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ON FIXED POINT THEOREMS OF MAIA TYPE

Bogdan Rzepecki

1. In this note we present some variants of the following result of Maia [10]:
Let X be a non-empty set endowed in with two metrics p, o, and let f be a mapping
of X into itself. Suppose that p(z,y) < o(z,y) in X, X is a complete space and f
is continuous with respect to p, and o(fx, fy) < k-o(x,y) for all z, y in X, where
0< k< 1. Then, f has a unique fixed point in X .

This theorem (cf. also [18], [11], [4], [12], [17]) generalizes the Banach fixed-
point principle and is connected with Bielecki’s method [1] of changing the norm
in the theory of differential equations. Our results follow as a consequence of two
metrics, of two transformations [3] and of the generalized metric space concept ([8],

[9))-

2. Let (E,|| - ||) be a Banach space, let S be a normal cone in E (see e.g. [6])
and let < denote the partial order in E generated by the cone S. Suppose that X
is a non-empty set and a function dg: X x X — § satisfying for arbitrary elements
z, Yy, z in X the following conditions:

(A1) dg(x,y) =0 if and only if z = y (8 denotes the zero of the space E);
(A 2) dp(z,y) = di(y,2);

(A 3) dp(z,y) X dgp(z,2) +di(2,y)

Then, this function dg is called the generalized metric in X.

Further, let us put d* (z,y) = ||dg(z,y)|| for z and y in X. If every d*-Cauchy
sequence in X is dt-convergent (i.e., lim, 4,00 d¥ (2,,24) = 0 for a sequence (z,,)
in X, implies the existence of an element z¢ in X such that lim,, o d* (2, z0) =),
then (X,dg) is called [6] a generalized complete metric space.

Moreover, in this paper we shall use the notations of L*-space, the £L*-product
of L*-spaces and a continuous mapping of £*-space into L*-space (see e.g. [7]).
3. Let E, S and < be as above. In this section suppose we are given:

L - a bounded positive linear operator of E into itself with the spectral radius
r(L) less than one (see e.g. [6]);
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X, A — two non-empty sets;

PE,0E — two generalized metrics in X such that pg(z,y) < C -og(z,y) for
all z, y in X, where C' is a positive constant;

T — a transformation from A to X such that (T[A], pg) s a generalized com-
plete metric space!.

Modifying the reasoning from [6, Th. IL. 6. 2], we obtain the following result:

PROPOSITION 1. Let (X,pr) be a generalized complete metric space, let
f:X — X be a continuous mapping with respect to p*, and let op(fz, fy) <
L(og(z,y)) for all x, y in X. Then f has a unique fized point € in X. Moreover,
if g € X and x, = fx,_1 for n > 1, then:

(i) limp o0 [lp5 (20, §)]| = O,

(ii) ||pe(zm,&)|| < N - C - ||[L™u]|| for all m > 0, where N is same constant
and u is a solution of equation u = og(xo, fzo) + Lu in the space E (see [6, Th. I

2. 2)).

Now, we shall prove

PROPOSITION 2. Let (X,pg) be a generalized complete metric space, let
fm:X = X (m = 0,1,...) be continuous mappings with respect to p*, and let
og(fmz, fmy) = L(cg(x,y)) for all z, y in X. Denote by &,(m = 0,1,...) a
unique fized point of fm,, and suppose that lim,_, ||oE(frz, fox)|| = 0 for every x
in X. Then lim, .« [|pE(&n, &)l = 0.

ProOF. Consider the linear equation u = og (&, fnéo) + Lu (n = 1,2,...)
with the unique solution u,, in E (see [6, Th. I. 2. 2]). By Proposition 1 we obtain
llpE(€ns )|l < N - C - ||uyl| for n > 1, where N is constant.

Let £ > 0 by such that (L) + & < 1. Further, let us denote by || - ||c the norm
equivalent to || - || such that ||L||: < e+ r(L) (see [6, p. 15]) (||L]|- is the norm of
L generated by || - ||c). We have

llunlle < lloe(fno, fobo)lle + | Lunlle < llop(fndo; fobo)lle + (r(L) + &)llunl|e

for n > 1. Since lim, o |[|0E(fré0, folo)lle = 0, s0 lim, o0 [|un]l: < (e + (L)) -
limy, s o0 [|tnle, and consequently lim [|pg (&, o) || = 0.

