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Gysin restriction of topological and
Hodge-theoretic characteristic

classes for singular spaces

Markus Banagl

Abstract. We establish formulae that show how the topological char-
acteristic L-classes of Goresky and MacPherson, as well as the Hodge-
theoretic Hirzebruch type characteristic classes defined by Brasselet,
Schürmann and Yokura transform under Gysin restrictions associated
to normally nonsingular embeddings of singular spaces. We find that
both types of classes transform in the same manner. These results sug-
gest a method of normally nonsingular expansions for computing the
above characteristic classes. We illustrate this method by computing
Goresky-MacPherson L-classes of some singular Schubert varieties.
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1. Introduction

We establish Verdier-Riemann-Roch type formulae that describe the be-
havior of both the topological L-classes of Goresky and MacPherson ([31])
and the Hodge-theoretic Hirzebruch-type characteristic classes IT1∗ defined
by Brasselet, Schürmann and Yokura ([15]) under Gysin restrictions asso-
ciated to normally nonsingular embeddings of singular spaces. In doing
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so, we have a twofold goal in mind: We hope that the formulae will con-
tribute to illuminating the relationship between the Goresky-MacPherson
L-class and the class IT1∗. In [15, Remark 5.4], these are conjectured to
be equal for pure-dimensional compact complex algebraic varieties; this is
also suggested by Cappell and Shaneson in [17], [65]. For compact complex
algebraic varieties that are rational homology manifolds, the conjecture has
been established by de Bobadilla and Pallares in [13]. Second, these formu-
lae can serve as the basis of concrete recursive methods for computing these
characteristic classes for specific complex projective algebraic varieties. We
illustrate this approach by computing Goresky-MacPherson L-classes for
some singular Schubert varieties. The Chern-Schwartz-MacPherson classes
of Schubert varieties were computed by Aluffi and Mihalcea in [2]. A general-
ized Verdier-type Riemann-Roch theorem for Chern-Schwartz-MacPherson
classes has been obtained by Schürmann ([63]).

In [34], Hirzebruch introduced cohomological L-classes L∗ for smooth
manifolds as certain polynomials with rational coefficients in the tangen-
tial Pontrjagin classes. In view of the signature theorem, Thom described
the Poincaré duals of these L-classes by organizing the signatures of sub-
manifolds with trivial normal bundle into a homology class, using global
transversality and bordism invariance of the signature. For oriented com-
pact polyhedral pseudomanifolds X, stratified without strata of odd codi-
mension, Goresky and MacPherson employed their intersection homology
to obtain a bordism invariant signature and thus, using Thom’s method, L-
classes Li(X) ∈ Hi(X;Q) in (ordinary) homology, [31]. Irreducible complex
projective algebraic varieties are examples of such X. It turned out later
that one can move well beyond spaces with only strata of even codimen-
sion: The work of Siegel yields L-classes for Witt spaces ([67]). These are
spaces for which the middle-perversity middle-degree intersection homology
of even-dimensional links vanishes. A general sheaf-theoretic treatment of
L-classes for arbitrary pseudomanifolds has been given in [3] and [4], where
a local obstruction theory in terms of Lagrangian structures along strata of
odd codimension is described.

Due on the one hand to their close relation to the normal invariant map
on the set of homotopy smoothings of a Poincaré complex, and on the other
hand to their remarkable invariance under homeomorphisms, discovered by
Novikov, Hirzebruch’s L-classes have come to occupy a central role in high-
dimensional manifold classification theory. A particularly striking illustra-
tion is a classical result of Browder and Novikov, which can readily be de-
duced from the smooth surgery exact sequence: a closed, smooth, simply
connected manifold of even dimension at least 5 is determined, up to finite
ambiguity, by its homotopy type and its L-classes. By work of Cappell and
Weinberger ([23], [72]), the Goresky-MacPherson L-class can be assigned a
similar role in the global classification of singular spaces, and it is still a
topological invariant. But much less is known about the transformational
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laws that govern its behavior, and this is reflected in the sparsity of concrete
calculations that have been carried out. In [43], Maxim and Schürmann cal-
culated the classes T1∗ and IT1∗ for arbitrary toric varieties, and showed
that T1∗ = IT1∗ = L∗ for projective simplicial toric varieties. (Such varieties
are orbifolds, and hence rational homology manifolds.)

The triviality of normal bundles, required by the construction of Goresky-
MacPherson-Thom, is frequently not very natural in projective algebraic
geometry. For example, it often prevents one in practice to build recursive
L-class calculations involving transverse sections of singular projective vari-
eties. From this point of view, one should thus seek to incorporate nontrivial
normal geometry into the singular L-class picture, and this is what we do
in the first half of the present paper. An oriented normally nonsingular
inclusion g : Y ↪→ X of real codimension c has a Gysin homomorphism
g! : H∗(X;Q) → H∗−c(Y ;Q) on ordinary homology. Our Theorem 3.18
asserts:

Theorem. Let g : Y ↪→ X be a normally nonsingular inclusion of closed
oriented even-dimensional piecewise-linear Witt pseudomanifolds (for exam-
ple projective complex algebraic varieties). Let ν be the topological normal
bundle of g. Then

g!L∗(X) = L∗(ν) ∩ L∗(Y ).

Since singular spaces do not possess a tangent bundle, one cannot use
naturality and the Whitney product formula to deduce this as in the case
of a smooth manifold. Our guiding philosophy is the following: drop down
to ordinary homology as late as possible from more elevated theories such
as L•-homology, or better yet, bordism. Then, on bordism it is possible to
see the relation geometrically, using, in particular, geometric descriptions of
cobordism due to Buoncristiano-Rourke-Sanderson in terms of mock bun-
dles. In implementing this philosophy, we use Ranicki’s symmetric algebraic
L-theory, Siegel’s Witt bordism, natural transformations from bordism to
L-theory as introduced recently in joint work with Laures and McClure ([8]),
and various unblocked and blocked bundle theories and Thom spectra, no-
tably the aforementioned theory of mock bundles [16].

In the course of carrying out this program, we prove that the Witt-
bordism Gysin map sends the Witt-bordism fundamental class of X to
the Witt-bordism fundamental class of Y , g![X]Witt = [Y ]Witt (Theorem
3.15). Using this, we prove that the L•-homology Gysin restriction sends
the L•(Q)-homology fundamental class of X to the L•(Q)-homology funda-
mental class of Y , g![X]L = [Y ]L (Theorem 3.17). Finally, one arrives at the
above theorem on L-classes essentially by localizing at zero.

In Section 4, we apply the above Gysin Theorem in computing L-classes of
some singular Schubert varieties. The examples we consider are sufficiently
singular so as not to satisfy global Poincaré duality for ordinary homology
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with rational coefficients. It seems that L-classes of singular Schubert va-
rieties have not been computed before. The Chern-Schwartz-MacPherson
classes of Schubert varieties were computed by Aluffi and Mihalcea in [2].

If ξ is a complex vector bundle over a base space B with Chern roots ai,
Hirzebruch had also defined a generalized Todd class T ∗y (ξ) ∈ H∗(B)⊗Q[y],
whose specialization to y = 1 is the L-class, T ∗1 = L∗. Let X be a possibly
singular complex algebraic variety of pure dimension, let MHM(X) denote
the abelian category of Morihiko Saito’s algebraic mixed Hodge modules
on X and K0(MHM(X)) the associated Grothendieck group. A motivic
Hirzebruch class transformation

MHTy∗ : K0(MHM(X))→ HBM
2∗ (X)⊗Q[y±1, (1 + y)−1]

to Borel-Moore homology has been defined by Brasselet, Schürmann and
Yokura in [15], based on insights of Totaro [69]. Applying this to the mixed
Hodge object QH

X , one gets a homological characteristic class Ty∗(X) =
MHTy∗[QH

X ] such that for X smooth and y = 1, T1∗(X) = L∗(X). For this
reason, T1∗(X) has been called the Hodge L-class of X. However, exam-
ples of singular curves show that generally T1∗(X) 6= L∗(X). This suggests
applying MHTy∗ to the intersection Hodge module ICHX , which yields an
intersection generalized Todd class ITy∗(X) = MHTy∗[IC

H
X [−dimCX]]. If

X is an algebraic rational homology manifold, then QH
X [dimCX] ∼= ICHX , so

ITy∗(X) = Ty∗(X).
In the second half of the present paper, we prove that IT1∗ transforms un-

der Gysin restrictions associated to suitably normally nonsingular closed al-
gebraic regular embeddings in the same manner as the Goresky-MacPherson
L-class in the above Theorem. In the algebraic setting, one uses the alge-
braic normal bundle of a regular embedding. Since such a bundle need not
generally reflect the complex topology near the subvariety, the Gysin result
requires a tightness assumption (Definition 6.1), which holds automatically
in transverse situations. We introduce a condition called upward normal
nonsingularity (Definition 6.5), which requires for a tight regular embed-
ding that the exceptional divisor in the blow-up relevant to deformation to
the normal cone be normally nonsingular. This holds in suitably transverse
situations and is related to the clean blow-ups of Cheeger, Goresky and
MacPherson. Our Algebraic Gysin Theorem 6.30 is:

Theorem. Let X,Y be pure-dimensional compact complex algebraic vari-
eties and let g : Y ↪→ X be an upwardly normally nonsingular embedding.
Let N = NYX be the algebraic normal bundle of g and let ν denote the
topological normal bundle of the topologically normally nonsingular inclu-
sion underlying g. Then

g!IT1∗(X) = L∗(N) ∩ IT1∗(Y ) = L∗(ν) ∩ IT1∗(Y ).

Viewed in conjunction, our Gysin theorems may be interpreted as fur-
ther evidence towards a conjectural equality IT1∗ = L∗ ([15, Remark 5.4])
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for pure-dimensional compact complex algebraic varieties. Sections 2 – 4
deal with the topological L-class of piecewise-linear (PL) pseudomanifolds,
whereas the remaining Sections 5 and 6 are concerned with the Hodge-
theoretic class IT1∗. These two parts can be read independently.

The behavior of the L-class for singular spaces under Gysin transfers
associated to finite degree covers is already completely understood. In [6],
we showed that for a closed oriented Whitney stratified pseudomanifold X
admitting Lagrangian structures along strata of odd codimension (e.g. X
Witt) and p : X ′ → X an orientation preserving topological covering map
of finite degree, the L-class of X transfers to the L-class of the cover, i.e.

p!L∗(X) = L∗(X
′),

where p! : H∗(X;Q)→ H∗(X
′;Q) is the transfer induced by p. This enabled

us, for example, to establish the above conjecture for normal connected com-
plex projective 3-folds X that have at worst canonical singularities, trivial
canonical divisor, and dimH1(X;OX) > 0. (Note that such varieties are
rational homology manifolds.) In the complex algebraic setting, results con-
cerning the multiplicativity of the χy-genus (which in the smooth compact
context corresponds to the signature for y = 1) under finite covers were ob-
tained by A. Libgober and L. Maxim in [40, Lemma 2.3]. J. Schürmann dis-
cusses going up-and-down techniques for the behavior of the motivic Chern
class transformation MHCy under étale morphisms in [62, Cor. 5.11, Cor.
5.12]. Let σ(X) denote the signature of a compact Witt space X. If X is a
complex projective algebraic variety, then by Saito’s intersection cohomology
Hodge index theorem ([56], [42, Section 3.6]), IT1,0(X) = σ(X) = L0(X),
that is, the conjecture is known to hold in degree 0. Furthermore, Cappell,
Maxim, Schürmann and Shaneson [21, Cor. 1.2] have shown that the con-
jecture holds for orbit spaces X = Y/G, where Y is a projective G-manifold
and G a finite group of algebraic automorphisms. The conjecture holds for
simplicial projective toric varieties [43, Corollary 1.2(iii)] and for certain
complex hypersurfaces with isolated singularities [20, Theorem 4.3].

Following the overall strategy introduced in the present paper, formulae
describing the behavior of the Goresky-MacPherson L-class and of IT1∗ un-
der transfer homomorphisms associated to fiber bundles with nonsingular
positive dimensional fiber can also be obtained, but deserve treatment in a
separate paper.

Convention. Ordinary homology and cohomology of spaces will be taken
with coefficients in Q, unless noted otherwise.

Acknowledgements. We express our gratitude to Jörg Schürmann,
whose thoughtful comments on an earlier version of this paper lead to nu-
merous improvements, and to Laurentiu Maxim for providing helpful infor-
mation on certain aspects of mixed Hodge modules.
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2. The L-class of a pseudomanifold

If ξ is a real vector bundle over a topological space B, let

L∗(ξ) = L0(ξ) + L1(ξ) + L2(ξ) + · · · ∈ H4∗(B;Q), L0(ξ) = 1,

denote its cohomological Hirzebruch L-class with Li(ξ) ∈ H4i(B;Q). For a
closed oriented smooth manifold M of real dimension n,

L∗(M
n) = Ln(M) + Ln−4(M) + Ln−8(M) + · · ·

denotes the Poincaré dual of the Hirzebruch L-class L∗(M) = L∗(TM) of
the tangent bundle ξ = TM of M . Thus

Li(M) ∈ Hi(M ;Q), Ln−4i(M) = Li(M) ∩ [M ].

We have
Ln(M) = L0(M) ∩ [M ] = 1 ∩ [M ] = [M ],

and if M has real dimension n = 4k, then

ε∗L0(M) = ε∗(L
k(M) ∩ [M ]) = σ(M),

where σ(M) denotes the signature of M .
Let X be a compact oriented piecewise-linear (PL) pseudomanifold of di-

mension n. Such a pseudomanifold can be equipped with a choice of PL
stratification, and there is a PL-intrinsic such stratification. Siegel called
X a Witt space if the middle degree, lower middle perversity rational in-
tersection homology of even-dimensional links of strata vanishes, [67]. This
condition turns out to be independent of the choice of PL stratification, [32,
Section 2.4]. A pure-dimensional complex algebraic variety can be Whitney
stratified, and thus PL stratified, without strata of odd dimension and is
thus a Witt space. Compact Witt spaces X have homological L-classes

Li(X) ∈ Hi(X;Q) ∼= Hom(H i(X;Q),Q),

on which a cohomology class ξ ∈ H i(X;Q), stably represented as ξ = f∗(u),
f : X → Si transverse with regular value p ∈ Si, evaluates to 〈ξ, Li(X)〉 =
σ(f−1(p)), where u ∈ H i(Si) is the appropriate generator and σ denotes the
signature. Note that the transverse preimage f−1(p) is again a Witt space.
Using L2-forms on the top stratum with respect to conical Riemannian met-
rics, Cheeger gave a local formula for L∗(X) in terms of eta-invariants of
links, [25]. Again ε∗L0(X) = σ(X) and if X = M is a smooth manifold, then
Li(X) agrees with the above Poincaré duals Li(M) of Hirzebruch’s class.

3. Behavior of the L-class under normally nonsingular
inclusions

Let g : Y ↪→ X be an inclusion of compact oriented stratified pseudo-
manifolds. If the inclusion is normally nonsingular with trivial normal bun-
dle, then, by the very definition of the L-class, there is a clear relationship
between the L-classes of X and Y . In the projective algebraic situation,
the triviality assumption on the normal bundle is not very natural, and
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it becomes important to understand the relationship of these characteris-
tic classes for arbitrary normal bundles. This will be accomplished in the
present section by establishing a precise formula (one of the main results
of this paper) involving the Gysin transfer associated to the normally non-
singular embedding g. The formula is motivated by the special case of a
smooth embedding of manifolds, where it is easily established (see below).

Definition 3.1. A topological stratification of a topological space X is a
filtration

X = Xn ⊇ Xn−1 ⊇ · · · ⊇ X1 ⊇ X0 ⊇ X−1 = ∅
by closed subsets Xi such that the difference sets Xi −Xi−1 are topological
manifolds of pure dimension i, unless empty. The connected components
Xα of these difference sets are called the strata. We will often write strati-
fications as X = {Xα}.

The following definition is due to Siebenmann [66]; see also Schürmann
[61, Def. 4.2.1, p. 232].

Definition 3.2. A topological stratification {Xi} of X is called locally cone-
like if for all x ∈ Xi −Xi−1 there is an open neighborhood U of x in X, a
compact topological space L with filtration

L = Ln−i−1 ⊇ Ln−i−2 ⊇ · · · ⊇ L0 ⊇ L−1 = ∅,

and a filtration preserving homeomorphism U ∼= Ri × cone◦(L), where
cone◦(L) denotes the open cone on L.

Locally cone-like topological stratifications are frequently also called cs-
stratifications. We understand an algebraic stratification of a complex alge-
braic variety X to be a locally cone-like topological stratification {X2i} of
X such that all subspaces X2i are closed algebraic subsets of X. Complex
algebraic Whitney stratifications are algebraic stratifications in this sense.

Definition 3.3. Let X be a topological space with locally cone-like topo-
logical stratification X = {Xα} and let Y be any topological space. An
embedding g : Y ↪→ X is called normally nonsingular (with respect to X ),
if

(1) Y := {Yα := Xα ∩ Y } is a locally cone-like topological stratification
of Y ,

(2) there exists a topological vector bundle π : E → Y and
(3) there exists a (topological) embedding j : E → X such that

(a) j(E) is open in X,
(b) j|Y = g, and

(c) the homeomorphism j : E
∼=−→ j(E) is stratum preserving,

where the open set j(E) is endowed with the stratification
{Xα ∩ j(E)} and E is endowed with the stratification E =
{π−1Yα}.
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Note that the above stratification E of the total space E is automatically
topologically locally cone-like.

Definition 3.4. If X and Y are complex algebraic varieties and g : Y ↪→ X
a closed algebraic embedding whose underlying topological embedding g(C)
in the complex topology is normally nonsingular, then we will call g and
g(C) compatibly stratifiable if there exists an algebraic stratification X of X
such that g(C) is normally nonsingular with respect to X and the induced
stratification Y is an algebraic stratification of Y .

