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ON QUASI-FROBENIUSEAN AND ARTINIAN RINGS

Roger Yue Chi Ming

Abstract. Left p-injective rings, which extend left self injective rings, have been considered
in several papers (cf. for example, [10] — [14]). The following generalizations of left p-injective
rings are here introduced: (1) A is called a left min-injective ring if, for any minimal left ideal U of
A (if it exists), any left A-homomorphism g : U — A, there exists y € A such that g(b) = by for all
b € U; (2) A is left np-injective if, for any non-nilpotent element c of A, any left A-homomorphism
g : Ac — A, there exists y € A such that g(ac) = acy for all a € A. New characteristic properties
of quasi-Frobeniusean rings are given. It is proved that A is quasi-Frobeniusean iff A is a left
Artinian, left and right min-injective ring. If A is left np-injective, then (a) every left or right
A-module is divisible and (b) any reduced principal left ideal of A is generated by an idempotent.
Further properties of left C M-rings (introduced in [14]) are developed. The following nice result
is established : If U is a minimal left ideal of a left C M-ring A, the following are then equivalent:
(a) AU is injective; (b) 4U is projective; (c) aU is p-injective. Consequently, A is semi-simple
Artinian iff A is a left CM-ring with finitely generated projective essential left socle. Divison
rings are also characterised. Known results are improved.

Introduction. This note contains new characteristic properties of quasi-
Frobeniusean rings in terms of min-injective Iings (defined below). It is proved
that A is quasi-Frobeniusean in A is a left Artinian, left and right min-injective
ring. Left CM-rings (introduced in [14]) are further studied. In particular, it is
proved that if U is a minimal left ideal of a left CM-ring A, then 4U is injective iff
it is projective iff it is p-injective. Certain results on C'M-rings (14) are improved.
A generalization of left p-injective rings, called np-injective rings, is also considered
and various properties are derived. Characteristic properties of division rings and
semi-simple Artinian rings are given.

Throughout, A refers to an associative ring with identity and A-modules are
unitary. Z,J, S will denote respectively the left singular ideal, the Jacobson radical
and the left socle of A. A is called left non-singular (resp. semi-simple) iff Z =0
(resp. J = 0). Recall that a left A-module M is p-injective (resp. f-injective) iff for
any principal (resp. finitely generated) left ideal I of A, any left A-bomomorphism
g : I — M, there exists y € M such that g(b) = by for all b € I. Then A is
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von Neumann regular iff every left A-module is p-injective (f-injective). It is well-
known that A is regular iff every left A-module is flat. If I is a p-injective left ideal
of A, then A/I is a flat left A-module.

As usual, a left (right) ideal of A is called reduced iff it contains no non-zero
nilpotent element. An ideal of A will always mean a two-sided ideal. In [14], the
following generalization of semi-simple Artinian, left uniform and left duo rings
is introduced: A is called a left CM-ring iff, for any maximal essential left ideal
M of A (if it exists), every complement left subideal is an ideal of M. Left CM-
rings also extend left PCI-rings [4] and the domains constructed by Cozzens [3].
Regular left C M-rings are left and right V-rings but left C M, left or right V-rings
need not be regular. Recall that (1) A is left pseudo-coherent iff I(F') is a finitely
generated left ideal for any finitely generated right ideal F' of A; (2) A is ELT
(resp. MELT) iff every essential (resp. maximal essential, if it exists) left ideal is
an ideal of A. Rings whose ideals are left annihilators are called T'L A-rings. We
know that if A is a semi-prime T'LA-ring, then every ideal of A is generated by
a central idempotent and hence A is a biregular, fully left and right idempotent
ring. Note that semi-prime rings whose left ideals are left annihilators must be
semi-simple Artinian. It is well-known that in a quasi-Frobeniusean ring, every
one-sided ideal is an annihilator.

H. Tominaga (Math. Reviews 81i#16014) pointed out that [12, Theorem 8]
depended on a unproved result of R. P. Kurshan [8, Proposition 3.4] (cf. [6]). By
going through the proof of [8, Theorem 3.3 and Proposition 3.4] (keeping in view
Ginn’s remark [6, p. 105]), [12, Lemma 5] yields.

LEMMA 1. Let A be a TLA-ring whose essential left ideals are left annihilators
satisfying the maximum condition on ideals rtnd essential left ideals such that 1(Z)
is a finitely generated left ideal and A/Z is semi-simple Artinian. Then A is left
Artinian.