THEOREM 1. Let H:A — X be a mapping such that H[A] C T[A] and
op(Hz,Hy) <X L(og(Txz,Ty)) for all x, y in A. Suppose that lim,_, ||pp(HZn,
Hz)|| = 0 for every sequence (x,) in A with lim,_, ||pp(Tx,,Tx)|| =0 Then:

(i) for every u in T[A] the set H[T _yu] contains only one element?;

(i) there exists a unique element & in T[A] such that H[T_1£] = &, and
every sequence of successive approzimations unt1 = H[T_qu,] (n = 1,2,...) s
pt-convergent to &;

1T A] denotes the image of the set A by the transformation T
2T_;u denotes the inverse image of u under T'



On fixed point theorems of Maia type 181

(iii) Hx = Tz for all x in T_1§;
(iv) if Hz; = Twx; (1 =1,2), then Txy = Txs.

PrROOF. Let us put fz = H[T 12] for z in T[A]. Obviously, fz € T[A]
for all z in T[A]. If v; € fz (i = 1,2), then v; = Hz; with Tz; = 2. Hence
0 < op(v1,v2) X L(og(Tx1,Tx2)) = 0 and v; = ve. Therefore, H[T_1z] contains
only one element.

It can be easily seen that the mapping f of T'[A] into itself is continuous with
respect to pt. Indeed, let z, € T[A] for n > 1 and let lim, . ||pE(2n, 20)|| = 0.
Then there exist z,, € T 12, (m = 0,1,...) such that fz,, = Hz,,. We have
lpe(Hxn, Hxo)|| = ||pE(f2n, f20)|| for n > 1, and consequently lim,,_, ||pe(f2n,
fz0)ll = limy oo ||pE(Hzp, Hxo)|| = 0.

Further, it is easy to verify that og(fu, fv) < L(og(u,v)) for all u, v in T[A].
Consequently, applying Proposition 1 the proof of (ii) is completed.

Obviously, (iii) holds and we omit the proof. Now, we prove (iv): Suppose
that Hx; = Tz; (i = 1,2) and T'z; # Tx2. Then, og(Tz1,T2z2) <X L(og(Tz1,Tx2))
and-og(Tx1,Txzs) ¢ S. Therefore, by theorem II. 5. 4 from [6. p. 81], we obtain
r(L) > 1. This contradiction completes our proof.

Using Theorem 1 and Proposition 2 we obtain the following

THEOREM 2. Let Hp:A — X (m = 0,1,...) be mappings with Hp,[A] C
T[A] and ogp(Hpx,Hyy) 3 L(icg(Tz,Ty)) for oll z, y in A. Further, sup-
pose that lim, oo ||pE(HmZn, Hnz)|| = 0 for every sequence (x,) in A with
lim, oo ||pE(Tzn, Tx)|| = 0.

Let & (m = 0,1,...) be an element in T[A] such that Hpy[T-16m] = Em- As-
sume that lim,,_, ||og(Hpz, Hoz)|| = 0 for every x in A. Then lim,_, ||pE(TYn,
Tyo)|| = 0, where Y, € T 1€ for m > 0.

4. M. Krasnoselskii [5] has given the following version of well-known result
of Schauder: If W is a non-empty bounded closed convex subset of a Banach space,
f is a contraction and g is completely continuous on W with fx + gy € W for all
x, y in W, then the equation fx + g = x has a solution in W.

Now, we give a modification and some generalization of this Krasnoselskii’s
result.

Let (E,||-||) be a Banach space, let S be a cone in E with the partial order <
such that if § < z < y then ||z|| < ||y||, and let L be as in Sec. 3. Further, let X be

a vector space endowed with two generalized norms ||| - |||;: X = S (i = 1,2) (see
[6, p. 94]) such that |||z|||1 X C-|||z|||2 for all z in X. Denote: pg, og—generalized
metrics in X generated by ||| - |||1 and ||| - |||2, respectively.