An oriented normally nonsingular inclusion g : Y ↪→ X of real codimen-
sion c has a Gysin map

g! : H∗(X;Q) −→ H∗−c(Y ;Q)

on ordinary singular homology, given as follows: Let u ∈ Hc(E,E0;Q) de-
note the Thom class in ordinary cohomology of the rank c vector bundle
π : E → Y , where E0 ⊂ E denotes the complement of the zero section in E.
Then g! is the composition

Hk(X;Q)→ Hk(X,X − Y ;Q)
e∗←∼= Hk(E,E0;Q)

u∩−→∼= Hk−c(E;Q)
π∗→∼= Hk−c(Y ;Q),

where we use the embedding j : E → X in defining the excision isomorphism
e∗. For classes x ∈ Hp(X;Q), y ∈ H∗(X;Q), the formula

g!(x ∩ y) = g∗x ∩ g!y (3.1)

holds, provided either p or the real codimension c is even ([7, Lemma 5,
p. 613], [12, Ch. V, §6.2]). In the special case of a smooth embedding
g : N ↪→ M of closed oriented even-dimensional smooth manifolds, the
Gysin transfer maps the fundamental class [M ] of M to the fundamental
class [N ] of N . Thus in this case, using naturality and the Whitney sum
formula, and with ν the normal bundle E → N of N in M ,

g!L∗(M) = g∗L∗(TM) ∩ g![M ] = L∗(g∗TM) ∩ [N ] = L∗(ν) ∩ L∗(N).

(All involved classes lie in even degrees and hence no signs enter.) In this
section, we shall show that this relation continues to hold for normally non-
singular inclusions of singular spaces. Note that when the normal bundle is
trivial, the formula becomes g!L∗(M) = L∗(N), as it should be. In fact, for
trivial normal bundle, the relation g!L∗(X) = L∗(Y ) was already pointed
out by Cappell and Shaneson [18] in the singular context, even for general
Verdier self-dual complexes of sheaves.

Complex algebraic pure-dimensional varieties are Witt spaces in the sense
of Siegel [67]. Bordism of Witt spaces, denoted by ΩWitt

∗ (−), is a generalized
homology theory represented by a spectrum MWITT. For a (real) codimen-
sion c normally nonsingular inclusion g : Y n−c ↪→ Xn of (compact, oriented)
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Witt spaces, we will define a Gysin map

g! : ΩWitt
k (X) −→ ΩWitt

k−c (Y ),

and we shall prove that it sends the Witt-orientation ofX, represented by the
identity map, to the Witt orientation of Y . This will then be applied in prov-
ing the analogous statement for the L•(Q)-homology orientations, using the
machinery of Banagl-Laures-McClure [8]. We write L• = L•(Z) = L•〈0〉(Z)
for Ranicki’s connected symmetric algebraic L-spectrum with homotopy
groups πn(L•) = Ln(Z), the symmetric L-groups of the ring of integers.
Localization Z→ Q induces a map L•(Z)→ L•(Q) and πn(L•(Q)) = Ln(Q)
with

Ln(Q) ∼=

{
Z⊕ (Z/2)∞ ⊕ (Z/4)∞, n ≡ 0(4)

0, n 6≡ 0(4).

As far as cobordism is concerned, the idea is to employ the framework of
Buoncristiano, Rourke and Sanderson [16], which provides a geometric de-
scription of cobordism in terms of mock bundles, as well as geometric de-
scriptions of Thom classes in cobordism, and cap products between cobor-
dism and bordism.

3.1. Thom classes in cobordism. Our approach requires uniform no-
tions of Thom spaces and Thom classes in cobordism for various types of
bundle theories and cobordism theories. This will now be set up.

The term fibration will always mean Hurewicz fibration. A sectioned
fibration is a pair (ξ, s), where ξ is a fibration p : E → B, s : B → E
is a section of p, and the inclusion of the image of s in E is a fiberwise
cofibration over B. Let (Sn, ∗) be a pointed n-sphere. An (Sn, ∗)-fibration
is a sectioned Sn-fibration (ξ, s) such that (p−1(b), s(b)) is pointed homotopy
equivalent to (Sn, ∗) for every b ∈ B. Such (Sn, ∗)-fibrations are classified
by maps into a classifying space BFn. In particular, over BFn, there is a
universal (Sn, ∗)-fibration γFn .

Definition 3.5. The Thom space of an (Sn, ∗)-fibration α = (ξ, s) is defined
to be

Th(α) := E/s(B).

(See Rudyak [55].) Let (ξ, s), (ξ′, s′) be (Sn, ∗)-fibrations with ξ, ξ′ given
by p : E → B, p′ : E′ → B′, respectively. A morphism of (Sn, ∗)-fibrations
φ : (ξ, s) → (ξ′, s′) is a pair φ = (g, f), where f : B → B′ and g : E → E′

are maps such that p′ ◦ g = f ◦ p,

g| : (p−1(b), s(b)) −→ (p′−1(f(b)), s′(f(b)))

is a pointed homotopy equivalence for all b ∈ B, and φ respects the sec-
tions, i.e. g ◦ s = s′ ◦ f . The composition of two morphisms of (Sn, ∗)-
fibrations is again an (Sn, ∗)-fibration and the identity is a morphism of
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(Sn, ∗)-fibrations. Thus (Sn, ∗)-fibrations form a category. A morphism
φ : α = (ξ, s)→ (ξ′, s′) = α′ of (Sn, ∗)-fibrations induces a map

Th(φ) : Th(α) = E/s(B) −→ E′/s′(B′) = Th(α′).

In this way, Th(·) becomes a functor on the category of (Sn, ∗)-fibrations.
Let θ = θF1 denote the trivial (product) (S1, ∗)-fibration over a point. Then,
using fiberwise homotopy smash product ∧h, γFn ∧hθ is an (Sn+1, ∗)-fibration
over BFn, and hence has a classifying morphism φn : γFn ∧h θ → γFn+1 of

(Sn+1, ∗)-fibrations. This yields in particular maps fn : BFn → BFn+1

and we denote the stable classifying space by BF. In addition to BFn, the
following classifying spaces will be relevant:

• BSOn, classifying oriented real vector bundles,
• BSPLn, classifying oriented PL (Rn, 0)-bundles

(and oriented PL microbundles),
• BSTOPn, classifying oriented topological (Rn, 0)-bundles

(and oriented topological microbundles),

• B S̃PLn, classifying oriented PL closed disc block bundles,
• BGn, classifying spherical fibrations with fiber Sn−1.

The unoriented versions of these spaces will be denoted by omitting the ‘S’.
For the theory of block bundles, due to Rourke and Sanderson, we ask the
reader to consult [51], [52], [53], and [54]; the definition of a block bundle
will be briefly reviewed further below. There is a homotopy commutative
diagram

BSOn
LR // BSPLn

forget//

��

BSTOPn

��
B S̃PLn // BGn

// BFn,

whose philosophy here is that we can flush Thom space issues down to the
level of BFn. Thus, a vector bundle has an underlying microbundle, [46,
p. 55, Example (2)]. The leftmost horizontal arrow is due to Lashof and
Rothenberg [38], who showed that On-vector bundles can be triangulated.
The left vertical arrow is due to Rourke and Sanderson: A PL microbundle
gives rise to a unique equivalence class of PL block bundles, [51]. A PL block
bundle determines a unique spherical fibration with fiber Sn−1, [52, Cor. 5.9,
p. 23]. (Also cf. Casson [24].) Of course, given an (oriented) topological
(Rn, 0)-bundle, one can delete the zero-section to obtain an Sn−1-fibration,
which describes the composition BSTOPn → BGn. Consider S0 = {−1,+1}
as the trivial S0-bundle θ0 over a point. Given an Sn−1-fibration ξ, there is a
canonical (Sn, ∗)-fibration ξ• associated to it, namely ξ• := ξ ∗ θ0 (fiberwise
unreduced suspension). Note that the fiberwise unreduced suspension ξ•

can be given a canonical section, by consistently taking north poles (say).
This describes the map BGn → BFn .
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To fix notation, let ξ be a rank n oriented vector bundle over the poly-
hedron X = |K| of a finite simplicial complex K. Then ξ has a classifying
map ξ : X −→ BSOn . (We denote classifying maps and the bundle they
classify by the same letter.) Composing with the Lashof-Rothenberg map
LR, we get a classifying map

ξPL : X −→ BSPLn,

which determines an underlying oriented PL (Rn, 0)-bundle (or PL mi-

crobundle) over X. We compose further with the map BSPLn −→ B S̃PLn
and get a classifying map

ξPLB : X −→ B S̃PLn,

which determines an underlying oriented PL block bundle ξPLB over X.
On the other hand, we may compose ξPL with the forget map to obtain a
classifying map

ξTOP : X −→ BSTOPn,

which determines an underlying oriented topological (Rn, 0)-bundle (or topo-
logical microbundle) ξTOP over X. Composing with the map BSTOPn →
BGn, we receive a classifying map

ξG : X −→ BGn,

which determines an underlying Sn−1-fibration ξG over X, which in turn
has an underlying (Sn, ∗)-fibration ξ• = ξ•G.

Definition 3.6. Let ξ be a real vector bundle, or PL/topological (Rn, 0)-
bundle, or PL closed disc block bundle, or Sn−1-fibration. Then the Thom
space Th(ξ) of ξ is defined to be the Thom space of its underlying (Sn, ∗)-
fibration,

Th(ξ) := Th(ξ•).

In particular for an oriented vector bundle ξ,

Th(ξ) = Th(ξPL) = Th(ξPLB) = Th(ξTOP) = Th(ξ•).

Uniform constructions of Thom spectra can be given via the notion of
Thom spectrum of a map f . Let X be a CW complex and f : X → BF a
continuous map. The Thom spaces Th(f∗nγ

F
n ) of the pullbacks under fn :

Xn → BFn of the universal (Sn, ∗)-fibrations form a spectrum Th(f), whose
structure maps are induced on Thom spaces by the morphisms f∗nγ

F
n ⊕ θ →

f∗n+1γ
F
n+1. Here, fn is the restriction of f to an increasing and exhaustive

CW-filtration {Xn} of X such that f(Xn) ⊂ BFn. The spectrum Th(f)
is called the Thom spectrum of the map f . This construction applies to
the map f : BSTOP → BF, filtered by fn : BSTOPn → BFn, and yields
the Thom spectrum MSTOP = Th(BSTOP → BF). Note that f∗nγ

F
n has

classifying map fn : BSTOPn → BFn, but so does the underlying (Sn, ∗)-
fibration (γSTOP

n )• of the universal oriented topological (Rn, 0)-bundle γSTOP
n

over BSTOPn. Hence f∗nγ
F
n and (γSTOP

n )• are equivalent (Sn, ∗)-fibrations
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and so have homotopy equivalent Thom spaces. Similarly, we obtain Thom
spectra MSPL = Th(BSPL → BF) and MSO = Th(BSO → BF). These
spectra MSO,MSPL,MSTOP are commutative ring spectra, Rudyak [55,
Cor. IV.5.22, p. 261].

Let ΩSTOP
n (−), ΩSPL

n (−), and ΩSO
n (−) denote bordism of oriented topolog-

ical, or PL, or smooth manifolds. The Pontrjagin-Thom theorem provides
natural isomorphisms

ΩSTOP
n (X) ∼= MSTOPn(X), ΩSPL

n (X) ∼= MSPLn(X), ΩSO
n (X) ∼= MSOn(X).

(In the TOP case, this requires Kirby-Siebenmann topological transversality
in high dimensions, and the work of Freedman and Quinn in dimension 4.)

We shall next construct maps between Thom spectra, using the following
general principle: Let X ′, X be CW complexes with CW filtrations {X ′n},
{Xn}, respectively. Let g : X ′ → X be a map with g(X ′n) ⊂ Xn. Let
f : X → BF be a map as above so that Th(f) is defined. Then composition
gives a map f ′ = fg : X ′ → BF such that the Thom spectrum Th(f ′) is
defined as well. The map g induces a map of spectra

Th(f ′) −→ Th(f).

Applying this principle to g : BSPL = X ′ → X = BSTOP, with f : X =
BSTOP→ BF as in the above definition of MSTOP, yields a map of spectra

φF : MSPL = Th(f ′) −→ Th(f) = MSTOP .

Similarly, we get φLR : MSO→ MSPL using the Lashof-Rothenberg map.
We turn to uniform constructions of Thom classes in cobordism theory.

First, say, for topological bundles: Let ξ be an oriented topological (Rn, 0)-
bundle. Then ξ is classified by a map t : X → BSTOPn and has an under-
lying (Sn, ∗)-fibration ξ• with classifying map the composition

X
t−→ BSTOPn

fn−→ BFn .

Let ζTn be the (Sn, ∗)-fibration such that MSTOPn = Th(ζTn ), i.e. ζTn =
f∗nγ

F
n . (This is nothing but (γSTOP

n )•.) Then

t∗ζTn = t∗f∗nγ
F
n = ξ•,

with corresponding morphism ψ : ξ• → ζTn of (Sn, ∗)-fibrations. This mor-
phism induces on Thom spaces a map

Th(ψ) : Th(ξ•) −→ Th(ζTn ) = MSTOPn .

By Definition 3.6, Th(ξ•) = Th(ξ). So we may write Th(ψ) as

Th(ψ) : Th(ξ) −→ Th(ζTn ) = MSTOPn .

Suspension and composition with the structure maps of MSTOP gives a
map of spectra

Σ∞Th(ξ) −→ Σn MSTOP .



GYSIN RESTRICTION OF CHARACTERISTIC CLASSES 1285

Here Σ∞Y denotes the suspension spectrum of a space Y , and ΣnE of a
spectrum E is the spectrum with (ΣnE)k = En+k. The map of spectra
determines a homotopy class

uSTOP(ξ) ∈ [Σ∞Th(ξ),Σn MSTOP] = M̃STOP
n
(Th(ξ)).

This class uSTOP(ξ) is called the Thom class of ξ in oriented topological
cobordism and is indeed an MSTOP-orientation of ξ• in the sense of Dold.

We proceed in a similar way to construct the Thom class of a PL bundle:
Let ξ be an oriented PL (Rn, 0)-bundle over a compact polyhedron X. Then
ξ is classified by a map h : X → BSPLn. Forgetting the PL structure,
we have an underlying topological (Rn, 0)-bundle ξTOP, classified by the
composition

X
h−→ BSPLn

gn−→ BSTOPn .

This topological bundle in turn has an underlying (Sn, ∗)-fibration (ξTOP)•

with classifying map the composition

X
h−→ BSPLn

gn−→ BSTOPn
fn−→ BFn .

Of course ξ itself has an underlying (Sn, ∗)-fibration ξ• and ξ• = (ξTOP)•.
Let ζPn be the (Sn, ∗)-fibration such that MSPLn = Th(ζPn ), i.e. ζPn =
(fngn)∗γFn . (This is nothing but (γSPL

n )•.) Then

h∗ζPn = h∗g∗nf
∗
nγ

F
n = ξ•,

with corresponding morphism φ : ξ• → ζPn of (Sn, ∗)-fibrations. This mor-
phism induces on Thom spaces a map

Th(φ) : Th(ξ•) −→ Th(ζPn ) = MSPLn .

By Definition 3.6, Th(ξ•) = Th(ξ). So we may write Th(φ) as

Th(φ) : Th(ξ) −→ Th(ζPn ) = MSPLn .

We arrive thus at a map of spectra

Σ∞Th(ξ) −→ Σn MSPL,

which determines a homotopy class

uSPL(ξ) ∈ [Σ∞Th(ξ),Σn MSPL] = M̃SPL
n
(Th(ξ)).

This class uSPL(ξ) is called the Thom class of ξ in oriented PL cobordism.
As in the topological case, one verifies that this is an MSPL-orientation
of ξ•. Earlier, we had constructed a map of Thom spectra φF : MSPL −→
MSTOP . Recall that the underlying topological bundle ξTOP of a PL bundle
ξPL and ξPL itself have the same Thom space,

Th(ξPL) = Th(ξ•) = Th(ξTOP).
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Lemma 3.7. Let ξPL be an oriented PL (Rn, 0)-bundle. On cobordism
groups, the induced map

φF : M̃SPL
n
(Th(ξPL)) −→ M̃STOP

n
(Th(ξTOP))

maps the Thom class of ξPL to the Thom class of the underlying topological
(Rn, 0)-bundle ξTOP,

φF (uSPL(ξPL) = uSTOP(ξTOP).

The proof is a standard verification.
The cobordism Thom class of an oriented real vector bundle ξ can be

similarly fit into this picture. If n is the rank of ξ, then ξ has a Thom class

uSO(ξ) ∈ [Σ∞Th(ξ),Σn MSO] = M̃SO
n
(Th(ξ))

in smooth oriented cobordism. Recall that we had earlier described a map
φLR : MSO −→ MSPL based on the Lashof-Rothenberg map. The following
compatibility result is again standard (and readily verified).

Lemma 3.8. Let ξ be a rank n oriented vector bundle over a compact poly-
hedron X. On cobordism groups, the induced map

φLR : M̃SO
n
(Th(ξ)) −→ M̃SPL

n
(Th(ξPL))

maps the Thom class of ξ to the Thom class of the underlying oriented PL
(Rn, 0)-bundle ξPL,

φLR(uSO(ξ)) = uSPL(ξPL).

3.2. Ranicki’s Thom class in L•-cohomology. We review Ranicki’s
definition of a Thom class for topological (Rn, 0)-bundles (or microbundles)
in symmetric L-cohomology. He constructs a map

σ∗ : MSTOP −→ L•,

see [50, p. 290]. Let X be the polyhedron of a finite simplicial complex
and ξ : X → BSTOPn a topological (Rn, 0) bundle (or microbundle) over
X. Then, following [50, pp. 290, 291], ξ has a canonical L•-cohomology
orientation

uL(ξ) ∈ L̃•
n
(Th(ξ)),

which we shall also refer to as the L•-cohomology Thom class of ξ, defined
by

uL(ξ) := σ∗(uSTOP(ξ)).

The morphism of spectra L•(Z)→ L•(Q) coming from localization induces
a homomorphism

L̃•
n
(Th(ξ)) −→ L̃•(Q)n(Th(ξ)).

We denote the image of uL(ξ) under this map again by the same symbol

uL(ξ) ∈ L̃•(Q)n(Th(ξ)).
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3.3. Geometric description of the MSO-Thom class. Buoncristiano,
Rourke and Sanderson [16] give a geometric description of MSPL-cobordism
and use it to obtain in particular a geometric description of the Thom class
uSPL(ξ), which we reviewed homotopy theoretically in Section 3.1. The
geometric cocycles are given by (oriented) mock bundles, whose definition
we recall here. The polyhedron of a ball complex K is denoted by |K|.
Definition 3.9. Let K be a finite ball complex and q an integer (possibly
negative). A q-mock bundle ξq/K with base K and total space E(ξ) consists
of a PL map p : E(ξ)→ |K| such that, for each σ ∈ K, p−1(σ) is a compact
PL manifold of dimension q+dim(σ), with boundary p−1(∂σ). The preimage
ξ(σ) := p−1(σ) is called the block over σ.