Applying [14, Proposition 2.8], [2, p. 69)] and Lemma 1, we get

COROLLARY 1.1. The following conditions are equivalent for an ELT, TLA-

ring satisfying the mazimum condition on left anihilators: (1) A is left Artinian;
(2) Both A and A/Z have left finite Goldie dimension; (3) A/Z is left or right
self-injective and I(Z) is a finitely generated left ideal; (4) aZ is finitely generated.

We now introduce the following generalization of left p-injective and semi-
prime rings.

Definition. A is called a left min-injective ring if, for any minimal left ideal
U of A (if it exists), any left A-homomorphism g : U — A, there exists y € A such
that g(b) = by for all be U.

[12, Theorem 8(iii)] is proved in the next result (this extends a result of C
Faith [5, p. 209]).

THEOREM 2. The following conditions are equivalent:

(1) A is quasi-Frobeniusean;
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(2) A is a right p-injective, left min-injective, left pseudocoherent TLA-ring with
mazimum condition on right annihilators;
(3) A is a left Noetherian, left p-injective, right min-injective ring;
(4) A is a left Artinian, Ieft and right min-injective ring;
(5) A is a right f injective ring with mazimum condition on left annihilators.
Proof. Obviously, (1) implies (2) and (3).
Assume (2). If I is an ideal of A, T' = [(B) for some right ideal B of A. Since
A satisfies the maximum condition on right annihilators, then T' = [(F'), where
F is a finitely generated right subideal of B and since A is left pseudo-coherent,
AT is finitely generated. In particular, 4. is finitely generated. Since A is right
p-injective with minimum condition on left annihilators, then A is right perfect by
a theorem of M. Ikeda — T. Nakayama which yields that A is left Artinian [2, p.
69]. Thus (2) implies (4).
Assume (3). Since A is left p-injective with the minimum condition on right
annihilators, then A is left perfect which, together with A left Noetherian, implies
A left Artinian. Therefore (3) implies (4).

Assume (4). Let U be a minimal left ideal of A, 0 # u € U. Since A is both
left and right perfect, uA contains a minimal right ideal V = vA, v € A. Then
l(u) Cl(v) and if f : Au — Av is the left A-homomorphism defined by f(au) = av
for all @ € A, since U = Au is a minimal left ideal, then f is an isomorphism and
if g : Av — Auw is the inverse isomorphism, i : Au — A the natural injection, then
there exists w € A such that u = ig(v) = vw. Therefore uA = vA is a minimal
right ideal and if 0 # b € I(r(u)), then r(u) = r(I(r(u))) C r(b) and if h : ud — bA
is the right A-homomorphism defined by h(ua) = ba for all a € A, j : bA — A the
natural injection, then there exists ¢ € A such that b = jh(u) = cu € Au. Thus
I(r(Au)) = l(r(u)) = Au = U. Similarly, any minimal right ideal of A is a right
annihilator and by [9, Proposition 1], (4) implies (5).

Assume (5). Then A is a left Noetherian ring whose left ideals are left anni-
hilators (cf. [12, p. 134]). Since A/J is a semi-prime ring whose left ideals are left
annihilators, then A/J is semi-simple Artinian (this is the crucial property men-
tioned by Ginn [6]). By [12, Lemma 5] and Lemma 1, A is left Artinian (indeed,
the proof of [12, Lemma 5] shows that Z = J =[(S) and S = [(Z) is an essential
left ideal). Since A satisfies the maximum condition on right annihilators, then (5)
implies (1) by [2, Theorem 4.1].

In general, for an arbitrary ring A, a simple projective left A-module needs
not be injective. However, we prove

PROPOSITION 3. Let A be a left CM-ring. Then any simple projective left
A-module is injective.

Proof. Let W be a simple projective left A-module. Then W ~ A/K, where
K is a maximal left ideal of A and since 4A/K is projective, then A = K @ U,
where U = Ae, e = €2 € A, is a minimal left ideal of A. If L is a proper essential
left ideal of A, f : L — U a non-zero left A-homomorphism, then L/N =~ U, where
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N = ker f is a maximal left subideal of L. Now L = N @ V, where V(= U) ia a
minimal left ideal of A. If g : V — U is an isomorphism, then g(v) = e for some
non-zero v € V and V = Av. Since g(ev) = eg(v) = €2 = e, then ev = v. If
UNV #0,then U=V. IfUNV =0, let I be a complement left ideal such that
E=U®aV)®I is an essential left ideal of A. If E # A, since E is contained in
some maximal (essential) left ideal and A is left CM, v =ev € UNV = 0, which
is a contradiction. Therefore E = A and V = Aw, w = w? € A in any case. If
M is a maximal left ideal containing L, by Zorn’s Lemma, there exists a maximal
left subideal C' of M containing N with C' NV = 0. Then C is a complement left
subideal of M which implies CM C C, whence NV C CM NV CCNnV =0.
Now for any y € L,y = d+aw, d € N, a € A and since dw € NV = (;
fly) = flaw) = f(dw) + f(aw) = (d + aw) f(w) = yf(w) which proves that 4U is
injective, whence Ay is injective.