THEOREM 3. Let K be a non-empty convex subset of X, let (K,pt) be a
complete space and let ), F be transformations with the values in K defined on K
and K x K respectively. Assume, moreover, that the following condition holds:

(i) Q: (K,pT) = (K,p*) is continuos, Q[K] is a conditionally compact set
with respect to o and |||F (u,y) — F(v,y)|||2 X |||Qu — Qu|||2 for all u, v, y in K;
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(i) [[|F'(z,y) = F(2,2)[||l2 = L(||ly = 2lll2) for all z, y, z in K;

(iii) for every x in K the function y — F(x,y) of K into itself is continuous
with respect to pt.

Then there exists a point x in K such that F(z,z) = z.

ProoF. Consider the mapping y — F(z,y) (z is fix in K) of K into itself.
By Proposition 1, there exists exactly one u, in K such that F(z,u,) = u;. Now
define an operator V as x — u.

This operator V' maps continuously (K, pT) into itself. Indeed, let (z,) be a
sequence in K such that p*(z,,79) — 0 as n = oo. Let us put fi,z = F(Zm,T)
(m=0,1,...) for z in K. The conditions (i) and (ii) imply that all the assumptions
of the Proposition 2 are satisfied. Therefore, f,, has a unique fixed point &, and
pT(€n, &) = 0 as n — oo, so we are done.

Now we are going to show that V[K] is conditionally compact with respect to
pT: Let (z,) be a sequence in K, and let y, = F(x,,u,,) forn > 1. Let € > 0 be
such that r(L)+¢ < 1, let ||-|| be the norm equivalent to ||-|| with ||L||. < r(L)+e,
and let us put o (z,9) = |||z — y|||2[l- for =, y in K. We have

llys = y5llllle < [1LA0yi = y;lll2) + Qs — Qjl[[2]l2[le <
< (r(L) +)lllllys — y;lll2lle + Qz: — Qu;lll2l--

hence
(1= (r(L) +2)) - llys — yjlll=lle < 1Qz: — Qjl]2lle

for every i, j < 1. Suppose that (Qz,) is a o+-Cauchy sequence. Then, (Qz,) is
a o -Cauchy sequence and consequently (y,) is pT-convergent in K.

By application of the Schauder fixed point theorem, our proof is completed.

REMARK. The above theorem will remain true if (i) is repleaced by the
following condition: @ is continuous and Q[K] is a conditionally compact set with
respect to pt, and |||F (u,y) — F(v,9)|||]2 2 |||Qu — Qu|||1 for all u, v, y in K.

5. Let us remark applications and further results can be obtained if the
concept of a generalized metric space in the Luxemburg sense [9] (not every two
points have necessarily a finite distance) will be used. Cf. [13]-{17]. How, we give
some application of Theorem 2 (in the cose of) to functional equations.

In this section, let (R,|| - ||) denote the k-dimensional Euclidean space,
let £ = R* andlet S = {(t;,t2...,t;) € RF:t; > 0 for 1 < i < k}. Then,
(1,22, ,2k) 2 (Y1,Y2,- .- ,yx) if we have z; < y; for every 1 <i < k.

Suppose that J = [0,00), K;; > 0 (i,j = 1,2,...,k) are constants, and
p:J = J is a locally bounded function. Let us denote by:

A — the set of continuous functions (z1,zs,...,zx) from J to R* such that
z1(t) = 0(exp(p(t))) (1 <i < k) for every t in J;

X — the set of bounded continuous functions from J to R* ;

A - the metric space with the metric J;
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F — the set of continuous functions (fi, fo, ... , fx) from J x RF x A into RF
satisfying the following conditions:

k
| fi(t5t1a"' tha/\) _f’i(t7315827"' Jska)‘) |S ZKZ] |t.7 — 85 |
j=1

(1 <4 < k) for every t in J, t;, s; in RF and X in A; fi(t,6,)) = O(exp(p(t)))
(1 <i < k) for fixed X in A and every ¢ in J (6 denotes the zero of space R*).

The set A admits a norm ||| - ||| defined as |||z||| = sup{exp(—p(t)) - |z(t)|: t >
0}. In X we define the generalized metric dg as follows: for each z = (1, ... , k)
and y = (y1, ... ,yx) write dp(z,y) = (o1 —w1ll; llz2 = w2l, -, [l2x — yrl]), where
||-]] denotes the usual supremum norm in the space of bounded continuous functions
on J. Obviously, (X,dg) is a generalized complete metric space.

