PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.) Vol. 45(59), pp. 103--108 (1989) |
|
AN IMPROVED CONSTANT FOR THE MUNTZ--JACKSON THEOREMH. N. OdogwuCorrespondence and Open Studies Institute, University of Lagos, Lagos, NigeriaAbstract: We improve a Newman result [2,3] from 1974 concerning approximation of a continuous function by generalized polynomials. He proved that every $f\in C[0,1]$ there exists a generalized polynomial $P(x)=\sum_{k=0}^N c_kx^{\lambda k}$ such that $$ |f(x)-P(x)| \leq Aw_f(\varepsilon),\qquad x\in [0,1]\tag 1 $$ holds. Here $0=\lambda_0<\lambda_1<\cdots\lambda_N$ are given numbers $w_f$ is the modulus of continuity of $f$, $\varepsilon=\max\{|B(z)/z|: Re\, z=1\}$, $B(z)$ is the Blaschke product corresponding to the above set of $\lambda_k$'s and $A$ is a constant. Newman [2] proved that (1) holds with $A=368$. We show that (1) is valid with $A=66$. We prove this by slightly modifying Newman's proof and choosing the size of an interval, to which a suitable contradiction is extended, optimally. Classification (MSC2000): 41A30, 41A25 Full text of the article:
Electronic fulltext finalized on: 2 Nov 2001. This page was last modified: 16 Nov 2001.
© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
|