NYJM Logo

New York Journal of Mathematics
Volume 28 (2022), 1329-1364

  

Celso Antunes, Joanna Ko, and Ralf Meyer

The bicategory of groupoid correspondences

view    print


Published: September 21, 2022.
Keywords: etale groupoid; groupoid correspondence; bicategory; product system; groupoid C*-algebra; Conduche fibration; self-similar group; higher-rank graph.
Subject [2010]: 46L55

Abstract
We define a bicategory with etale, locally compact groupoids as objects and suitable correspondences, that is, spaces with two commuting actions as arrows; the 2-arrows are injective, equivariant continuous maps. We prove that the usual recipe for composition makes this a bicategory, carefully treating also non-Hausdorff groupoids and correspondences. We extend the groupoid C*-algebra construction to a homomorphism from this bicategory to that of C*-algebra correspondences. We describe the C*-algebras of self-similar groups, higher-rank graphs, and discrete Conduche fibrations in our setup.

Acknowledgements

N/A


Author information

Celso Antunes:
Mathematisches Institut
Universitat Gottingen
Bunsenstrasse 3--5, 37073 Gottingen, Germany

celso.antunes@mathematik.uni-goettingen.de

Joanna Ko:
Mathematisches Institut
Universitat Gottingen
Bunsenstrasse 3--5, 37073 Gottingen, Germany

joanna.ko.maths@gmail.com

Ralf Meyer:
Mathematisches Institut
Universitat Gottingen
Bunsenstrasse 3--5, 37073 Gottingen, Germany

rmeyer2@uni-goettingen.de