Since a finitely generated p-injective left ideal of A is a direct summand of
AA, the next corollary then follows.

COROLLARY 3.1. The following conditions are equivalent for any minimal
left ideal U of a left CM ring A: (a) aU is projective; (b) aU is injective; (c) aU
18 p-injective.

Applying [14, Remark 5(2)], we get

COROLLARY 3.2. If A is a MELT, left CM-ring, then a simple left A-module
is injective iff it is p-injective.

COROLLARY 3.3. If A is left CM, left Noetherian, then AS is injective iff it
18 projective.

COROLLARY 3.4. If A is a left CM ring with oS finitely generated projective,
then A is the ring direct sum of a semisimple Artinian ring and a ring with zero
socle.

Remark 1. A left C M-ring with projective left socle is left min-injective.

Left CM-rings lead us to consider the following class of rings: A is called
a left CAM-ring if, for any maximal essential left ideal M of A (if it exists), for
any left subideal I of M which is either a complement left subideal of M or a left
annihilator ideal in A, I is an ideal of M.

Left C AM-rings generalize semi-simple Artinian, left duo, left PCI-rings and
left Ore domains. Note that left CAM (left and right) V-rings need not be regular.

PROPOSITION 4. If A is a semi prime Ieft CAM-ring, then A is either semi-
simple Artinian or reduced.

Proof. Suppose there exists 0 # z € Z such that 22 = 0. Let M be a maximal
left ideal of A containing I(2). Then I(2)M C I(z) implies (M2)? < (Az)Mz) <
I(z)Mz = 0, whence M = [(z). Therefore Az(~ A/M) is a minimal left ideal
which is a direct summand of 4A contradicting the fact that Z contains no non-
zero idempotent. By [11, Lemma 2.1], Z = 0. Suppose that A is not Artinian.
Then there exists a maximal essential left ideal E of A. E is reduced by [14, Lemma
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1.6(1)], which implies that A is reduced (being an essential extension of 4 E). This
proves the proposition.

The next corollary improves [14, Theorem 1.9].

COROLLARY 4.1. If A is a semi prime right self-injective left CAM-ring, then
A is either semi-simple Artinian or left self injective strongly regular.

COROLLARY 4.2. A semi prime left CAM-ring with maximum or minimum
condition on left annihilators is a left and right Goldie ring.

The next two corollaries give sufficient conditions for rings to be regular and
self injective regular with non-zero socle.

Applying [10, Theorem 1] to Propositions 3 and 4, we get

COROLLARY 4.3. The following conditions are eguivalent:

(1) A is either semi-simple Artinian or strongly regular with non-zero socle;

(2) A is a semi prime left CAM-ring containing a finitelly generated p-injective
mazximal left ideal;

(3) A is a semi-simple left CM-ring containing a finitely generated p-injective
mazimal left ideal.

COROLLARY 4.4. The following conditions are equivalent:

(1) A is either semi-simple Artinian or left and right self injective strongly reqular
with non-zero socle;
(2) A is a semi prime left CAM ring containing an injective mazximal left ideal.
Following [13], A is called a right W P-ring (weak p-injectvie) if every right
ideal not isomorphic to A4 is p-injective. As usual, A is called left uniform iff
every non-zero left ideal is an essential left ideal of A. Since a left uniform right
semi-hereditary ring is a left Ore domain, then [13, Lemma 1.1] yields the next
remark.

Remark 2. The following conditions are equivalent:
(1) A is either simple Artinian or a left Ore right principal ideal domain;
(2) Ais a prime left CM, right W P-ring.

Remark 3. If A is a left CAM, right W P-ring, then A is either semi-simple
Artinian or strongly regular or a right principal ideal domain. (cf. [13, Corollary
1.6].)

Remark 4. If A is a left C AM-ring whose essential left ideals are idempotent,
then A is fully left and right idempotent.

We now consider another generalization of left p-injective rings: Call A a left
np-injective ring if, for any non-nilpotent element c of A, any left A-homomorphism
g : Ac — A, there exists b € A such g(ac) = acb for all a € A. Following [5], an
element a of A is called left regular iff I(a) = 0. [10, Theorem 1] is improved in the
next proposition.
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PROPOSITION 5. Let A be a left np-injective ring. Then
(1) Any left reqular element of A is right invertible;
(2) Z C J;
(3) Ewery left or right A-module is divisible;
(4)

4) If P is a reduced principal left ideal of A, then P = Ae, where e = e € A
and A(1 — e) is an ideal of A.