We shall deal with the set F as an L*-space endowed with convergence:
(n) p(n) (n) _ ( (0) £(0) (0)) if an only if

hmn—>00( 1 »J2 s dg T 1 »J2 - Jk
lim sup{exp(—p(®)) - £ (t,u; A) = 1" (t,w, N]: (t,u) € T x R¥} =0

for every A in A and evry 1 < 4 < k. Moreover, F x A be the £*-product of the
L*-spaces F, A.
Further, suppose that h:J — J is a continuous function, there exists a con-

stant ¢ > 0 such that exp(p(h(t))) < ¢ - exp(p(t)) for all ¢t in J, and [g - K;j]
(1 <1i,j < k) is a non-zero matrix with

1—-qK11 —qKi2 -+ —qKy
—qK2  1-qKn - —qiy |4
—qKi —qKpp 1—qKy

for every i =1,2,... k.
Under these conditions we have the following theorem:

For an arbitary F' in F and X in A there erxists a unique function T(gry) in
A such that

Ty (t) = F(t,zpa ((t)), )

for every t > 0. Moreover, if there ezists functions a, B8 from J to J such that
a(t) = 0(exp(p(t))) fort >0, B(t) = 0 as t — 04 and

for all (f1,f2,...,fr) € F,t>0,u e RF and \, p in A, then the function

(F,0) = T(F'))
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maps continwously L*-space F x A into Banach space A.

PROOF. Letm =0,1,... Let F(™ = (f{™ ..., f{™) € F and A, € A be
such that lim,,_,o, ™ = FO and lim,_, « 0(An,Ao) = 0. For each z in A, define:

(Tz)(t) = exp(—p(t)) - (),
(Hmz)(t) = exp(=p(t)) - F™ (¢, 2(h(1)), Am)

on J.
For z = (z1,22,...2%) € A and ¢t > 0 we obtain

(Hmz)(#)| < (|[F™ (¢, 2(h(t)), \m)) — FT™ (t,0, Am) |+
+|F™ (8,0, \)]) - exp(—p(t)) <

i=1j=1

k k
< (ZZKijle(h(t))l +|F(m)(t797)‘m)) -exp(—p(t) <

< (e1- exp(p(h(t))) + c2 - exp(p(t))) - exp(=p(t)) < c1g + ¢

with some constants ¢;, ¢, and therefore H,, maps A into X. Further, it can be
easily seen that T[A] = X and H,[A] C T[A].

We observe [2] that the operator L generated by the matrix [¢ - K;;] is a
bounded positive linear operator with the spectral radius less than 1. For z =
(1, ,2k), ¥y = (Y1,... ,yx) in A and ¢t > 0 we have

exp(—p(t)) - | /™ (t, 2 (h()), Am) = £ (8, y(B(1)), Am| <

k
< (Z K;j -iggexp(—p(t))lﬂvj(t) —yj(t)l) -exp(—p(t)) - exp(p(h(t))) <
k

<q-) Ky- sup exp(—p(t)) - [2;(t) = ;1)
i=1 =

dp(H, Hiy) = (supexp(=p(t)) LA (2 (B()), Am) = 7 (& y (1), Am),

k
L(dg (T, Ty)) = (q : Z K - supexp(=p(t)) - [2;(8) = y; ()], -

NI sup exp(—p(t)) - |z;(t) - yj(t)|>
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and therefore dg(Hpx, Hpy) < L(dg(Tz, Ty)).
Let usfix z in A. Fort > 0,1 <i<kandn > 1 we get

£ (8, 2(h(1), M) — FO (2 (B(1)), Mo)| < alt) - BE(An, Ao))+
M @ 2(B(0)), X)) — 10 (8, 2(B(2)), Xo)|

hence

oh exp(—pO)IF{™ (8, 2(h(1)), M) — FO(t, 2(h(2)), ho)| < ¢+ BO N, X))+
+sup{exp(—=p(8))| £ (¢, u, Mo) — O (¢, u, Mo)|: (£,u) € T x R}

with some constant ¢, and it follows

lim sup exp(—p(t))| £ (¢, z(h(1)), An) — £ (¢, 2(h(1)), Xo)| = 0.

n—00 >0

Finally, ||dg(H,z, Hoz)|| = 0 as n — oo.

This proves that the theorem 1 and 2 is applicable to the mappings T,
H,(m=0,1,...), and the proof is finished.
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