The empty set is regarded as a manifold of any dimension; thus ξ(σ) may
be empty for some cells σ ∈ K. Note that if σ0 is a 0-dimensional cell of K,
then ∂σ0 = ∅ and thus p−1(∂σ) = ∅. Hence the blocks over 0-dimensional
cells are closed manifolds. For our purposes, we need oriented mock bundles,
which are defined using incidence numbers of cells and blocks: Suppose that
(Mn, ∂M) is an oriented PL manifold and (Nn−1, ∂N) is an oriented PL
manifold with N ⊂ ∂M . Then an incidence number ε(N,M) = ±1 is
defined by comparing the orientation of N with that induced on N from
M (the induced orientation of ∂M is defined by taking the inward normal
last); ε(N,M) = +1 if these orientation agree and −1 if they disagree. An
oriented cell complex K is a cell complex in which each cell is oriented. We
then have the incidence number ε(τ, σ) defined for faces τn−1 < σn ∈ K.

Definition 3.10. An oriented mock bundle is a mock bundle ξ/K over an
oriented (finite) ball complex K in which every block is oriented (i.e. is an
oriented PL manifold) such that for each τn−1 < σn ∈ K, ε(ξ(τ), ξ(σ)) =
ε(τ, σ).

The following auxiliary result is an analog of [16, Lemma 1.2, p. 21]:

Lemma 3.11. Let (K,K0) be a (finite) ball complex pair such that |K|
is an n-dimensional (compact) Witt space with (possibly empty) boundary
∂|K| = |K0|. Orient K in such a way that the sum of oriented n-balls
is a cycle rel boundary. (This is possible since |K|, being a Witt space,
is an oriented pseudomanifold-with-boundary.) Let ξ/K be an oriented q-
mock bundle over K. Then the total space E(ξ) is an (n + q)-dimensional
(compact) Witt space with boundary p−1(∂|K|).
Proof. One merely has to modify the proof of [16, Lemma 1.2] for the
Witt context, see also the proof of the IP-ad theorem [8, Theorem 4.4].
First, choose a structuring of K as a structured cone complex in the sense
of McCrory [45] by choosing points σ̂ in the interior of σ for every cell

σ ∈ K. The associated first derived subdivision K̂ is a simplicial complex
and induces a concept of dual cells D(σ) for cells σ ∈ K. Let X = |K| be
the underlying polyhedron of K. Polyhedra have intrinsic PL stratifications,
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[1]. In particular, points in X have intrinsic links L with respect to this

stratification. The simplicial link of σ̂ in K̂ is a suspension of the intrinsic
link L at σ̂. Then the polyhedron of the dual complex of σ can be written
in terms of the intrinsic link L as

|D(σ)| ∼= Dj−k × cone(L),

where Dj−k denotes a closed disc of dimension j − k.
Now let (X, ∂X) = (|K|, |K0|) be an n-dimensional PL pseudomanifold-

with-boundary, where (K,K0) is a ball complex pair with K structured as
described above so that dual blocks of balls are defined. Assume that X is
Witt and ξ is an oriented q-mock bundle over K. By the arguments in the
proof of [8, Lemma 4.6], the total space E(ξ) is a PL pseudomanifold with
collared boundary p−1(|K0|). (Those arguments do indeed cover the present
case, since they only require that the base (|K|, |K0|), as well as the blocks
over cells of that base, be PL pseudomanifolds with collared boundary —
IP or Witt conditions are irrelevant for this argument.)

An orientation of E(ξ) is induced by the given orientation data as follows:
Triangulate E(ξ) so that each block ξ(σ) is a subcomplex. Let s be a top
dimensional simplex of E(ξ) in this triangulation. Then there is a unique
block ξ(σs) that contains s. This block is an oriented PL manifold with
boundary (since ξ is oriented as a mock bundle), and this orientation induces
an orientation of s. Note that σs ∈ K is n-dimensional. The sum of all n-
dimensional oriented cells in K is a cycle rel |K0|, since |K| is a Witt space,
and thus in particular oriented. Then the preservation of incidence numbers
between base cells and blocks implies that the sum of all s is a cycle rel
p−1(|K0|). Hence E(ξ) is oriented as a pseudomanifold-with-boundary.

It remains to be shown that E(ξ) − ∂E(ξ) satisfies the Witt condition.
Let x ∈ E(ξ)− ∂E(ξ) be a point in the interior of the total space. There is
a unique σ ∈ K for which x is in the interior of the block ξ(σ). Note that
then p(x) lies in the interior of σ. Let d = dimσ.

By the arguments used to prove [16, Lemma II.1.2] and [39, Prop. 6.6],
there exists (inductively, using collars) a compact neighborhood N of x in
E(ξ), a compact neighborhood V ∼= Dq+d of x in the (q + d)-dimensional
manifold ξ(σ), and a PL homeomorphism

N ∼= V × |D(σ)|.

Since

N ∼= V × |D(σ)| ∼= Dq+d ×Dj−k × cone(L) ∼= Dq+d+j−k × cone(L),

by a PL homeomorphism which sends x to (0, c), where c ∈ cone(L) denotes
the cone vertex, we conclude that the intrinsic link at x in E(ξ) is the
intrinsic link L of σ at p(x) in |K|. If this link has even dimension 2k, then
IHm̄

k (L;Q) = 0 since |K| is a Witt space. But then this condition is also
satisfied for the intrinsic link at x in E(ξ). Hence E(ξ)−∂E(ξ) is Witt. �
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If |K| is a compact Witt space with boundary ∂|K| = |K0| for a subcom-
plex K0 ⊂ K, and ξ is an oriented mock bundle over K which is empty over
K0, then by Lemma 3.11,

∂E(ξ) = p−1(∂|K|) = p−1(|K0|) = ∅,

i.e. E(ξ) is a closed Witt space.
Let L ⊂ K be a subcomplex. Oriented mock bundles ξ0 and ξ1 over K,

both empty over L, are cobordant, if there is an oriented mock bundle η over
K × I, empty over L × I, such that η|K×0

∼= ξ0, η|K×1
∼= ξ1. This is an

equivalence relation and we set

Ωq
SPL(K,L) := {[ξq/K] : ξ|L = ∅},

where [ξq/K] denotes the cobordism class of the oriented q-mock bundle
ξq/K over K. Then the duality theorem [16, Thm. II.3.3] asserts that
Ω−∗SPL(−) is Spanier-Whitehead dual to oriented PL bordism ΩSPL

∗ (−) ∼=
MSPL∗(−); see also [16, Remark 3, top of p. 32]. But so is MSPL∗(−).
Hence Spanier-Whitehead duality provides an isomorphism

β : Ω−qSPL(K,L) ∼= MSPLq(K,L) (3.2)

for compact |K|, |L|, which is natural with respect to inclusions (K ′, L′) ⊂
(K,L). This is the geometric description of oriented PL cobordism that we
will use. We shall now give an explicit description of the isomorphism β in
(3.2). We write X = |K| and Y = |L| for the associated polyhedra, and
assume them to be compact. Embed X into some sphere SN so that we have
inclusions Y ⊂ X ⊂ SN . We write Xc, Y c for the complements of X,Y in the
sphere. We can regard Xc and Y c also as compact polyhedra by removing
the interior of derived neighborhoods of X and Y . Then, according to [16,
Duality Theorem II.3.3], there is a natural isomorphism

φ : Ω−qSPL(X,Y )
∼=−→ ΩSPL

N−q(Y
c, Xc).

The Thom-Pontrjagin construction gives a natural isomorphism

τ : ΩSPL
N−q(Y

c, Xc)
∼=−→ MSPLN−q(Y

c, Xc),

and Alexander duality provides an isomorphism

α : MSPLN−q(Y
c, Xc)

∼=−→ MSPLq(X,Y ),

which is natural with respect to inclusions. On the technical level, we work
with α := (−1)Nγt, where γt is Switzer’s Alexander duality map [68, Thm.
14.11, p. 313]. This choice of sign guarantees that for the n-ball,

α : MSPL0(
◦
Dn) = MSPL0(Y c, Xc)→ MSPLn(Dn, ∂Dn) = MSPLn(X,Y )

sends the unit 1 ∈ MSPL0(pt) = π0(MSPL) = MSPL0(pt) to the element

σn ∈ M̃SPL
n
(Sn) = MSPLn(Dn, ∂Dn),
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obtained by suspending the unit n times. Then β in (3.2) is the composition

Ω−qSPL(X,Y )
φ−→ ΩSPL

N−q(Y
c, Xc)

τ−→ MSPLN−q(Y
c, Xc)

α−→ MSPLq(X,Y ).

Let us describe φ in more detail, following [16]: Let N(X), N(Y ) be derived
neighborhoods of X,Y in SN . Note that N(X) and N(Y ) are manifolds with
boundaries ∂N(X), ∂N(Y ). With j : (X,Y ) ↪→ (NX,NY ) the inclusion,
pullback (restriction) of mock bundles defines a map

j∗ : Ω−qSPL(NX,NY ) −→ Ω−qSPL(X,Y ),

which is an isomorphism. Amalgamation defines a map

amal : Ω−qSPL(NX,NY ) −→ ΩSPL
n+q(NX −NY, ∂NX − ∂NY ),

which works as follows: Given a mock bundle over NX, the amalgamation,
i.e. the union of all its blocks, i.e. the total space, is a manifold, since
the blocks are manifolds and the base NX is a manifold as well (this is
[16, Lemma 1.2, p. 21]). The projection gives a map of the amalgamation
to NX. Furthermore, the boundary of the amalgamation is the material
lying over ∂NX. Moreover, if the mock bundle is empty over NY , then the
boundary of the amalgamation will not map to ∂NY . Thus we have a map
as claimed. Finally the inclusion

j : (NX −NY, ∂NX − ∂NY ) ↪→ (Y c, Xc)

induces a map

j∗ : ΩSPL
N−q(NX −NY, ∂NX − ∂NY ) −→ ΩSPL

N−q(Y
c, Xc).

Then φ is the composition

Ω−qSPL(X,Y )

φ

((

Ω−qSPL(NX,NY )
j∗

∼=
oo

amal
��

ΩSPL
N−q(NX −NY, ∂NX − ∂NY )

j∗
��

ΩSPL
N−q(Y

c, Xc).

The following example illustrates the behavior of φ and will be used later.

Example 3.12. We consider the n-ball X = Dn and its boundary sphere
Y = ∂Dn. Take N = n and embed Dn into SN = Sn as the upper hemi-
sphere so that ∂Dn is embedded as the equatorial sphere. Then NY is a
closed band containing the equator and NX is the union of this band with
the upper hemisphere. The complement Xc is the open lower hemisphere
and the complement Y c is the disjoint union of open upper and lower hemi-
sphere. Note that Dn may be regarded as the total space of a trivial block
bundle ([52]) over a point. A block bundle always has a zero section, which
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for the trivial block bundle over a point is the inclusion i : {0} ↪→ Dn, where
Dn is triangulated so that its center 0 is a vertex. (Then i is a simplicial
inclusion.) The BRS-Thom class uBRS(ξ) of a block bundle ξ is explained
further below, in (3.3). For ξ = εn, the trivial n-block bundle over a point,
it is given by

uBRS(εn) = [{0} i
↪→ Dn] ∈ Ω−nSPL(Dn, ∂Dn).

Here, we interpret the inclusion {0} ↪→ Dn as the projection of a (−n)-mock
bundle over Dn with block {0} over the cell Dn and empty blocks over all
boundary cells of the polyhedron Dn. We shall compute the image under
φ of this element uBRS(εn). The center 0 includes into NX, so we have
{0} ↪→ NX. Again, we interpret this inclusion as a mock bundle over NX,
so it defines an element [{0} ↪→ NX] ∈ Ω−nSPL(NX,NY ), as the blocks over
the equatorial band NY are all empty. Induced mock bundles are given
by pulling back under simplicial maps. If j is the (simplicial) inclusion
j : X ↪→ NX, then the pullback of the mock bundle {0} ↪→ NX is given by
j∗[{0} ↪→ NX] = [{0} ↪→ Dn]. To compute the amalgamation of the mock
bundle {0} ↪→ NX over NX, we observe that its total space consists of only
one block (namely {0}), so there is nothing to amalgamate. Thus

amal[{0} ↪→ NX] = [{0} ↪→ NX −NY ] ∈ ΩSPL
0 (NX −NY, ∂NX − ∂NY ).

(Note that {0} 6∈ NY .) Now the boundary ∂NY of the band NY consists
of two disjoint circles, one in the upper hemisphere, the other in the lower
hemisphere. The circle in the lower hemisphere is ∂NX. Therefore, ∂NX−
∂NY = ∅. In particular,

ΩSPL
0 (NX −NY, ∂NX − ∂NY ) = ΩSPL

0 (NX −NY ).

Since Y c is the disjoint union of two open discs, and Xc is the lower one of
these discs, we have by excision

ΩSPL
0 (Y c, Xc) = ΩSPL

0 (D◦n) = ΩSPL
0 ({0}),

where D◦n is the upper open disc, i.e. the one containing the point 0. Under
this identification,

j∗[{0} ↪→ NX −NY ] = [{0} id−→ {0}] ∈ ΩSPL
0 (pt).

We have shown that

φ(uBRS(εn)) = [{0} ↪→ Y c] ∈ ΩSPL
0 (Y c, Xc).

Let I denote the unit interval. Recall that a PL (closed disc) q-block
bundle ξq/K consists of a PL total space E(ξ) and a ball complex K covering
a polyhedron |K| such that |K| ⊂ E(ξ), for each n-ball σ in K, there is a
(closed) PL (n + q)-ball β(σ) ⊂ E(ξ) (called the block over σ) and a PL
homeomorphism of pairs

(β(σ), σ) ∼= (In+q, In),
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E(σ) is the union of all blocks β(σ), σ ∈ K, the interiors of the blocks
are disjoint, and if L is the complex covering the polyhedron σ1 ∩ σ2, then
β(σ1) ∩ β(σ2) is the union of the blocks over cells in L. So a block bundle
need not have a projection from the total space to the base, but it always has
a canonical zero section i : K ↪→ E(ξ). The trivial q-block bundle has total
space E(ξ) = |K| × Iq and blocks β(σ) = σ × Iq for each σ ∈ K. The cube
Iq has boundary Σq−1 = ∂Iq and a block preserving PL homeomorphism

∆n × Iq
∼=→ ∆n × Iq restricts to a block preserving PL homeomorphism

∆n×Σq−1
∼=→ ∆n×Σq−1, where ∆n is the standard n-simplex. Hence there

is a homomorphism P̃Ln(I) → P̃Ln(Σ) of semi-simplicial groups given by

restriction, [53, p. 436]. On classifying spaces, this map induces B P̃Ln →
B P̃Ln(Σ). Thus a closed disc block bundle ξ has a well-defined sphere block

bundle ξ̇, see [52, §5, p. 19f], whose total space Ė is a PL subspace Ė ⊂ E(ξ)
of the total space of ξ.

Now let ξ : |K| → B S̃PLn be an oriented PL closed disc block bundle of
rank n over a finite complex K. Then ξ has a Thom class as follows (cf.
[16, p. 26]): Let i : K → E = E(ξ) be the zero section. Endow E with
the ball complex structure given by taking the blocks β(σ) of the bundle ξ
as balls, together with the balls of a suitable ball complex structure on the
total space Ė of the sphere block bundle ξ̇. Then i : K → E is the projection
of an oriented (−n)-mock bundle, and thus determines an element

uBRS(ξ) := [i] ∈ Ω−nSPL(E, Ė), (3.3)

which we shall call the BRS-Thom class of ξ. Note that if σ is a cell in
Ė, then i−1(σ) = σ ∩ |K| = ∅, so [i] defines indeed a class rel Ė. The
BRS-Thom class is natural, [16, p. 27].

Let ξ : |K| → BSPLn be an oriented PL (Rn, 0)-bundle. This bundle has
a Thom class

uSPL(ξ) ∈ M̃SPL
n
(Th(ξ)),

as discussed in Section 3.1. Composing with the map BSPLn → B S̃PLn,

we get a map ξPLB : |K| −→ B S̃PLn, which is the classifying map of the
underlying oriented PL block bundle ξPLB of ξ.

Lemma 3.13. For the trivial oriented PL (Rn, 0)-bundle εn over a point,
the isomorphism ( 3.2),

β : Ω−nSPL(Dn, ∂Dn) ∼= MSPLn(Dn, ∂Dn),

maps the BRS-Thom class uBRS(εnPLB) to the Thom class uSPL(εn).

Proof. The isomorphism β is the composition

Ω−nSPL(Dn, ∂Dn)
φ→ ΩSPL

0 (Y c, Xc)
τ→ MSPL0(Y c, Xc)

α→ MSPLn(Dn, ∂Dn).
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Note that the underlying PL block bundle εnPLB of εn is the trivial block
bundle over a point. Thus, by Example 3.12,

φ(uBRS(εnPLB)) = [{0} ↪→ Y c] ∈ ΩSPL
0 (Y c, Xc)

and under the identification ΩSPL
0 (Y c, Xc) = ΩSPL

0 (D◦n) = ΩSPL
0 ({0}), we

have

φ(uBRS(εnPLB)) = [{0} id−→ {0}] ∈ ΩSPL
0 ({0}) = ΩSPL

0 (pt).

The Thom-Pontrjagin construction τ sends the class [id{0}] to the unit
1 ∈ MSPL0(pt). Finally, the Alexander duality map α sends the unit
1 ∈ MSPL0(pt) to σn ∈ MSPLn(Dn, ∂Dn). So

β(uBRS(εnPLB)) = ατφ(uBRS(εnPLB)) = ατ [id{0}] = α(1) = σn.

Directly from the construction of uSPL one sees that uSPL(εn) = σn as
well. �

Lemma 3.14. Let ξ : |K| → BSPLn be an oriented PL (Rn, 0)-bundle,
|K| compact. Under the isomorphism β in ( 3.2), the BRS-Thom class
uBRS(ξPLB) of the underlying oriented PL block bundle gets mapped to the
Thom class uSPL(ξ) .