Proof. (1) Let ¢ € A such that I(c) = 0. For any u € A = r(l(c)), l(c) =
I(r(l(c))) Cl(u) and if g : Ac — A is the left A-homomorphism defined by g(ac) =
au for all a € A, since A is left np-injective, there exists b € A such that u = g(c) =
¢b € cA. Therefore A = cA which proves (1).

(2)If z€ Z,a € A, then I(1 — za) = 0 implies (1 — za)u = 1 for some u € A
by (1). This proves that z € J.

(3) If ¢ is a non-zero-divisor in A, then c¢d = 1 for some d € A by (1). Now
r(c) = 0 implies d¢c = 1 and for any right A-module M, M = Mdc C Mc C M
implies M = Mec. Similarly, any left A-module is divisible.

(4) Let P = Ab, b € A, be a non-zero reduced principal left ideal. Then
r(b) C I(b) = I(b?) and the proof of (1) shows that r(I(bA)) = bA which yields
bA = r(I(b?)) = r(I(b*A)) = b2A (since b? is non-nilpotent). Therefore b = b?c,
¢ € A, which implies b = beb (P being reduced), whence P is generated by the
idempotent e = cb. Also, for any a € A, (ae — eae)? = 0 implies ae = eae, whence
(1—e)Ae = 0. Therefore (1 —e)A C A(1 —e) which establishes the last part of (4).

Remark 5. [1, Theorem 12] holds for right np-injective rings whose comple-
ment right ideals are finitely generated.

We now characterize division rings in terms of the following: A is called a
right F-ring if, for any maximal right ideal M of A, any b € M, A/bM4 is flat.

THEOREM 6. The following conditions are equivalent for a semi prime left
uniform ring A:
(1) A is a division ring;
(2) A is a left self injective Ieft F ring;
(3) A is a left np-injective left F ring;
(4)

4) A is a right F ring.

Proof. 1t is evident that (1) implies (2), which, in turn, implies (3).

Assume (3). If b€ A, b ¢ Z, then [(b) = 0 which implies bc = 1 for some c € A
(Proposition 5(1)). This shows that every maximal right ideal of A is contained in
Z, whence A is a local ring with Z = J as the unique maximal right ideal (which is
also the only maxi.mal left ideal). Suppose that Z # 0. Since A is semi-prime, for
any 0 # 2z € J, Jz # 0. If y € J such that yz # 0, since 4A/Jz is flat, yz = yzwz
for some w € J. Since (1 — wz)u =1 for some u € A, then yz(1 — wz) = 0 implies

yz = 0, a contradiction. Thus Z = J = 0 which proves that A is a division ring
and (3) implies (4).
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Assume (4). If u € A, u # Z, then I(u) = 0. Suppose that uA # A. If R is a
maximal right ideal containing uA, since A/uR, is flat, u?> = uvu? for some v € R.
Then (1 — uv)uz = 0 implies uv = 1, which contradicts uA # A. This proves that
A is a local ring with Z = J the only maximal right (and left) ideal of A. The
proof of “(3) implies (4)” then shows that J = 0 which proves that (4) implies (1).

COROLLARY 6.1. A is simple Artinian iff A is a prime left CM, right F ring.
Remark 6. A left Noetherian ring is left Artinian iff each of its prime factor
rings is a left CM, right F-ring.
[7, Corollary 1.18], [10, Theorem 1], [11, Theorem 1.4], Propositions 4 and 5
yield the next result. (cf. [14, Theorem 2.2 and Proposition 2.4].)
THEOREM 7. The following conditions are equivalent:
(1) A is either semi-simple Artinian or strongly regular;
(2) A is a semi prime left CAM-ring whose simple right modules are flat;
(3) A is a semi-prime left np-injective, left CAM ring.

Note that a ring with finitely generated projective essential left socle need
not be semi-prime. We conclude with a few characteristic properties of semi-simple
Artinian rings.

THEOREM 8. it The following conditions are equivalent:

(1) A is semi-simple Artinian;

(2) A is a semi-prime TLA, left CM-ring containing a finitely generated p-
injective maximal left ideal;

(3) A is aleft CM, left Noetherian ring with projective essential left socle;

(4) A is a left CM-ring with finitely generated projective essential left socle;

(5) A is a semi prime left np-injective, left or right Goldie ring.
Proof. Apply Propositions 3 and 4, Corollary 4.4 and Proposition 5.
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