PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.) Vol. 41(55), pp. 83--89 (1987) |
|
MERCERIAN THEOREMS FOR BEEKMANN MATRICESVladeta Vuckovi\'cDepartment of Mathematics, University of Notre Dame Notre Dame, Indiana 46556, USAAbstract: A matrix $A=(a_{nk})$ is called {\it normal\/} if $a_{nk}=0$ for $k>n$ and $a_{nn}\neq 0$ for all $n$. Such a matrix has a normal inverse $A^{-1}=(\alpha_{nk})$. If Ihe inverse $A^{-1}$ of a normal and regular matrix $A$ satisfies the conditions $\alpha_{nk}\leq 0$ for $k Classification (MSC2000): 40C05 Full text of the article: Electronic fulltext finalized on: 2 Nov 2001.
This page was last modified: 16 Nov 2001.
© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
|