Proof. We write X = |K| for the compact polyhedron of K. Let x ∈ X be
a point. The bundle ξ has a projection p : E → X and we can speak of the
fiber Ex = p−1(x) ∼= Rn over x. Let E0 ⊂ E be the complement of the zero
section and let E0x = Ex ∩E0

∼= Rn−{0}. Let E′ denote the total space of

the block bundle ξPLB, and Ė′ the total space of the sphere block bundle of
ξPLB. We may identify MSPLnSPL(E′, Ė′) ∼= MSPLnSPL(E,E0), since E′/Ė′

and Th(ξPLB) = Th(ξ•) = Th(ξ) are naturally homotopy equivalent. Let
ξPLB|{x} denote the restriction of ξPLB to {x}, where we subdivide K so that
x becomes a vertex, if necessary. Let E′x denote the total space of ξPLB|{x},
and Ė′x the total space of the sphere block bundle of ξPLB|{x}. The inclusions

(E′x, Ė
′
x) ↪→ (E′, Ė′), (Ex, E0x) ↪→ (E,E0)

will be denoted by jx. By naturality of the isomorphism β with respect to
inclusions of pairs, the diagram

Ω−nSPL(E′, Ė′)
∼=
β
//

j∗x
��

MSPLn(E′, Ė′)

j∗x
��

∼
MSPLn(E,E0)

j∗x
��

Ω−nSPL(E′x, Ė
′
x)

∼=
β
// MSPLn(E′x, Ė

′
x)

∼
MSPLn(Ex, Ex0)

commutes. As X is compact, it has finitely many path components X1, . . . ,
Xm. For every i = 1, . . . ,m, choose a point xi ∈ Xi. We shall com-
pute the fiber restrictions of our two classes to these points. Let x ∈
{x1, . . . , xm}. Directly from the construction of uSPL, we have j∗xuSPL(ξ) =

σn ∈ M̃SPL
n
(Sn) ∼= M̃SPL

0
(S0). In particular, uSPL(ξ) is an orientation
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for ξ (and ξ•) in Dold’s sense. For β(uBRS(ξPLB)) we have, using the above
commutative diagram, the naturality of both the BRS-Thom class and uSPL,
and Lemma 3.13,

j∗x(β(uBRS(ξPLB))) = β(j∗xuBRS(ξPLB)) = β(uBRS(ξPLB|{x})
= uSPL(ξ|{x}) = j∗xuSPL(ξ).

This shows that β(uBRS(ξPLB)) is also an orientation for ξ. Since MSPL is
a connected spectrum, an orientation u in MSPLn(E,E0) for ξ is uniquely
determined by j∗x(u), x ∈ {x1, . . . , xm} ([68, 14.8, p. 311]). The above
calculation shows that the MSPL-orientations uSPL(ξ) and β(uBRS(ξPLB))
have the same restrictions under the j∗x and thus uSPL(ξ) = β(uBRS(ξPLB)).

�

3.4. Witt bordism and cap products. Recall that we had the map
φLR : MSO→ MSPL due to Lashof-Rothenberg. Let MWITT be the spec-
trum representing Witt-bordism ΩWitt

∗ (−), considered explicitly first in [28].
Curran proves in [28, Thm. 3.6, p. 117] that MWITT is an MSO-module
spectrum. It is even an MSPL-module spectrum because the product of a
Witt space and an oriented PL manifold is again a Witt space. (Further
remarks on the structure of MWITT will be made in Section 3.7 below.)
Thus there is a cap product

∩ : MSPLc(X,A)⊗MWITTn(X,A) −→ MWITTn−c(X).

By Buoncristiano-Rourke-Sanderson, a geometric description of this cap
product is given as follows: One uses the isomorphism (3.2) to think of
the cap product as a product

∩ : Ω−cSPL(K,L)⊗ ΩWitt
n (|K|, |L|) −→ ΩWitt

n−c (|K|)
for finite ball complexes K with subcomplex L ⊂ K. Let us first discuss the
absolute case L = ∅, and then return to the relative one. If f : Z → |K| is
a continuous map from an n-dimensional closed Witt space Z to |K|, and
ξq is a q-mock bundle over K (with q = −c), then one defines (cf. [16, p.
29])

[ξq/K] ∩ [f : Z → |K|] := [h : E(f∗ξ)→ |K|] ∈ ΩWitt
n−c (|K|),

where h is the diagonal arrow in the cartesian diagram

E(f∗ξ) //

��

h

$$

E(ξ)

p

��
Z

f ′ // K.

Here, we subdivide simplicially, homotope f to a simplicial map f ′, and use
the fact ([16, II.2, p. 23f]) that mock bundles admit pullbacks under simpli-
cial maps. By Lemma 3.11, E(f∗ξ) is a closed Witt space. For the relative
case, we observe that if (Z, ∂Z) is a compact Witt space with boundary,
f : (Z, ∂Z) → (|K|, |L|) maps the boundary into |L|, and ξ|L = ∅, then
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f∗ξ|∂Z = ∅ and so ∂E(f∗ξ) = ∅, i.e. the Witt space E(f∗ξ) is closed.
Hence it defines an absolute bordism class.

3.5. The Gysin map on Witt bordism. For a (real) codimension c nor-
mally nonsingular inclusion g : Y n−c ↪→ Xn of closed oriented PL pseudo-
manifolds, we define a Gysin map

g! : ΩWitt
k (X) −→ ΩWitt

k−c (Y ),

and we shall prove that it sends the Witt orientation of X to the Witt
orientation of Y , if X and Y are Witt spaces. This will then be applied in
proving the analogous statement for the L•-homology orientations.

Let ν be the normal bundle of the embedding g. By definition of normal
nonsingularity, ν is a vector bundle over Y , and it is canonically oriented
since X and Y are oriented. Thus ν is classified by a continuous map
ν : Y → BSOc. As explained in Section 3.1, ν determines an oriented PL
(Rc, 0)-bundle νPL, an oriented PL (closed disc) block bundle νPLB, and an
oriented topological (Rc, 0)-bundle νTOP. Let E = E(νPLB) denote the total
space of the PL block bundle νPLB. Then E is a compact PL pseudomanifold
with boundary ∂E = Ė = Ė(νPLB). (This uses that Y is closed.) The Thom
space Th(ν) of ν is homotopy equivalent to the PL space Th′(νPLB) :=

E ∪Ė cone Ė. The standard map j : X → Th′(νPLB) is the identity on an
open tubular neighborhood of Y in X and sends points farther away from
Y to the cone point ∞ ∈ Th′(νPLB). As in Ranicki [49, p. 186], this map
extends to a map j : X+ → Th′(νPLB) by sending the additional disjoint
point to ∞. By Lashof-Rothenberg triangulation, we can and will assume
that j is simplicial. This map induces a homomorphism

j∗ : ΩWitt
k (X) = ΩWitt

k (X+,pt) −→ ΩWitt
k (Th′(νPLB),∞) ∼= ΩWitt

k (E, Ė).

Recall from Section 3.4 that we had a cap product

∩ : Ω−cSPL(E, Ė)⊗ ΩWitt
k (E, Ė) −→ ΩWitt

k−c (E),

which we had described geometrically. Capping with the BRS-Thom class

uBRS(νPLB) ∈ Ω−cSPL(E, Ė),

we get a map

uBRS(νPLB) ∩ − : ΩWitt
k (E, Ė) −→ ΩWitt

k−c (E).

Composing this with the above map j∗, we get the Witt-bordism Gysin map

g! := (uBRS(νPLB) ∩ −) ◦ j∗ :

ΩWitt
k (X) −→ ΩWitt

k (E, Ė) −→ ΩWitt
k−c (E) ∼= ΩWitt

k−c (Y ),

where the last isomorphism is the inverse of the isomorphism induced by
the zero section. A closed n-dimensional Witt space Xn has a canonical
Witt-bordism fundamental class

[X]Witt := [id : X → X] ∈ ΩWitt
n (X).
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Theorem 3.15. The Witt-bordism Gysin map g! of a (real) codimension c
normally nonsingular inclusion g : Y n−c ↪→ Xn of closed (oriented) Witt
spaces sends the Witt-bordism fundamental class of X to the Witt-bordism
fundamental class of Y :

g![X]Witt = [Y ]Witt.

Proof. The image of [id : X → X] under j∗ is

[j : X → Th′(νPLB)] ∈ ΩWitt
n (Th′(νPLB),∞) ∼= ΩWitt

n (E, Ė).

The BRS-Thom class of νPLB is given by the class [i : Y → E] of the zero-

section. Under the identification Ω−cSPL(E, Ė) ∼= Ω−cSPL(Th′(νPLB),∞), it is
represented by composing i with the inclusion E → Th′(νPLB). We call the
resulting map again i : Y → Th′(νPLB); it is a (−c)-mock bundle projection,
where Th′(νPLB) is equipped with a ball complex structure which contains
∞ as a zero dimensional ball. Since Y does not touch ∞, this mock bundle
is empty over the ball ∞. The cap product

[i : Y → Th′(νPLB)] ∩ [j : X → Th′(νPLB)],

is given by [h], where h is the diagonal arrow in the cartesian diagram

E(j∗(i)) //

��

h

&&

Y

i
��

X
j
// Th′(νPLB).

The pullback E(j∗(i)) is just Y and the above diagram is

Y
id //

g

��

h

%%

Y

i
��

X
j
// Th′(νPLB).

(Recall that j is the identity in a tubular neighborhood of Y ; the points of
X that are mapped under j to the zero section are precisely the points of
Y .) So

[i : Y → Th′(νPLB)] ∩ [j : X → Th′(νPLB)] = [h] = [i].

Now under the isomorphism

i∗ : ΩWitt
n−c (Y )

∼=−→ ΩWitt
n−c (E),

the Witt-bordism fundamental class [id : Y → Y ] is sent to [i]. �
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3.6. The Gysin map on L•-homology. We continue in the context of
Section 3.5. Thus g : Y n−c ↪→ Xn is a normally nonsingular inclusion
of closed Witt spaces with normal vector bundle ν. The canonical map
j : X+ → Th(ν) induces a homomorphism

j∗ : L•(Q)∗(X) −→ L̃•(Q)∗(Th(ν)).

As discussed in Section 3.2, the oriented topological (Rc, 0)-bundle νTOP

determined by ν has an L•-cohomology Thom class

uL(νTOP) ∈ L̃•(Q)c(Th(νTOP)),

defined by

uL(νTOP) = εQσ
∗(uSTOP(νTOP)),

where εQ is induced by L•(Z)→ L•(Q). Capping with this class, we receive
a map

uL(νTOP) ∩ − : L̃•(Q)k(Th(ν)) −→ L•(Q)k−c(Y ).

Composing this with the above map j∗ on L•(Q)-homology, we get the L•-
homology Gysin map

g! := (uL(νTOP)∩−)◦j∗ : L•(Q)k(X) −→ L•(Q)k(Th(ν)) −→ L•(Q)k−c(Y ).

(Of course this map can be defined over L•, but we only need it over L•(Q).)

3.7. Relation between Witt- and L•-Gysin maps. The spectra L•(Z)
and L•(Q) are ring spectra. The product of two Q-Witt spaces is again a
Q-Witt space. This implies essentially that MWITT is a ring spectrum; for
more details see [8]. There, we constructed a map

τ : MWITT −→ L•(Q).

(Actually, we even constructed an integral map MIP → L•, where MIP
represents bordism of integral intersection homology Poincaré spaces studied
in [33] and [47], but everything works in the same manner for Witt, if one
uses the L•-spectrum with rational coefficients.) This map is multiplicative,
i.e. a ring map, as shown in [8, Section 12]. Using this map τ , a closed Witt
space Xn has a canonical L•(Q)-homology fundamental class

[X]L ∈ L•(Q)n(X),

which is by definition the image of [X]Witt under the map

τ∗ : ΩWitt
n (X) = MWITTn(X) −→ L•(Q)n(X),

i.e.

[X]L := τ∗([X]Witt).

Every oriented PL manifold is a Witt space. Hence there is a map

φW : MSPL −→ MWITT,
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which, using the methods of ad-theories and Quinn spectra employed in [8],
can be constructed to be multiplicative, i.e. a map of ring spectra. By the
construction of τ in [8], the diagram

MSTOP
σ∗ // L•(Z)

εQ

��

MSPL

φF

99

φW %%
MWITT τ

// L•(Q)

(3.4)

homotopy commutes. In the proof of Theorem 3.17 below, we shall use the
following standard fact:

Lemma 3.16. If E is a ring spectrum, F, F ′ module spectra over E and
φ : F → F ′ an E-module morphism, then the diagram

Ec(X,A)⊗ Fn(X,A)
∩ //

id⊗φ∗
��

Fn−c(X)

φ∗
��

Ec(X,A)⊗ F ′n(X,A)
∩ // F ′n−c(X)

commutes: if u ∈ Ec(X,A), and a ∈ Fn(X,A), then

φ∗(u ∩ a) = u ∩ φ∗(a).

Theorem 3.17. The L•-homology Gysin map g! of a (real) codimension c
normally nonsingular inclusion g : Y n−c ↪→ Xn of closed (oriented) Witt
spaces sends the L•(Q)-homology fundamental class of X to the L•(Q)-
homology fundamental class of Y :

g![X]L = [Y ]L.

Proof. Let ν be the topological normal vector bundle of g. The diagram

ΩWitt
n (X)

τ∗ //

j∗
��

L•(Q)n(X)

j∗
��

ΩWitt
n (Th(ν),∞)

τ∗ // L•(Q)n(Th(ν),∞)

commutes, since τ∗ is a natural transformation of homology theories. We
shall prove next that the diagram

ΩWitt
n (Th(ν),∞)

τ∗ //

uBRS(νPLB)∩−
��

L•(Q)n(Th(ν),∞)

uL(νTOP)∩−
��

ΩWitt
n−c (Y )

τ∗ // L•(Q)n−c(Y ),

(3.5)
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commutes as well. Let a ∈ ΩWitt
n (Th(ν),∞) be an element. According to

the definition of the L•-cohomology Thom class, we have

uL(νTOP) ∩ τ∗(a) = εQσ
∗(uSTOP(νTOP)) ∩ τ∗(a).

By Lemma 3.7,

εQσ
∗(uSTOP(νTOP)) ∩ τ∗(a) = εQσ

∗φF (uSPL(νPL)) ∩ τ∗(a).

Using diagram (3.4),

εQσ
∗φF (uSPL(νPL)) ∩ τ∗(a) = τφW (uSPL(νPL)) ∩ τ∗(a).

Here, the symbol ∩ denotes the cap-product on L•-(co)homology. Using
the ring map φW : MSPL → MWITT, the spectrum MWITT becomes an
MSPL-module with action map

MSPL∧MWITT −→ MWITT

given by the composition

MSPL∧MWITT
φW∧id−→ MWITT∧MWITT −→ MWITT .

Using the ring map τφW : MSPL → L•(Q), the spectrum L•(Q) becomes
an MSPL-module with action map

MSPL∧L•(Q) −→ L•(Q)

given by the composition

MSPL∧L•(Q)
(τφW )∧id−→ L•(Q) ∧ L•(Q) −→ L•(Q).

Hence

τφW (uSPL(νPL)) ∩ τ∗(a) = uSPL(νPL)) ∩ τ∗(a),

where ∩ on the left hand side denotes the L•-internal cap-product, whereas
∩ on the right hand side denotes the cap-product coming from the above
structure of L•(Q) as an MSPL-module. The homotopy commutative dia-
gram

MSPL∧MWITT
id∧τ //

φW∧id

��

MSPL∧L•(Q)

(τφW )∧id
��

MWITT∧MWITT
τ∧τ //

��

L•(Q) ∧ L•(Q)

��
MWITT

τ // L•(Q)
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shows that τ : MWITT → L•(Q) is an MSPL-module morphism. Thus by
Lemma 3.16,

MSPLc(Th(ν),∞)⊗MWITTn(Th(ν),∞)
∩ //

id⊗τ∗
��

MWITTn−c(Y )

τ∗
��

MSPLc(Th(ν),∞)⊗ L•(Q)n(Th(ν),∞)
∩ // L•(Q)n−c(Y )

commutes, so that

uSPL(νPL) ∩ τ∗(a) = τ∗(uSPL(νPL) ∩ a).

By Lemma 3.14, the canonical isomorphism (3.2) identifies the Thom class
uSPL(νPL) with the BRS-Thom class uBRS(νPLB). Therefore,

τ∗(uSPL(νPL) ∩ a) = τ∗(uBRS(νPLB) ∩ a).

Altogether then,

uL(νTOP) ∩ τ∗(a) = τ∗(uBRS(νPLB) ∩ a),

which shows that the diagram (3.5) commutes as claimed. We have shown
that the diagram

ΩWitt
n (X)

τ∗ //

j∗
��

L•(Q)n(X)

j∗
��

ΩWitt
n (Th(ν),∞)

τ∗ //

uBRS(νPLB)∩−
��

L•(Q)n(Th(ν),∞)

uL(νTOP)∩−
��

ΩWitt
n−c (Y )

τ∗ // L•(Q)n−c(Y ),

commutes. Thus the diagram of Gysin maps

ΩWitt
n (X)

τ∗ //

g!

��

L•(Q)n(X)

g!

��
ΩWitt
n−c (Y )

τ∗ // L•(Q)n−c(Y )

commutes. Using Theorem 3.15, it follows that

g![X]L = g!τ∗[X]Witt = τ∗g
![X]Witt = τ∗[Y ]Witt = [Y ]L.

�

Theorem 3.18. Let g : Y ↪→ X be a normally nonsingular inclusion of
closed oriented even-dimensional PL Witt pseudomanifolds. Let ν be the
topological normal bundle of g. Then

g!L∗(X) = L∗(ν) ∩ L∗(Y ).
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Proof. By Theorem 3.17, the L•-homology Gysin map g! of g sends the
L•(Q)-homology fundamental class of X to the L•(Q)-homology fundamen-
tal class of Y : g![X]L = [Y ]L. It remains to analyze what this equation
means after we tensor with Q. By [8, Lemma 11.1],

[X]L ⊗Q = L∗(X), [Y ]L ⊗Q = L∗(Y ).

