PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.) Vol. 54(68), pp. 80--96 (1993) |
|
Geometriya mnogoobraziya $m$-ploskostej ellipticheskogo $n$-prostranstvaAl'fiya Shabaeva-MasagutovaKafedra geometrii, Pedagogicheskij institut Sterlitamak, Bashkortostan, RussiaAbstract: Izuchaetsya grassmanovo mnogoobrazie $G_{n,m}^s$ $m$-ploskostej ellipticheskogo $n$-prostranstva $S_n$ v ego invariantnoj rimanovoj metrike. Dayutsya novye, bolee prostye dokazatel'stva teorem o geodezicheskih etogo mnogoobraziya ($m$-gelikoidah), o vpolne geodezicheskih podmnogoobraziyah etogo mnogoobraziya, o ego derivacionnyh formulah i tenzore krivizny. V chastnosti, rassmatrivayutsya psevdokongruencii Kartana, paratakticheskie kongruencii i paratakticheskie $m$-gelikoidy. Pokazyvaetsya, chto $m$-puchki, prohodyawie cherez $m$-ploskost', opredelyayut metricheskuyu segreanu v beskonechno udalennoj giperploskosti kasatel,nogo $(m+1)(n-m)$-prostranstva mnogoobraziya $G_{n,m}^s$. Derivacionnye formuly pozvol{yayu}t izuchat, differencial,nuyu geometriyu semejstv $m$-ploskostej. Classification (MSC2000): 51C35 Full text of the article:
Electronic fulltext finalized on: 1 Nov 2001. This page was last modified: 16 Nov 2001.
© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
|