PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.) Vol. 45(59), pp. 195--201 (1989) |
|
OB EKVIVALENTNOSTI ODNOGO PROCESSA DIFFUZIONNOGO TIPA V GIL'BETROVOM PROSTRANSTVE I VINEROVSKOGO PROCESSALjiljana PetrushevskiArhitektonski fakultet, Beograd, YugoslaviaAbstract: V eto\u\i\ rabote dokazano, chto slucha\u\iny\u\i process $\xi(t)$ so zacheniyami v separabel'nom gil'bertovom prostranstve, ekvivalenten vinerovskomy proccessu $W(t)$, na konechnom intervale $[0,T]$ v sluchae kogda $$ \xi(t)=\int_0^t A(s)\xi(s)ds+W(t),\quad 0\leq t\leq T $$ gde $A(s)$ izmerimaya operatornaya funkciya c interiruemo\u\i v kvadrate sledovo\u\i normo\u\i na $[0,T]$. Classification (MSC2000): 60G12, 60G15, 60G30 Full text of the article:
Electronic fulltext finalized on: 2 Nov 2001. This page was last modified: 16 Nov 2001.
© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
|