Furthermore, according to [49, Remark 16.2, p. 176], uL(ν)⊗Q = L∗(ν)−1∪
uQ, where uQ ∈ H̃c(Th(ν);Q) is the Thom class of ν in ordinary rational
cohomology. (Note that Ranicki omits cupping with uQ in his notation.)
Thus

L∗(Y ) = [Y ]L ⊗Q = (g![X]L)⊗Q = (j∗[X]L ∩ uL(ν))⊗Q
= j∗([X]L ⊗Q) ∩ (uL(ν)⊗Q) = j∗L∗(X) ∩ (L∗(ν)−1 ∪ uQ)

= j∗L∗(X) ∩ (uQ ∪ L∗(ν)−1) = (j∗L∗(X) ∩ uQ) ∩ L∗(ν)−1

= (g!L∗(X)) ∩ L∗(ν)−1.

(Note that all involved classes lie in even degrees and hence no signs come
in.) �

Example 3.19. For the top L-class, Theorem 3.18 implies (n = dimX,
m = dimY )

g![X] = g!Ln(X) = (L∗(ν) ∩ L∗(Y ))m

= ((1 + L1(ν) + · · · ) ∩ (Lm(Y ) + Lm−4(Y ) + · · · ))m
= ((1 + L1(ν) + · · · ) ∩ ([Y ] + Lm−4(Y ) + · · · ))m
= 1 ∩ [Y ] = [Y ],

i.e. Gysin maps fundamental classes to fundamental classes.

4. Application: The L-class of singular Schubert varieties

As an application of the L-class Gysin Theorem 3.18, we compute explic-
itly the Goresky-MacPherson L-class of some singular Schubert varieties.
The Chern-Schwartz-MacPherson classes of Schubert varieties were com-
puted by Aluffi and Mihalcea in [2]. We are not presently aware of any
existing computation of L-classes for such varieties in the literature. We
shall follow the notation of [2], and work over the complex number field C.
For n ≥ k, let Gk(Cn) denote the Grassmann variety of k-dimensional linear
subspaces of Cn. Let F∗ be a complete flag of subspaces of Cn,

F0 = {0} ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = Cn,
dimFj = j, and let d be a nonnegative integer. A partition a of d is a non-
increasing sequence of nonnegative integers a = (a1 ≥ a2 ≥ · · · ≥ ak) such
that

∑
ai = d. The Schubert variety Xa of a partition a is the subvariety

Xa ⊂ Gk(Cn) given by

Xa = {P ∈ Gk(Cn) | dimC(P ∩ Fak+1−i+i) ≥ i}.
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Its dimension is dimCXa =
∑
ai. In our notation, we will often omit trailing

zeros, e.g. we may write X1 for X1,0. If b = (b1 ≥ · · · ≥ bk) is another
partition (not necessarily of d, but possibly of a different integer), then we
write b ≤ a if and only if bi ≤ ai for all i. If b ≤ a, then there is a
closed embedding Xb ⊂ Xa. The Chow homology A∗(Xa) of Xa is freely
generated by the Schubert classes [Xb] for all b ≤ a, and the cycle map from
Chow to Borel-Moore homology is an isomorphism, as Schubert varieties
possess cellular decompositions. If Y is a subvariety of a variety X, we shall
denote its fundamental class in the homology of X by [Y ]X . For example,
if Xb ⊂ X = Xa ⊂ G = Gk(Cn), then Xb determines a class [Xb]X in the
homology of Xa and a class [Xb]G in the homology of G. Most Schubert
varieties are singular and do in fact not satisfy (local or even just global)
Poincaré duality. The singular set of a Schubert variety can be computed
efficiently using a result of Lakshmibai-Weyman [37, Theorem 5.3, p. 203].

Let us compute the L-class

L2(X2,1) ∈ H2(X2,1;Q) = Q[X1]

of the 3-dimensional Schubert variety X2,1, a hypersurface of the Grassman-
nian G := G2(C4) = X2,2, dimG = 4. Since the homology in degree 2 is
one-dimensional, generated by the fundamental class of the Schubert variety
X1 ⊂ X2,1, there exists a unique α ∈ Q with L2(X2,1) = α · [X1]. We must
determine this coefficient α. Under the Plücker embedding, G is realized as
a nonsingular quadric hypersurface in P5. Composing, we obtain a closed
embedding of X2,1 in P5. With (x0 : · · · : x5) homogeneous coordinates on
P5, X2,1 is contained in the hyperplane P4 = {x5 = 0} ⊂ P5. Then X2,1 ⊂ P4

is the quadric hypersurface given by

X2,1 = {x2x3 − x1x4 = 0}

with singular set {(1 : 0 : 0 : 0 : 0)}, a point. Let H be the hyperplane

H := {x0 − x1 = 0} ⊂ P4.

The salient feature is that H is transverse to X2,1 and to X1 in P4; any other
such plane would do just as well. Note that the singular point (1 : 0 : 0 : 0 :
0) of X2,1 is not on H. Let Y be the transverse intersection

Y = H ∩X2,1 = {x | x0 = x1, x2x3 − x1x4 = 0},

a nonsingular surface. Via the Segre embedding, Y ∼= P1 × P1. In par-
ticular, the signature of Y vanishes, σ(Y ) = 0. The normally nonsingular
codimension 1 embedding g : Y ↪→ X2,1 has an associated Gysin map

g! : H2(X2,1;Q) −→ H0(Y ;Q).

Let νY be the normal bundle of Y in X2,1. By transversality, νY = νH |Y ,
where νH is the normal bundle of H in P4 (which is the restriction of the



GYSIN RESTRICTION OF CHARACTERISTIC CLASSES 1303

hyperplane line bundle O(1) on P4 to H). By the L-class Gysin formula
(Theorem 3.18),

g!L2(X2,1) = ((1 + L1(νY )) ∩ ([Y ] + σ(Y )[pt]))0

= L1(νY ) ∩ [Y ] =
1

3
c1(O(1))2|Y ,

where c1 is the first Chern class. It remains to compute g![X1]. By transver-
sality, g![X1] = [X1 ∩ Y ]Y = [X1 ∩H]Y . In coordinates, X1 is given as the
line X1 = {(x0 : x1 : 0 : 0 : 0)} ⊂ P4. Hence, X1 ∩ Y = {(1 : 1 : 0 : 0 : 0)} is
a point and g![X1] = [pt]Y ∈ H0(Y ). We arrive thus at the following result:

L2(X2,1) = α[X1], α = 〈L1(νH |H∩X2,1), [H ∩X2,1]〉. (4.1)

Here, 〈−,−〉 denotes the Kronecker product, i.e. evaluation of a degree d
cohomology class on a degree d homology class. The above Kronecker prod-
uct can be computed using standard methods; one finds that α = 2

3 .

As a second example, we work out the L-class L6(X) ∈ H6(X;Q) of
the 5-dimensional singular Schubert variety X = X3,2. While the previous
example had an isolated singularity, the singular set of X3,2 is 2-dimensional,
given by

Sing(X3,2) = X1,1 ⊂ X.
The class L6(X) can be uniquely written as a linear combination

L6(X) = λ[X3] + µ[X2,1], λ, µ ∈ Q
and we must determine the coefficients λ and µ. We work inside of the
Grassmannian G = G2(C5). Fix a complete flag F∗ in C5, say the standard
flag. We make the following notational convention: The symbol Xa will
always refer to the Schubert variety associated to the partition a and the
flag F∗, Xa = Xa(F∗), whereas X ′a will refer to Schubert varieties in G2(C5)
that are associated to a but possibly different flags F ′∗.

If M is any nonsingular subvariety of G which is transverse to X = X3,2,
then the (possibly singular) variety Y = M ∩X is normally nonsingular in
X and its normal bundle is νY = νM |Y , where νM is the normal bundle of
M in the Grassmannian. The inclusion g : Y ↪→ X thus has an associated
Gysin restriction g! : H∗(X;Q) → H∗−2c(Y ;Q), where c is the complex
codimension of Y in X. Our method will be to choose M in G so that it is
transverse to the representatives X3 and X2,1 of the generators [X3], [X2,1]
of H6(X;Z), in addition to the requirement that M be transverse to X.

Consider the variety X2,2 = X2,2(F∗) in G. The group GL5(C) acts
transitively on G. By the Kleiman transversality theorem, there exists an
element γ ∈ GL5(C) such that M := γ ·X2,2 satisfies

M t X, M t X3, M t X2,1, (4.2)

where the symbol t denotes transversality. Note that X2,2 and its translate
M are nonsingular. The translate M is again a Schubert variety: Applying
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γ to the flag F∗ yields a complete flag F ′∗ = γ · F∗ such that

M = γ ·X2,2(F∗) = X2,2(F ′∗) =: X ′2,2.

The transverse intersection Y = M∩X = X ′2,2∩X3,2 has dimension dimY =

3. By Schubert calculus, there exists a flag F ′′∗ such that Y = X2,1(F ′′∗ ). We
will write X ′2,1 for X2,1(F ′′∗ ). We need to determine the associated Gysin
homomorphism

g! : H6(X3,2;Q) −→ H2(X ′2,1;Q).

Now the second homology of Y = X ′2,1 has rank 1 generated by the ra-

tional curve X ′1 ⊂ X ′2,1: H2(X ′2,1;Q) = Q[X ′1]X′2,1 . So g! is a linear map

g! : Q[X3]X ⊕ Q[X2,1]X → Q[X ′1]X′2,1 . By the above transversality proper-

ties (4.2) of M in G, together with standard Schubert calculus (Pieri’s and
Giambelli’s formula), g![X3]X = 0 and g![X2,1]X = [X ′1]Y . In particular,

g!L6(X) = µ[X ′1]Y . On the other hand, by Theorem 3.18,

g!L6(X) = (((1 + L1(νY ) + L2(νY ) + · · · ) ∩ (L6(Y ) + L2(Y )))2

= L2(Y ) + L1(νY ) ∩ [Y ],

from which we infer that

µ[X ′1]Y = L2(Y ) + L1(νX′2,2 |Y ) ∩ [Y ] ∈ H2(Y ;Q), Y = X ′2,1.

The class L2(X ′2,1) has already been calculated in the previous example of

this section, see (4.1).
It remains to determine the coefficient λ. For this, one needs to look at a

different Gysin map, coming from a different nonsingular M . Consider the
nonsingular variety X3 = X3(F∗) in G = G2(C5). By Kleiman transversal-
ity, there exists a γ ∈ GL5(C) such that M := γ ·X3 satisfies the transversal-
ity requirements (4.2). Applying γ to the flag F∗ yields a flag F ′∗ such that
M = X3(F ′∗) =: X ′3. The transverse intersection Y = M ∩ X = X ′3 ∩ X3,2

has dimension dimY = 2. By Schubert calculus, Y = X2(F ′′∗ ) for some flag
F ′′∗ in C5. We will write X ′2 for X2(F ′′∗ ). We determine the Gysin restriction

g! : H6(X3,2;Q) −→ H0(X ′2;Q)

associated to g : Y = X ′2 ↪→ X = X3,2. This is a linear map g! :
Q[X3]X ⊕Q[X2,1]X → Q[X ′(∅)], where (∅) denotes the empty partition with

X ′(∅) a point in X ′2. By the transversality properties of M in G, together

with Schubert calculus, g![X3]X = [X ′(∅)]Y = [pt]Y and g![X2,1]X = 0. In

particular, g!L6(X) = λ[pt]Y . On the other hand by Theorem 3.18,

g!L6(X) = (((1 + L1(νY ) + L2(νY ) + · · · ) ∩ (L4(Y ) + L0(Y )))0

= σ(Y )[pt] + L1(νY ) ∩ [Y ],
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and hence

λ[pt]Y = σ(Y )[pt]Y + L1(νX′3 |Y ) ∩ [Y ] ∈ H0(Y ;Q), Y = X ′2.

Since Y = X ′2
∼= P2, the signature is given by σ(Y ) = σ(P2) = 1. Let

ω ∈ H2(X ′2,1;Q) be the unique cohomology class such that 〈ω, [X ′1]〉 = +1.

Combining with (4.1), we obtain the following result:

L6(X3,2) = λ[X3] + µ[X2,1],

where λ, µ are the rational numbers

λ = 1 + 〈L1(νX′3 |), [X
′
2]〉,

µ = 〈L1(νH |), [H ∩X2,1]〉+ 〈ω ∪ L1(νX′2,2 |), [X
′
2,1]〉, 〈ω, [X ′1]〉 = +1.

We may call this a normally nonsingular expansion of L6(X). The Kronecker
products appearing in this expansion can then be computed further using
standard methods.

5. Hodge-theoretic characteristic classes

For an algebraic variety X, let Kalg
0 (X) denote the Grothendieck group

of the abelian category of coherent sheaves of OX -modules. When there is
no danger of confusion with other K-homology groups, we shall also write

K0(X) = Kalg
0 (X). Let K0(X) = K0

alg(X) denote the Grothendieck group
of the exact category of algebraic vector bundles over X. The tensor product
⊗OX

induces a cap product

∩ : K0(X)⊗K0(X) −→ K0(X), [E] ∩ [F ] = [E ⊗OX
F ].

Thus,

− ∩[OX ] : K0(X) −→ K0(X) (5.1)

sends a vector bundle [E] to its associated (locally free) sheaf of germs of
local sections [E ⊗OX ]. If X is smooth, then − ∩ [OX ] is an isomorphism.

Let X be a complex algebraic variety and E an algebraic vector bundle
over X. For a nonnegative integer p, let Λp(E) denote the p-th exterior
power of E. The total λ-class of E is by definition

λy(E) =
∑
p≥0

Λp(E) · yp,

where y is an indeterminate functioning as a bookkeeping device. This con-
struction induces a homomorphism λy(−) : K0

alg(X) −→ K0
alg(X)[y] from

the additive group of K0(X) to the multiplicative monoid of the polynomial
ring K0(X)[y]. Now let X be a smooth variety, let TX denote its holo-
morphic tangent bundle and T ∗X its holomorphic cotangent bundle. Then
Λp(T ∗X) is the vector bundle of holomorphic p-forms on X. Its associated
sheaf of sections is denoted by Ωp

X . Thus

[Λp(T ∗X)] ∩ [OX ] = [Ωp
X ]
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and hence

λy(T
∗X) ∩ [OX ] =

dimX∑
p=0

[Ωp
X ]yp.

Let X be a complex algebraic variety and let MHM(X) denote the abelian
category of M. Saito’s algebraic mixed Hodge modules on X. Totaro ob-
served in [69] that Saito’s construction of a pure Hodge structure on the
intersection homology of compact varieties implicitly contains a definition
of certain characteristic homology classes for singular algebraic varieties.
The following definition is based on this observation and due to Brasselet,
Schürmann and Yokura, [15], see also the expository paper [62].

Definition 5.1. The motivic Hodge Chern class transformation

MHCy : K0(MHM(X))→ Kalg
0 (X)⊗ Z[y±1]

is defined by

MHCy[M ] =
∑
i,p

(−1)i[Hi(GrF−pDR[M ])](−y)p.

Here, GrFp DR : DbMHM(X)→ Db
coh(X), with Db

coh(X) the bounded de-
rived category of sheaves of OX -modules with coherent cohomology sheaves,
denotes the functor of triangulated categories constructed by M. Saito, see
[56, §2.3], [60, §1], [57, §3.10], obtained by taking a suitable filtered de Rham
complex of the filtered holonomic D-module underlying a mixed Hodge mod-
ule. For every p ∈ Z, these functors induce functors between the associated
Grothendieck groups.

A flat morphism f : X → Y gives rise to a flat pullback f∗ : Coh(Y ) →
Coh(X) on coherent sheaves, which is exact and hence induces a flat pullback

f∗K : Kalg
0 (Y ) → Kalg

0 (X). This applies in particular to smooth morphisms
and is then often called smooth pullback. An arbitrary algebraic morphism
f : X → Y (not necessarily flat) induces a homomorphism

f∗ : K0(MHM(Y )) −→ K0(MHM(X))

which corresponds under the forgetful functor

rat : DbMHM(−)→ Db
c(−;Q)

to f−1 on constructible complexes of sheaves. (Additional remarks on rat
are to be found further below.) We record Schürmann’s [62, Cor. 5.11, p.
459]:

Proposition 5.2. (Verdier-Riemann-Roch for smooth pullbacks.) For a
smooth morphism f : X → Y of complex algebraic varieties, the Verdier
Riemann-Roch formula

λy(T
∗
X/Y ) ∩ f∗KMHCy[M ] = MHCy(f

∗[M ]) = MHCy[f
∗M ]

holds for M ∈ DbMHM(Y ), where T ∗X/Y denotes the relative cotangent

bundle of f .
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Let E be a complex vector bundle and let ai denote the Chern roots of
E. In [34], Hirzebruch introduced a cohomological characteristic class

T ∗y (E) =

rkE∏
i=1

Qy(ai),

where y is an indeterminate, coming from the power series

Qy(a) =
a(1 + y)

1− e−a(1+y)
− ay ∈ Q[y][[a]].

If R is an integral domain over Q, then a power series Q(a) ∈ R[[a]] is called
normalized if it starts with 1, i.e. Q(0) = 1. With R = Q[y], we have
Qy(0) = 1, so Qy(a) is normalized. For y = 0,

T ∗0 (E) =
rkE∏
i=1

ai
1− e−ai

= td∗(E) (5.2)

is the classical Todd class of E, while for y = 1,

T ∗1 (E) =
rkE∏
i=1

ai
tanh ai

= L∗(E) (5.3)

is the Hirzebruch L-class of the vector bundle E, as in Section 2. We shall
also need a certain unnormalized version of Qy(a): Let

Q̃y(a) =
a(1 + ye−a)

1− e−a
∈ Q[y][[a]]

and set

T̃ ∗y (E) =
rkE∏
i=1

Q̃y(ai).

Note that Q̃y(0) = 1 + y 6= 1, whence Q̃y(a) is unnormalized. The relation

(1 + y)Qy(a) = Q̃y((1 + y)a)

implies:

Proposition 5.3. If E is a complex vector bundle of complex rank r, then
for the degree 2i components:

T̃ iy(E) = (1 + y)r−iT iy(E).

More conceptually, we have the following formula for the unnormalized
class:

Proposition 5.4. For any complex vector bundle E, we have

T̃ ∗y (E) = td∗(E) ∪ ch∗(λy(E
∗)).
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Proof. The Chern character is given by

ch∗(λy(E
∗)) =

rkE∏
i=1

(1 + ye−ai),

with ai the Chern roots of E, see [35, p. 11]. Thus

T̃ ∗y (E) =
∏
i

ai(1 + ye−ai)

1− e−ai
=
∏
i

ai
1− e−ai

∏
i

(1 + ye−ai)

= td∗(E) ∪ ch∗(λy(E
∗)).

