀* by Proposition 2.2 is inner.

Proof. Let 𝑥* ∈ 𝒰*, 𝑎 ∈ C. Hence, it is easy to see that (ad𝑥*)♯ = ad𝑝*(𝑥*)
and if 𝑑♯ = ad𝑎𝑒*+𝑝*(𝑥*), then 𝑑 = ad𝑥* . �

Remark 2.2. Let us consider a dual Banach algebra 𝒰 , i.e., 𝒰 ≈ (𝒰*)*, where
𝒰* is a closed submodule of 𝒰*. Although 𝒰* need not be unique, we will assume
that 𝒰 is realized as the dual space of a fixed closed submodule 𝒰* of 𝒰*. It is known
that a dual Banach algebra has a unit if and only if it has a bounded approximate
identity (see [7, Prop. 1.2]).

Proposition 2.3. Let 𝒰 be a dual Banach algebra with unit and let 𝑑 ∈
𝒵1(𝒰 ,𝒰*) so that 𝑑(𝒰) ⊆ 𝑘𝒰*(𝒰*). Then 𝑑 ∈ D(𝒰) if and only if 𝑑* + 𝑑 ∘ 𝑘*𝒰* = 0.

Proof. (⇒) Given 𝑥 ∈ 𝒰 let 𝑥* ∈ 𝒰* be the unique element so that 𝑑(𝑥) =
𝑘𝒰*(𝑥*). If 𝑥** ∈ 𝒰** by Theorem 2.1(iv) we have

⟨𝑥, (𝑑 ∘ 𝑘*𝒰*)(𝑥
**)⟩ = ⟨𝑑(𝑘*𝒰*(𝑥

**)), 𝑘𝒰 (𝑥)⟩
= ⟨𝑘*𝒰*(𝑥

**), (𝑑* ∘ 𝑘𝒰 )(𝑥)⟩
= −⟨𝑘*𝒰*(𝑥

**), 𝑑(𝑥)⟩
= −⟨𝑥*, 𝑘*𝒰*(𝑥

**)⟩
= −⟨𝑘𝒰*(𝑥*), 𝑥**⟩
= −⟨𝑑(𝑥), 𝑥**⟩
= −⟨𝑥, 𝑑*(𝑥**)⟩.

(⇐) If 𝑥, 𝑦 ∈ 𝒰 we obtain

⟨𝑦, (𝑑* ∘ 𝑘𝒰 )(𝑥)⟩ = −⟨𝑦, (𝑑 ∘ 𝑘*𝒰* ∘ 𝑘𝒰 )(𝑥)⟩ = −⟨𝑦, 𝑑(𝑥)⟩,

i.e., 𝑑+ 𝑑* ∘ 𝑘𝒰 = 0 and our claim follows. �
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