�

Let τ∗ : K0(X) −→ HBM
2∗ (X)⊗Q denote the Todd class transformation of

Baum, Fulton, MacPherson. We review, to some extent, construction and
properties of this transformation. Let

α∗ : K0
alg(X) −→ K0

top(X)

be the forget map which takes an algebraic vector bundle to its underlying
topological vector bundle. Composing with the Chern character, one obtains
a transformation

τ∗ = ch∗ ◦α∗ : K0
alg(X) −→ H2∗(X;Q),

see [10, p. 180]. Baum, Fulton and MacPherson construct a corresponding
homological version

α∗ : Kalg
0 (X) −→ Ktop

0 (X)

for quasi-projective varieties X. Composing with the homological Chern
character

ch∗ : Ktop
0 (X) −→ HBM

2∗ (X;Q),

where HBM
∗ denotes Borel-Moore homology, they obtain a transformation

τ∗ = ch∗ ◦α∗ : Kalg
0 (X) −→ HBM

2∗ (X;Q).

This transformation is in fact available for any algebraic scheme over a
field and generalizes the Grothendieck Riemann-Roch theorem to singular
varieties.

Remark 5.5. Let A∗(V ) denote Chow homology of a variety V , i.e. alge-
braic cycles in V modulo rational equivalence. Then there is a transforma-
tion

τ∗ : Kalg
0 (X) −→ A∗(X)⊗Q

such that

Kalg
0 (X)

τ∗

''
τ∗

��
A∗(X)⊗Q

cl
// HBM

2∗ (X;Q)
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commutes, where cl is the cycle map; see the first commutative diagram on
p. 106 of [9, (0.8)]. The construction of τ∗ to Chow homology is described
in Fulton’s book [29, p. 349]. Thus Todd classes are algebraic cycles that
are well-defined up to rational equivalence over Q.

According to [10, Theorem, p. 180], τ∗ and τ∗ are compatible with respect
to cap products, i.e. the diagram

K0(X)⊗K0(X)
τ∗⊗τ∗ //

∩
��

H∗(X;Q)⊗HBM
∗ (X;Q)

∩
��

K0(X)
τ∗ // HBM

∗ (X;Q)

commutes. Thus, if E is a vector bundle and F a coherent sheaf on X, then

τ∗([E] ∩ [F ]) = ch∗(E) ∩ τ∗[F ]. (5.4)

For smooth X,

τ∗[OX ] = td∗(TX) ∩ [X] = T ∗0 (TX) ∩ [X].

So if E is a vector bundle on a smooth variety, then

τ∗([E] ∩ [OX ]) = (ch∗(E) ∪ td∗(TX)) ∩ [X]. (5.5)

For locally complete intersection morphisms f : X → Y , Gysin maps

f∗BM : HBM
∗ (Y ) −→ HBM

∗−2d(X)

have been defined by Verdier [70, §10], and Baum, Fulton and MacPherson
[9, Ch. IV, §4], where d denotes the (complex) virtual codimension of f .
Thus for a regular closed embedding g, there is a Gysin map g∗BM on Borel-

Moore homology, which we shall also write as g!, and for a smooth morphism
f of relative dimension r, there is a smooth pullback f∗BM : HBM

∗ (Y ) →
HBM
∗+2r(X). Baum, Fulton and MacPherson show:

Proposition 5.6. (Verdier-Riemann-Roch for smooth pullbacks.) For a
smooth morphism f : X → Y of complex algebraic varieties and [F ] ∈
Kalg

0 (Y ),

td∗(TX/Y ) ∩ f∗BMτ∗[F ] = τ∗(f
∗
K [F ]).

Yokura [73] twisted τ∗ by a Hirzebruch-type variable y:

Definition 5.7. The twisted Todd transformation

td1+y : K0(X)⊗ Z[y±1] −→ HBM
2∗ (X)⊗Q[y±1, (1 + y)−1]

is given by

td1+y[F ] :=
∑
k≥0

τk[F ] · 1

(1 + y)k
,

where the Baum-Fulton-MacPherson transformation τ∗ is extended linearly
over Z[y±1], and τk denotes the degree 2k-component of τ∗.
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Remark 5.8. Regarding the transformation τ∗ as taking values in Chow
groups A∗(−) ⊗ Q (cf. Remark 5.5), the above definition yields a twisted
Todd transformation

td1+y : K0(X)⊗ Z[y±1] −→ A∗(X)⊗Q[y±1, (1 + y)−1],

which commutes with the Borel-Moore twisted Todd transformation under
the cycle map.

The definition of the motivic Hirzebruch class transformation below is due
to Brasselet, Schürmann and Yokura [15], see also Schürmann’s expository
paper [62].

Definition 5.9. The motivic Hirzebruch class transformation is

MHTy∗ := td1+y◦MHCy : K0(MHM(X)) −→ HBM
2∗ (X)⊗Q[y±1, (1+y)−1].

For the intersection Hodge module ICHX on a complex variety X of pure
dimension n, we use the convention

ICHX := j!∗(QH
U [n]),

which agrees with [62, p. 444] and [48, p. 345]. Here, U ⊂ X is smooth, of
pure dimension n, Zariski-open and dense, and j!∗ denotes the intermediate
extension of mixed Hodge modules associated to the open inclusion j : U ↪→
X. The underlying perverse sheaf is rat(ICHX ) = ICX , the intersection chain
sheaf, where rat : MHM(X) → Per(X) = Per(X;Q) is the faithful and
exact functor that sends a mixed Hodge module to its underlying perverse
sheaf. Here, Per(X) denotes perverse sheaves on X which are constructible
with respect to some algebraic stratification of X. This functor extends
to a functor rat : DbMHM(X) → Db

c(X) = Db
c(X;Q) between bounded

derived categories. For every object of Db
c(X) there exists some algebraic

stratification with respect to which the object is constructible, and these
stratifications will generally vary with the object. Recall that a functor F
is conservative, if for every morphism φ such that F (φ) is an isomorphism,
φ is already an isomorphism. Faithful functors on balanced categories (such
as abelian or triangulated categories) are conservative. According to [59, p.
218, Remark (i)], rat : DbMHM(X)→ Db

c(X) is not faithful. But:

Lemma 5.10. The functor rat : DbMHM(X)→ Db
c(X) is conservative.

Using cones, this lemma appears embedded in the proof of [21, Lemma 5.3,
p. 1752], see also Exercise 11.2.1 in Maxim’s book [41]. The module ICHX is
the unique simple object in the category MHM(X) which restricts to QU [n]
over U . As U is smooth and pure n-dimensional, QH

U [n] is pure of weight
n. Since the intermediate extension j!∗ preserves weights, ICHX is pure of
weight n. There is a duality isomorphism (polarization) DHXICHX ∼= ICHX (n).
Taking rat, this isomorphism induces a self-duality isomorphism

DXICX = DX rat ICHX
∼= ratDHXICHX ∼= rat ICHX (n) ∼= ICX ,

if an isomorphism QU (n) ∼= QU is chosen.
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Definition 5.11. ([15].) The intersection generalized Todd class (or inter-
section Hirzebruch characteristic class) is

ITy∗(X) := MHTy∗[IC
H
X [−n]] ∈ HBM

2∗ (X)⊗Q[y±1, (1 + y)−1].

Taking up expectations formulated in [17], this class started to be inves-
tigated in detail in [22].

Remark 5.12. The intersection characteristic class ITy∗(X) is represented
by an algebraic cycle by Remark 5.8.

6. Hodge classes and normally nonsingular inclusions

We embark on establishing a Verdier-Riemann-Roch type formula

g!IT1∗(X) = L∗(N) ∩ IT1∗(Y )

for appropriately normally nonsingular regular algebraic embeddings g :
Y ↪→ X of complex algebraic varieties. Here, g! denotes Verdier’s Gysin
map on Borel-Moore homology for closed regular algebraic embeddings, and
N is the algebraic normal bundle of g. Following Verdier’s construction of
g!, one must first understand how IT1∗(X) behaves under specialization to
homology of the algebraic normal bundle. This then reduces the problem
to establishing the desired formula in the special case where g is the zero
section embedding into an algebraic vector bundle. Philosophically, one may
view the specialization map SpBM as an algebro-geometric substitute for the
simple topological operation of “restricting a Borel-Moore cycle to an open
tubular neighborhood of Y ”. From this point of view, one expects that
SpBM IT1∗(X) = IT1∗(N), and this is what we do indeed prove (Proposition
6.26). That proof rests on three ideas: First, in the context of deformation
to the normal cone, the specialization map to the central fiber can itself be
expressed in terms of a hypersurface Gysin restriction. Second, results of
Cappell-Maxim-Schürmann-Shaneson [20] explain that a global hypersur-
face Gysin restriction applied to the motivic Hirzebruch class transforma-
tion agrees with first taking Hodge nearby cycles, and then executing the
Hirzebruch transformation. Third, we show that Saito’s Hodge nearby cy-
cle functor takes the intersection Hodge module on the deformation space
to the intersection Hodge module of the special fiber N (Proposition 6.20).
This requires in particular an analysis of the behavior of the Hodge inter-
section module both under g! for topologically normally nonsingular closed
algebraic embeddings g (Lemma 6.19), and under smooth pullbacks (Lemma
6.13). Vietoris-Begle techniques are being used after careful premeditation
of constructibility issues. The remaining step is then to understand why the
relation k!IT1∗(N) = L∗(N)∩ IT1∗(Y ) holds for the zero section embedding
k : Y ↪→ N of an algebraic vector bundle N → Y . We achieve this in Propo-
sition 6.28. In the case of a zero section embedding k, the Gysin restriction
k! is, by the Thom isomorphism theorem, inverse to smooth pullback under
the vector bundle projection, and we find it easier to establish a relation for
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the latter (Proposition 6.23). Schürmann’s MHCy-Verdier-Riemann-Roch
theorem also enters.

Since algebraic normal bundles of regular algebraic embeddings need not
faithfully reflect the normal topology near the subvariety, the main result,
Theorem 6.30, requires a tightness assumption, which holds automatically in
transverse situations (Proposition 6.3). Furthermore, our methods require
that the exceptional divisor in the blow-up of X × C along Y × 0 be nor-
mally nonsingular. We do not know at present whether the latter condition,
related to the “clean blow-ups” of Cheeger, Goresky and MacPherson, is
necessary. Again, it holds in transverse situations (Corollary 6.7).

As regular algebraic embeddings need not be topologically normally non-
singular, we define:

Definition 6.1. A closed regular algebraic embedding Y ↪→ X of complex
algebraic varieties is called tight, if its underlying topological embedding (in
the complex topology) is normally nonsingular and compatibly stratifiable
(Definition 3.4), with topological normal bundle π : E → Y as in Definition
3.3, and E → Y is isomorphic (as a topological vector bundle) to the un-
derlying topological vector bundle of the algebraic normal bundle NYX of
Y in X.

Example 6.2. A closed embedding g : M ↪→ W of smooth complex alge-
braic varieties is tight because the normal bundles can be described in terms
of tangent bundles, and the smooth tubular neighborhood theorem applies
to provide normal nonsingularity (with respect to the intrinsic stratification
consisting of only the top stratum).

Closed subschemes X,Y ⊂ S of a scheme S are called Tor-independent if

TorOS
i (OX ,OY ) = 0 for all i > 0.

Proposition 6.3. Let M ↪→ W be a closed algebraic embedding of smooth
complex algebraic varieties. Let X ⊂ W be a (possibly singular) algebraic
subvariety, equipped with an algebraic Whitney stratification and set Y =
X ∩M . If

• each stratum of X is transverse to M , and
• X and M are Tor-independent in W ,

then the embedding g : Y ↪→ X is tight.

Proof. The topological aspects of the proof proceed along the lines of [30,
p. 48, Proof of Thm. 1.11]. By smoothness, the closed embedding M ↪→W
is regular with algebraic normal bundle NMW . The Tor-independence of X
and M ensures that the closed embedding Y ↪→ X is also regular (see [36,
Lemma 1.7]), and that the excess normal bundle vanishes, i.e. the canonical
closed embedding NYX → j∗NMW is an isomorphism of algebraic vector
bundles, where j is the embedding j : Y ↪→ M . The bundle π : E → Y
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in Definition 6.1 may then be taken to be the underlying topological vector
bundle of the restriction of NMW to Y . �

Let V ↪→ U be a closed regular embedding of complex varieties. Then
β : BlV U → U will denote the blow-up of U along V . The exceptional
divisor E = β−1(V ) ⊂ BlV U is the projectivization P(N) of the algebraic
normal bundle N of V in U .

Definition 6.4. Let X ↪→ W ←↩ M be closed algebraic embeddings of
algebraic varieties with M,W smooth. We say that these embeddings are
upwardly transverse, if X and M are Tor-independent in W , there exists an
algebraic Whitney stratification of X which is transverse to M in W , and
there exists a (possibly non-algebraic) Whitney stratification on the strict
transform of X×C in BlM×0(W ×C) which is transverse to the exceptional
divisor.

Definition 6.5. A tight embedding Y ↪→ X is called upwardly normally
nonsingular if the inclusion E ⊂ BlY×0(X ×C) of the exceptional divisor E
is topologically normally nonsingular.

This notion is related to the clean blow-ups of Cheeger, Goresky and

MacPherson [26, p. 331]. A monoidal transformation π : X̃ → X with
nonsingular center Y ⊂ X is called a clean blow-up if E → Y is a topological
fibration, where E = π−1(Y ) is the exceptional divisor, and the inclusion

E ⊂ X̃ is normally nonsingular.

Proposition 6.6. Let X ↪→ W ←↩ M be Tor-independent closed algebraic
embeddings of algebraic varieties with M,W smooth. If there exists an alge-
braic Whitney stratification of X which is transverse to M , and a Whitney
stratification on the strict transform of X in BlM W which is transverse to
the exceptional divisor, then the inclusion Y = X ∩M ↪→ X is tight and
the inclusion E′ ⊂ BlY X of the exceptional divisor is topologically nor-
mally nonsingular. The corresponding topological normal vector bundle of
E′ ⊂ BlY X is then isomorphic to the restriction to E′ of the tautological
line bundle OE(−1) over the exceptional divisor E ⊂ BlM W .

Proof. Let β : BlM W → W be the blow-up of W along M . As M is a
smoothly embedded smooth subvariety of the smooth variety W , BlM W
is smooth and the exceptional divisor E = β−1(M) = P(N) is a smooth
variety smoothly embedded in BlM W . By assumption, the strict transform
β−1(X) can be equipped with a Whitney stratification transverse to E. Then

the intersection Ỹ = β−1(X) ∩ E is an oriented pseudomanifold Whitney

stratified by its intersection with the strata of β−1(X), the inclusion Ỹ ↪→
β−1(X) is normally nonsingular with oriented topological normal bundle
isomorphic to the restriction of the topological normal bundle νE of E in
BlM W . Now this normal bundle is the tautological bundle νE = OE(−1).
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Since X and M are Tor-independent in W , and M ↪→ W is a regular
embedding, the embedding Y = X ∩M ↪→ X is regular as well, and the
blow-up BlY X of X along Y = X ∩M is given by

BlY X = X ×W BlM W = β−1(X),

[36, Lemma 1.7]. The exceptional divisor E′ of β| : BlY X → X is

E′ = β−1(Y ) = β−1(X ∩M) = β−1(X) ∩ β−1(M) = β−1(X) ∩ E = Ỹ .

The inclusion Y ↪→ X is tight by Proposition 6.3. �

Corollary 6.7. If X ↪→ W ←↩ M are upwardly transverse embeddings,
then the embedding Y = X ∩M ↪→ X is upwardly normally nonsingular.
The corresponding topological normal vector bundle of the exceptional divisor
E′ ⊂ BlY×0(X ×C) is then isomorphic to the restriction to E′ of the tauto-
logical line bundle OE(−1) over the exceptional divisor E ⊂ BlM×0(W ×C).

Proof. There exists an algebraic Whitney stratification X of X such that
each stratum of X is topologically transverse to M . Since X and M are
Tor-independent in W , the embedding Y = X ∩M ↪→ X is regular, [36,
Lemma 1.7]. Thus by Proposition 6.3, the embedding Y ↪→ X is tight.
Equip X ′ := X × C with the product stratification X ′ = X × C. Then X ′
is an algebraic Whitney stratification of X ′ in W ′ := W × C. Since X is
Whitney transverse to M in W , X ′ is Whitney transverse to M ′ := M × 0
in W ′. The Tor-independence of X and M in W implies Tor-independence
of X ′ and M ′ in W ′, since

TorR[t]
n (A[t], B) = TorRn (A,B)

for R-modules A,B; R a C-algebra. Since X ↪→ W ←↩ M are upwardly
transverse embeddings, there exists a Whitney stratification on the strict
transform of X ′ in BlM ′(W

′) which is transverse to the exceptional divisor.
Hence, we may apply Proposition 6.6 to X ′ ↪→ W ′ ←↩ M ′. It follows that
the inclusion

Y ′ = X ′ ∩M ′ = (X ×C)∩ (M × 0) = (X ∩M)× 0 = Y × 0 ↪→ X ′ = X ×C

is tight and the inclusion E′ ⊂ BlY ′ X
′ of the exceptional divisor is topo-

logically normally nonsingular. In fact, the corresponding topological nor-
mal vector bundle of E′ ⊂ BlY ′ X

′ is then isomorphic to the restriction
to E′ of the tautological line bundle OE(−1) over the exceptional divisor
E ⊂ BlM ′W

′. �

Let Y ↪→ X be a regular embedding with normal bundle N = NYX. We
recall briefly the technique of deformation to the (algebraic) normal bundle.
The embedding of Y in X gives rise to an embedding Y ×0 ↪→ X×0 ↪→ X×C
of Y × 0 in X × C. Let Z = BlY×0(X × C) be the blow-up of X × C along
Y × 0, with exceptional divisor P(N ⊕ 1). The second factor projection
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X ×C→ C induces a flat morphism pZ : Z → C, whose special fiber p−1
Z (0)

is given by
p−1
Z (0) = BlY X ∪P(N) P(N ⊕ 1).

Let Z◦ = Z − BlY X. Then pZ restricts to a morphism p : Z◦ → C, whose
special fiber is p−1(0) = N and whose general fiber is p−1(t) ∼= X ×{t}, t ∈
C∗. This construction deforms the given regular embedding of Y in X to
the zero section embedding of Y in the normal bundle N .

Proposition 6.8. Let g : Y ↪→ X be an upwardly normally nonsingular
embedding of compact complex algebraic varieties with associated deforma-
tion p : Z◦ → C to the (algebraic) normal bundle N = NYX = p−1(0).
Then there exists an open neighborhood (in the complex topology) of p−1(0)
in Z◦ which is homeomorphic to F |N , where F → P(N⊕1) is the topological
normal bundle to the exceptional divisor in Z.

Proof. As g is upwardly normally nonsingular, g is tight and the inclu-
sion P(N ⊕ 1) ⊂ BlY×0(X × C) = Z of the exceptional divisor is nor-
mally nonsingular. In particular, g is normally nonsingular and thus there
is a locally cone-like topological stratification X = {Xα} of X such that
Y := {Yα := Xα ∩ Y } is a locally cone-like topological stratification of Y ,
and there exists a topological vector bundle π : E → Y together with a
topological embedding j : E → X such that j(E) is open in X, j|Y = g, and

the homeomorphism j : E
∼=−→ j(E) is stratum preserving, where the open

set j(E) is endowed with the stratification {Xα ∩ j(E)} and E is endowed
with the stratification E = {π−1Yα}.

As the inclusion P(N ⊕ 1) ⊂ BlY×0(X ×C) = Z is normally nonsingular,
there exists a topological vector bundle πF : F → P(N ⊕ 1) together with a
topological embedding J : F → Z such that J(F ) is open in Z and J |P(N⊕1)

is the inclusion P(N ⊕ 1) ⊂ Z. As N is open in P(N ⊕ 1), the total space
F |N is an open subset of F , and hence J(F |N ) is open in J(F ), which is
open in Z. Thus J(F |N ) is open in Z.

Let d be a metric on Z, whose metric topology agrees with the complex
topology on Z. Let r : P(N ⊕ 1)→ R≥0 be the continuous function defined
by r(x) = 1

2d(x,BlY X). If x ∈ N ⊂ P(N ⊕ 1), then r(x) > 0 since BlY X is
compact. If x ∈ P(N) = P(N ⊕ 1)−N , then r(x) = 0 since P(N) ⊂ BlY X.
Endow F with the unique metric such that J becomes an isometry. Let
Fr ⊂ F be the open subset given by all vectors v ∈ F of length |v| :=
d(0, v) < r(πF (v)). Given a vector v in Fr ∩ π−1

F (N) = Fr, a triangle
inequality argument shows that v has positive distance from every point in
BlY X, from which we conclude that J(Fr|N ) and BlY X are disjoint. Hence
J(Fr|N ) ⊂ Z◦. As Fr|N is open in F |N , we can find an open disc bundle
F ′ ⊂ Fr|N over N . Then J(F ′) is an open neighborhood of N = p−1(0)
in Z◦ and the composition of J with a fiber-preserving homeomorphism
F |N ∼= F ′ over N yields a homeomorphism F |N ∼= F ′ ∼= J(F ′). �

We shall next stratify F |N in a topologically locally cone-like fashion:
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Proposition 6.9. Assumptions and notation as in Proposition 6.8. Let
π̃ : F |N → N denote the bundle projection. Let Y = {Yα = Xα ∩ Y } be
the locally cone-like topological stratification of Y guaranteed by the normal
nonsingularity of Y in X. Then the strata

Sα := π̃−1(π−1
N Yα)

form a locally cone-like topological stratification S = {Sα} of F |N , where πN
denotes the vector bundle projection πN : N → Y .

Proof. The strata Sα are topological manifolds since the Yα are topological
manifolds and the total space of a (locally trivial) vector bundle over a
topological manifold is again a topological manifold. Using local triviality
of vector bundles and the fact that Y is locally cone-like, one constructs
filtration preserving homeomorphisms that show that S is locally cone-like.

�

In order for Lemma 6.11, concerning the constructibility of nearby cycle
complexes, to become applicable, we must refine the stratification so that
the central fiber becomes a union of strata:

Lemma 6.10. The refinement of the locally cone-like topological stratifica-
tion S of Proposition 6.9 given by S ′ := {Sα − N} ∪ {Sα ∩ N} is again a
locally cone-like topological stratification of F |N . (Here we have identified
N with the zero section of F |N .)

Proof. Away from the zero section N , the strata of S ′ agree with the strata
of S. So it suffices to prove that points v ∈ N on the zero section have cone-
like neighborhoods in a stratum preserving fashion. According to Proposi-
tion 6.9, v has an open neighborhood W together with a homeomorphism
W ∼= R2+2r+i × cL, where cL = cone◦ L denotes the open cone on L. This
homeomorphism is stratum preserving if we endow W with the stratification
induced from S. It is, however, not stratum preserving if we endow W with
the stratification induced from S ′. Let L′ be the join L′ = S1 ∗L, a compact
space. Composing the homeomorphism

R2+2r+i × cL = R2r+i × (R2 × cL) ∼= R2r+i × (cS1 × cL)

∼= R2r+i × c(S1 ∗ L) ∼= R2r+i × cL′

with the above homeomorphism, we obtain a homeomorphism W ∼= R2r+i×
cL′. We shall now stratify L′ in such a way that this homeomorphism is
stratum preserving if W is equipped with the stratification induced from S ′.
This will finish the proof. Let A andB be compact spaces with stratifications
A = {Aα}, B = {Bβ}, respectively. The product stratification of cA × cB
is given by

CA × CB = {(0, 1)×Aα × (0, 1)×Bβ} ∪ {(0, 1)×Aα × {cB}}
∪ {{cA} × (0, 1)×Bβ} ∪ {(cA, cB)}.
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The join A ∗B = cA×B ∪A×B A× cB is canonically stratified by

J = {(0, 1)×Aα ×Bβ} ∪ {{cA} ×Bβ} ∪ {Aα × {cB}}.

Therefore, the cone c(A ∗B) has the canonical stratification

CJ = {(0, 1)× (0, 1)×Aα ×Bβ} ∪ {(0, 1)×Aα × {cB}}
∪ {(0, 1)× {cA} ×Bβ} ∪ {(cA, cB)},

which agrees with CA×CB under the homeomorphism cA× cB ∼= c(A ∗B).
So this homeomorphism is stratum preserving if we stratify as indicated. We
apply this with A = S1, B = L, and A = {S1} (one stratum). Then, using
the above method, the open disc cA = cS1 = D◦2 receives the stratification

CA = {(0, 1)× S1, cA = 0},

where 0 ∈ D◦2 denotes the center of the disc. In the stratification S this disc
is stratified with precisely one stratum (the entire disc), while in the refined
stratification S ′, the disc must be stratified with two strata, namely the
center and its complement. As we have seen, this is achieved automatically
by the above cone stratification procedure. Thus if we endow L′ = S1∗L with
the canonical join stratification J described above, then the stratification
CJ will agree with CA × CB under the homeomorphism cL′ ∼= cS1 × cL =
D◦2 × cL and D◦2 × cL contains {0} × cL as a union of strata, as required
by S ′. �

Via the homeomorphism of Proposition 6.8, the locally cone-like topolog-
ical stratification S ′ of Lemma 6.10 induces a locally cone-like topological
stratification SU of a neighborhood U of p−1(0) = N in Z◦. In SU , the
central fiber N is a union of strata. Hence, Lemma 6.11 below is applica-
ble to the stratification SU . We will apply the Lemma in this manner in
proving Proposition 6.20 on the Hodge nearby cycle functor applied to the
intersection Hodge module of the deformation space. Saito’s Hodge nearby
cycle functor ψHf is a functor

ψHf : MHM(V ) −→MHM(F ),

where f : V → C is an algebraic function with central fiber F = f−1(0).
Deligne’s nearby cycle functor ψf does not preserve perverse sheaves, but
the shifted functor ψf [−1] : Per(V ) → Per(F ) does. Saito thus often uses
the notation pψf := ψf [−1] for the shifted functor. Then the diagram

MHM(V )
ψH
f //

rat
��

MHM(F )

rat
��

Per(V )
ψf [−1]

// Per(F )
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commutes. It is also customary to write ψ′Hf := ψHf [1]. Then one gets a
commutative diagram

DbMHM(V )
ψ′Hf //

rat
��

DbMHM(F )

rat
��

Db
c(V )

ψf // Db
c(F )

(6.1)

So ψ′Hf lifts ψf to the derived category of mixed Hodge modules. In proving

Proposition 6.20 below, we shall use Schürmann’s [61, Lemma 4.2.1, p. 247]
in the following form:

Lemma 6.11. (Schürmann.) Let V be a topological space endowed with a
locally cone-like topological stratification and let p : V → C be a continuous
function such that the subspace F = p−1(0) is a union of strata. If F is a
constructible complex of sheaves on V , then ψpF is constructible with respect
to the induced stratification of F , i.e. the restrictions of the cohomology
sheaves to strata are locally constant.

Let g : Y ↪→ X be a regular closed algebraic embedding with algebraic
normal bundle N = NYX. The associated deformation to the normal bundle
p : Z◦ → C comes with the commutative diagram

{0} �
� // C C∗? _oo

Y × 0

OO

� � iY //
� _

k
��

Y × C

pY

OO

� _

G
��

Y × C∗
pr2

OO

� _

g×id
��

? _
jYoo pr1 // Y � _

g

��
Y NπN
oo � � i //

��

Z◦

p

��

X × C∗

pr2
��

? _
joo pr1 // X

{0} �
� // C C∗.? _oo

The map πN : N → Y is the bundle projection and k : Y × 0 ↪→ N its zero
section. The inclusions i, iY are closed, while the embeddings j, jY are open.
The map G is the closed embedding of Y × C into the deformation space
Z◦.

According to Saito [57, p. 269], the specialization functor ψHp j!(− �
QH

C∗ [1]) from mixed Hodge modules on X to mixed Hodge modules on N
induces the identity on MHM(Y ), that is, the canonical morphism

k∗ψHp [1](j! pr∗1M) −→ g∗M (6.2)

for M ∈ DbMHM(X) is an isomorphism in DbMHM(Y ). Indeed, Verdier’s
property “(SP5) Restrictions aux sommets” ([71, p. 353]) asserts that upon
applying the functor rat to (6.2), the underlying morphism is an isomorphism
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in Db
c(Y ). Since the functor rat is conservative by Lemma 5.10, it follows

that (6.2) is an isomorphism in DbMHM(Y ).
The behavior of the intersection Hodge module under normally nonsin-

gular pullback and normally nonsingular restriction is treated in the next
lemmas. We recall [62, p. 443, Prop. 4.5]:

Lemma 6.12. Let π : X → Y be a morphism of algebraic varieties. If
π is a smooth morphism of pure fiber dimension r, then there is a natural
isomorphism of functors

π! = π∗[2r](r) : DbMHM(Y ) −→ DbMHM(X).

The following result will be applied later in the case where the smooth
morphism is the projection of an algebraic vector bundle.

Lemma 6.13. Let X and Y be pure-dimensional complex algebraic varieties
and let π : X → Y be a smooth algebraic morphism of pure fiber dimension
r. Then

π∗[ICHY [r]] = [ICHX ]

under the smooth pullback π∗ : K0(MHM(Y ))→ K0(MHM(X)).

Proof. According to Saito [57, p. 257], MHM(−) is stable under smooth
pullbacks. There is thus a functor π∗[r] : MHM(Y ) → MHM(X) and by
Lemma 6.12, π![−r] = π∗[r](r). This functor is exact, which can be shown
by an argument similar to the one used to prove Lemma 6.18 below. Let
V ⊂ Y be a Zariski-open, smooth, dense subset with inclusion j : V ↪→ Y .
The preimage jU : U = π−1(V ) ↪→ X is again Zariski-open, smooth, and
dense. The restriction πU : U → V of π is again smooth of pure fiber
dimension r, so that in particular π!

U [−r] = π∗U [r](r). By [57, p. 323,
(4.4.3)], the cartesian square

U

πU
��

jU // X

π
��

V
j
// Y

has associated base change natural isomorphisms jU∗π
!
U
∼= π!j∗ and jU !π

∗
U
∼=

π∗j!. Using these, and the exactness of π∗[r], we obtain isomorphisms

π∗[r](H0j! → H0j∗) = H0(jU !π
∗
U [r])→ H0(jU∗π

∗
U [r]).
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Substitution of QH
V [n], where n = dimC Y , gives

π∗[r]ICHY = π∗[r] im(H0j!QH
V [n]→ H0j∗QH

V [n])

= imπ∗[r](H0j!QH
V [n]→ H0j∗QH

V [n])

= im(H0(jU !π
∗
U [r]QH

V [n])→ H0(jU∗π
∗
U [r]QH

V [n]))

= im(H0(jU !QH
U [n+ r])→ H0(jU∗QH

U [n+ r]))

= ICHX .

�

Given an algebraic stratification S of a complex algebraic variety X, let
Db
c(X,S) denote the full subcategory of Db

c(X) consisting of all complexes on
X which are constructible with respect to S. Similarly, we define Per(X,S)
to be the full subcategory of Per(X) consisting of all perverse sheaves on X
which are constructible with respect to S. The category Per(X,S) is abelian
and the inclusion functor Per(X,S) → Per(X) is exact. (For example,
a kernel in Per(X) of a morphism of S-constructible perverse sheaves is
itself S-constructible and a kernel in Per(X,S).) Perverse truncation and
cotruncation, and hence perverse cohomology, restricts to S-constructible
objects:

Db
c(X)

pHk
// Per(X)

Db
c(X,S)

OO

pHk
// Per(X,S).

OO
(6.3)

More generally, we may consider Db
c(X,S) and Per(X,S) on any space X

equipped with a locally cone-like topological stratification S.

Lemma 6.14. Let X be an even-dimensional space equipped with a locally
cone-like topological stratification S whose strata are all even-dimensional.
Let g : Y ↪→ X be a normally nonsingular topological embedding of even real
codimension 2c with respect to S. Let T be the locally cone-like stratification
of Y induced by S. Then the functor g![c] = g∗[−c] : Db

c(X,S) → Db
c(Y, T )

restricts to a functor g![c] = g∗[−c] : Per(X,S)→ Per(Y, T ), which is exact.

Proof. First, as g is normally nonsingular with respect to S (see Definition
3.3) of real codimension 2c, we have g! = g∗[−2c] : Db

c(X,S) → Db
c(Y, T ),

see e.g. [5, p. 163, proof of Lemma 8.1.6]. Let Sα be the strata of S and
sα : Sα ↪→ X the corresponding stratum inclusions. By (1) of Definition
3.3, a locally cone-like topological stratification of Y is given by T = {Tα}
with Tα = Sα ∩ Y and inclusions tα : Tα ↪→ Y . By (3) of Definition
3.3, there is a topological vector bundle π : E → Y and a topological
embedding j : E ↪→ X onto an open subset j(E) of X. The restricted
homeomorphism j : E ∼= j(E) is stratum preserving, i.e. restricts further to
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a homeomorphism j| : π−1(Tα) ∼= Sα ∩ j(E). Therefore,

dimR Tα = dimR Sα − 2c. (6.4)

The category Per(X,S) of S-constructible perverse sheaves on X is the
heart of (pD≤0(X,S), pD≥0(X,S)), the perverse t-structure with respect to
S. For A• ∈ pD≥0(X,S), one uses (6.4) to verify that g![c]A• ∈ pD≥0(Y, T ).
In particular, the functor g![c] = g∗[−c] : Db

c(X,S) → Db
c(Y, T ) is left-t-

exact with respect to the perverse t-structure. Similarly, A• ∈ pD≤0(X,S)
implies that g![c]A• ∈ pD≤0(Y, T ). Hence, g![c] = g∗[−c] is also right-t-
exact, and thus t-exact. It follows that g![c] = g∗[−c] : Db

c(X,S)→ Db
c(Y, T )

preserves hearts. Moreover, pH0(g![c]) = g![c], and this functor is exact on
the category of perverse sheaves, for example by [5, Prop. 7.1.15, p. 151]. �

For a complex algebraic varietyX endowed with an algebraic stratification
S, MHM(X,S) denotes the full subcategory of MHM(X) whose objects
are those mixed Hodge modules M on X such that rat(M) ∈ Ob Per(X,S).

Lemma 6.15. The category MHM(X,S) is abelian and the inclusion func-
tor MHM(X,S)→MHM(X) is exact.

Proof. We use the following general category-theoretic fact: Let F : A→ B
be an exact functor between abelian categories. Let B′ be a full subcategory
of B such that B′ is abelian and the inclusion functor B′ → B is exact. Then
the full subcategory A′ of A given by

ObA′ = {X ∈ ObA | ∃X ′ ∈ ObB′ : F (X) ∼= X ′}
is an abelian category and the inclusion functor A′ → A is exact. In partic-
ular, if B′ is in addition isomorphism-closed in B, then A′ with

ObA′ = {X ∈ ObA | F (X) ∈ ObB′}
is abelian with A′ → A exact. We apply this to the exact functor F = rat :
MHM(X)→ Per(X) and B′ = Per(X,S). We noted earlier that Per(X,S)
is abelian and Per(X,S) → Per(X) is exact. Quasi-isomorphisms of com-
plexes of sheaves preserve S-constructibility. Thus Per(X,S) is isomorphism
closed in Per(X). The statement of the lemma follows since A′ as described
above agrees in the application F = rat with MHM(X,S). �

By definition, the functor rat : MHM(X)→ Per(X) restricts to a functor
rat : MHM(X,S) → Per(X,S). Since Per(X,S) is isomorphism-closed in
Per(X), the subcategory MHM(X,S) is isomorphism-closed in MHM(X).
The functor rat : MHM(X,S) → Per(X,S) is exact and faithful. Let
DM(X,S) denote the full subcategory of DbMHM(X) whose objects M•

satisfy ratM• ∈ ObDb
c(X,S). Thus by definition, rat : DbMHM(X) →

Db
c(X) restricts to

rat : DM(X,S)→ Db
c(X,S),

which is still conservative. We shall momentarily give an alternative descrip-
tion of DM(X,S) via cohomological restrictions. We will use the following
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constructibility principle: If C• ∈ ObDb
c(X) is a complex such that pHk(C•)

is S-constructible for every k, then C• is S-constructible.

Lemma 6.16. The subcategory DM(X,S) ⊂ DbMHM(X) equals the full
subcategory of DbMHM(X) whose objects M• satisfy

Hk(M•) ∈ ObMHM(X,S)

for all k.

Proof. Let M• be an object of DM(X,S). Thus ratM• is an object
of Db

c(X,S). It follows that pHk(ratM•) ∈ Ob Per(X,S), by (6.3). As
pHk(ratM•) = ratHk(M•), the latter is an object of Per(X,S). By the
definition of MHM(X,S), Hk(M•) is in MHM(X,S). Conversely, let M•

be an object ofDbMHM(X) such thatHk(M•) ∈ ObMHM(X,S) for all k.
Then ratHk(M•) ∈ Ob Per(X,S) for all k. So pHk(ratM•) ∈ Ob Per(X,S)
for all k, and this implies, by the remark preceding the lemma, that ratM• ∈
ObDb

c(X,S). Hence M• ∈ ObDM(X,S). �

Lemma 6.16 implies:

Lemma 6.17. The MHM -cohomology functor

Hk : DbMHM(X)→MHM(X)

restricts to a functor Hk : DM(X,S)→MHM(X,S),

DbMHM(X)
Hk

// MHM(X)

DM(X,S)

OO

Hk
// MHM(X,S).

OO

The diagram

DbMHM(X)
Hk

//

rat
��

MHM(X)

rat

��
Db
c(X)

pHk
// Per(X)

commutes ([48, Lemma 14.5, p. 341]), whence the restricted diagram

DM(X,S)
Hk
//

rat
��

MHM(X,S)

rat
��

Db
c(X,S)

pHk
// Per(X,S)

(6.5)

commutes as well.

Lemma 6.18. Let X be a complex algebraic variety and let g : Y ↪→ X
be a closed algebraic embedding of complex codimension c, whose underlying
topological embedding is normally nonsingular and compatibly stratifiable.
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Let S be an algebraic stratification of X compatible with the normal nonsin-
gularity of the embedding and such that the induced stratification T on Y is
again algebraic. Then the functor g∗[−c] : DbMHM(X) → DbMHM(Y )
restricts to a functor g∗[−c] : MHM(X,S)→MHM(Y, T ), which is exact.
A similar statement applies to g![c].

Proof. We start out by showing that

g∗[−c] : DbMHM(X)→ DbMHM(Y )

restricts to a functor g∗[−c] : DM(X,S) → DM(Y, T ). If M• is an ob-
ject of DM(X,S), then ratM• ∈ ObDb

c(X,S) and thus g∗[−c](ratM•) ∈
ObDb

c(Y, T ). Now g∗[−c](ratM•) = rat(g∗[−c]M•), from which we con-
clude that g∗[−c]M• ∈ ObDM(Y, T ).

Let P ∈ Per(X,S) be a perverse sheaf on X. By Lemma 6.14, g∗[−c]P ∈
Per(Y, T ) and hence g∗[−c]P = pH0g∗[−c]P, while pHk(g∗[−c]P ) = 0 for
k 6= 0.

The exact functor rat : MHM(X)→ Per(X) induces degreewise a func-
tor DbMHM(X)→ Db Per(X). The “realization” functor

real : Db Per(X)→ Db
c(X)

of BBD [11, p. 82, 3.1.9 and Prop. 3.1.10] satisfies real ◦[−c] = [−c] ◦ real,
see [11, p. 82, (3.1.9.3)]. Saito defines rat : DbMHM(X) → Db

c(X) as the
composition

DbMHM(X) −→ Db Per(X)
real−→ Db

c(X).

(See [57, p. 222, Theorem 0.1].) Thus the diagram

DbMHM(X)
[−c] //

rat ��

DbMHM(X)

rat��
Db
c(X)

[−c] // Db
c(X)

(6.6)

commutes. Let M ∈MHM(X,S) be a single mixed Hodge module, thought
of as an object in DM(X,S) ⊂ DbMHM(X) concentrated in degree 0.
Applying the functor g∗[−c], we obtain an object g∗[−c]M ∈ DM(Y, T ).
By (6.5), ratHk(g∗[−c]M) = pHk(rat(g∗[−c]M)). Since g∗ on DbMHM
lifts g∗ on Db

c, we have pHk(rat(g∗[−c]M)) = pHk(g∗ rat([−c]M)). By the
commutativity of diagram (6.6), pHk(g∗ rat([−c]M)) = pHk(g∗[−c] ratM).
Now P = ratM is a perverse (S-constructible) sheaf on X and hence, as
observed above, pHk(g∗[−c] ratM) = 0 for k 6= 0. We conclude that

ratHk(g∗[−c]M) = 0 for k 6= 0.

Since rat : MHM(Y ) → Per(Y ) is faithful, Hk(g∗[−c]M) = 0 for k 6= 0.
So in DM(Y, T ), there is a natural isomorphism H0(g∗[−c]M) = g∗[−c]M,
given by composing the natural quasi-isomorphisms

τ≥0τ≤0g
∗[−c]M −→ τ≥0g

∗[−c]M ←− g∗[−c]M.
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This shows that g∗[−c]M is canonically quasi-isomorphic to the single mixed
Hodge module H0(g∗[−c]M) ∈MHM(Y, T ).

Let

A A //

F
��

A′

F ′
��

B B // B′
be a commutative diagram of additive functors between abelian categories
with F, F ′ exact and F ′ faithful. If B is exact, then A is exact. Applying
this to the commutative diagram of functors

MHM(X,S)
g∗[−c] //

ratX
��

MHM(Y, T )

ratY
��

Per(X,S)
g∗[−c] // Per(Y, T ),

with ratY , ratX faithful and exact, and g∗[−c] on perverse sheaves exact,
we conclude that g∗[−c] : MHM(X,S) → MHM(Y, T ) is exact. The
argument for g![c] is entirely analogous. �

Lemma 6.19. Let X,Y be pure-dimensional complex algebraic varieties.
Let g : Y ↪→ X be a closed algebraic (not necessarily regular) embedding
of complex codimension c, whose underlying topological embedding is nor-
mally nonsingular and compatibly stratifiable. Then there is an isomorphism
g∗ICHX [−c] = ICHY .

Proof. By compatible stratifiability, there exists an algebraic stratification
S of X such that g is normally nonsingular with respect to S, and the
induced stratification T of Y is again algebraic. Let U ⊂ X be the top
stratum of S. Since S is algebraic and X is pure-dimensional, U is a Zariski-
open, smooth, dense subset of X. Let j : U ↪→ X be the corresponding
inclusion. The intersection V = U ∩ Y ↪→ Y is the top stratum of T
and hence also Zariski-open, smooth (as a variety), and dense in Y . Let
jV : V ↪→ Y be the corresponding inclusion. By (3)(c) of Definition 3.3, the
restriction gV : V → U of g is again (algebraic and) normally nonsingular
(with respect to the intrinsic stratification consisting of one stratum) of
codimension c. By [57, p. 323, (4.4.3)], the cartesian square

V

gV
��

jV // Y

g

��
U

j
// X

has associated base change natural isomorphisms jV ∗g
!
V
∼= g!j∗ and jV !g

∗
V
∼=

g∗j!. Let m = dimCX and n = dimC Y so that c = m− n. The complexes
j!QU [m] and j∗QU [m] are S-constructible, e.g. by [14, Cor. 3.11.(iii), p.
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79]. Thus the objects j!QH
U [m] and j∗QH

U [m] of DbMHM(X) belong in fact
to DM(X,S). Consequently, the canonical morphism

H0j!QH
U [m] −→ H0j∗QH

U [m]

is in the abelian category MHM(X,S). Its image ICHX ∈ MHM(X,S)
is the intersection Hodge module on X. The exactness of the functor
g∗[−c] : MHM(X,S) → MHM(Y, T ) provided by Lemma 6.18 ensures
that in MHM(Y, T ),

g∗[−c]ICHX = im g∗[−c](H0j!QH
U [m] −→ H0j∗QH

U [m])

= im(H0g∗j!QH
U [m− c] −→ H0g∗j∗QH

U [m− c]).

We shall show that the normal nonsingularity of g implies that the natu-
ral morphism g∗j∗QH

U → jV ∗g
∗
VQH

U in DM(Y, T ) is an isomorphism. As

rat : DM(Y, T ) → Db
c(Y, T ) is conservative, it suffices to prove that the

underlying morphism

g∗j∗QU → jV ∗g
∗
VQU

is an isomorphism in Db
c(Y, T ). As g is normally nonsingular, g![c] = g∗[−c]

on Db
c(X,S) and, as gV is normally nonsingular, g!

V [c] = g∗V [−c] on Db
c(U,S∩

U). Using the above base change isomorphism g!j∗ ∼= jV ∗g
!
V , we get a

composition of isomorphisms

g∗j∗QU = g!j∗QU [2c] ∼= jV ∗g
!
VQU [2c] = jV ∗g

∗
VQU

which factors g∗j∗QU → jV ∗g
∗
VQU . This establishes the claim. We deduce

that the image above can be written as

im(H0jV !g
∗
VQH

U [n]→ H0jV ∗g
∗
VQH

U [n]),

which, as g∗VQH
U = QH

V , is

im(H0jV !QH
V [n]→ H0jV ∗QH

V [n]) = ICHY .

�

Let X and Y be pure-dimensional varieties and g : Y ↪→ X be a closed
regular algebraic embedding whose underlying topological embedding is nor-
mally nonsingular and compatibly stratifiable. Take M = ICHX [1] in the
isomorphism (6.2), shifted by [−c], to obtain an isomorphism

k∗ψHp [1](pr∗1 IC
H
X [1])[−c] ∼= g∗[−c]ICHX [1] ∼= ICHY [1], (6.7)

using Lemma 6.19.

Proposition 6.20. Let X,Y be pure-dimensional compact complex algebraic
varieties. Let Y ↪→ X be an upwardly normally nonsingular embedding
(Definition 6.5) with algebraic normal bundle N = NYX and associated
deformation to the normal bundle p : Z◦ → C. Then

ψHp IC
H
Z◦ = ICHN .
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Proof. By Lemma 6.13, pr∗1 IC
H
X [1] = ICHX×C∗ . Using the isomorphism

(6.7), which is applicable here as Y ↪→ X is tight (X,Y pure-dimensional),
and tight embeddings are regular and topologically normally nonsingular in
a compatibly stratifiable manner, we obtain an isomorphism

k∗ψHp (ICHX×C∗)[−c] ∼= ICHY .

In DbMHM(N), we have the adjoint relation

HomDbMHM(N)(π
∗
NM1,M2) = HomDbMHM(X)(M1, πN∗M2),

see [62, p. 441, Thm. 4.1]. Thus there is an adjunction morphism

π∗NπN∗ψ
H
p (ICHX×C∗)

adj−→ ψHp (ICHX×C∗) (6.8)

in DbMHM(N). Taking rat, one obtains the adjunction morphism

π∗NπN∗ψp[−1](ICX×C∗)
adj−→ ψp[−1](ICX×C∗) (6.9)

in Db
c(N). As Y ↪→ X is upwardly normally nonsingular, and X,Y com-

pact, Propositions 6.8, 6.9, and Lemma 6.10 all apply. We obtain an open
neighborhood U of N = p−1(0) in Z◦ together with a locally cone-like topo-
logical stratification SU of U such that the central fiber N ⊂ U is a union
of strata, and those strata are given by Sα ∩ N = π−1

N Yα. Taking nearby
cycles is a local operation: if p′ : U → C denotes the restriction of p to U ,
then ψp(−) = ψp′(−|U ). In particular, ψp[−1](ICX×C∗) = ψp′ [−1](ICU ).
The complex ICU is constructible with respect to the locally cone-like topo-
logical stratification SU , by topological invariance of intersection homology,
see also [14, V, Cor. 4.18, p. 95]. Thus by Lemma 6.11, ψp′ [−1](ICU )
(and hence also ψp[−1](ICX×C∗)) is constructible with respect to the strata

Sα ∩N = π−1
N Yα. In particular, ψp[−1](ICX×C∗) is cohomologically locally

constant with respect to the strata π−1
N Yα so that Vietoris-Begle implies that

(6.9) is an isomorphism, [14, p. 164, Lemma 10.14(i)]. Since rat is conser-
vative on DbMHM(N) by Lemma 5.10, the adjunction morphism (6.8) is
an isomorphism

π∗NπN∗ψ
H
p (ICHX×C∗)

∼= ψHp (ICHX×C∗).

Applying k∗[−c] yields isomorphisms

k∗π∗NπN∗ψ
H
p (ICHX×C∗)[−c] ∼= k∗ψHp (ICHX×C∗)[−c] ∼= ICHY .

Since k∗π∗N is the identity, this is an isomorphism

πN∗ψ
H
p (ICHX×C∗)

∼= ICHY [c].

Applying π∗N , we get an isomorphism

π∗NπN∗ψ
H
p (ICHX×C∗)

∼= π∗NIC
H
Y [c].

By Lemma 6.13, π∗NIC
H
Y [c] = ICHN . Hence ψHp (ICHX×C∗)

∼= ICHN . �
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Recall that a flat morphism f : X → Y gives rise to a flat pullback

f∗K : Kalg
0 (Y )→ Kalg

0 (X).

Proposition 6.21. Let Y be a complex algebraic variety and π : N → Y
an algebraic vector bundle over Y . For any coherent sheaf F on Y ,

T ∗y (Tπ) ∩ π∗BMtd1+y[F ] = td1+y(λy(T
∗
π ) ∩ π∗K [F ]).

Proof. We define an Adams-type operation ψj , which operates on a coho-
mology class ξ of degree 2j by ψj(ξ) = (1 + y)j · ξ. Similarly, a homological
Adams-type operation is given by ψk(x) = (1 + y)−k · x on a degree-2k
homology class x. The behavior of these operations in a cap product of a
degree-2(j − k) class ξ and a degree 2j-class x is described by the formula

ψk(ξ ∩ x) = ψj−k(ξ) ∩ ψj(x).

Let r be the complex rank of N . Note that if x has degree 2(j − r), then
π∗BM(x) has degree 2j. Under smooth pullback, one then has

(1 + y)rψjπ
∗
BM(x) = π∗BM(ψj−rx).

By the definition of td1+y and (5.4),

td1+y(λy(T
∗
π ) ∩ π∗K [F ]) =

∑
k≥0

ψk(τ∗(λy(T
∗
π ) ∩ π∗K [F ]))k

=
∑
k≥0

ψk(ch
∗(λy(T

∗
π )) ∩ τ∗π∗K [F ])k.

By BFM-VRR for smooth pullbacks (Proposition 5.6), this equals∑
k≥0

ψk(ch
∗(λy(T

∗
π )) ∪ td∗(Tπ) ∩ π∗BMτ∗[F ])k,

which by Proposition 5.4 is∑
k≥0

ψk(T̃
∗
y (Tπ) ∩ π∗BMτ∗[F ])k.

Computing the degree-2k component in this expression, we get∑
k,j≥0

ψk

(
T̃ j−ky (Tπ) ∩ (π∗BMτ∗[F ])j

)
=
∑
k,j≥0

ψj−kT̃ j−ky (Tπ) ∩ ψj(π∗BMτ∗[F ])j .
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According to Proposition 5.3, this can be written in terms of T ∗y as∑
k,j≥0

ψj−k(1 + y)r−(j−k)T j−ky (Tπ) ∩ ψj(π∗BMτ∗[F ])j

=
∑
k,j≥0

(1 + y)rT j−ky (Tπ) ∩ ψj(π∗BMτ∗[F ])j

=
∑
k,j≥0

T j−ky (Tπ) ∩ (1 + y)rψj(π
∗
BMτ∗[F ])j

=
∑
k,j≥0

T j−ky (Tπ) ∩ π∗BM(ψj−rτj−r[F ])

=
∑
i≥0

T iy(Tπ) ∩ π∗BM

∑
k≥0

ψkτk[F ]

= T ∗y (Tπ) ∩ π∗BMtd1+y[F ].

�

Theorem 6.22. Let Y be a complex algebraic variety and π : N → Y an
algebraic vector bundle over Y . For M ∈ DbMHM(Y ),

T ∗y (Tπ) ∩ π∗BMMHTy∗[M ] = MHTy∗(π
∗
MHMM).

Proof. This follows from Schürmann’s MHCy-Verdier-Riemann-Roch for-
mula (Proposition 5.2) and Proposition 6.21:

MHTy∗(π
∗
MHMM) = td1+yMHCy(π

∗
MHMM)

= td1+y(λy(T
∗
π ) ∩ π∗KMHCy[M ])

= T ∗y (Tπ) ∩ π∗BMtd1+yMHCy[M ]

= T ∗y (Tπ) ∩ π∗BMMHTy∗[M ].

�

Proposition 6.23. If Y is a pure-dimensional complex algebraic variety
and π : N → Y an algebraic vector bundle over Y , then

T ∗y (Tπ) ∩ π∗BMITy∗(Y ) = ITy∗(N).

Proof. Using Theorem 6.22 and Lemma 6.13,

T ∗y (Tπ) ∩ π∗BMITy∗(Y ) = T ∗y (Tπ) ∩ π∗BMMHTy∗[IC
H
Y [−n]]

= MHTy∗(π
∗
MHM[ICHY [−n]])

= MHTy∗[IC
H
N [−m]] = ITy∗(N).

�

Given a closed algebraic embedding Y ↪→ X, a specialization map

SpBM : HBM
∗ (X) −→ HBM

∗ (NYX), (6.10)

on Borel-Moore homology, where N = NYX is the normal cone of Y in X,
has been constructed by Verdier in [70, §8]. As before, let p : Z◦ → C be
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the deformation to the normal cone, obtained by restricting pZ : Z → C.
It will be convenient to embed the family Z as a Zariski open dense subset
into the following family W : The embedding of Y in X gives rise to an
embedding Y × 0 ↪→ X × 0 ↪→ X × P1. Let W = BlY×0(X × P1). There is
a flat morphism pW : W → P1, whose special fiber is given by

p−1
W (0) = p−1

Z (0) = BlY X ∪P(N) P(N ⊕ 1).

Let W ◦ = W − BlY X. Then pW restricts to a morphism p : W ◦ → P1,
whose special fiber is p−1(0) = N . The open complement P1 − {0} ∼= C
has preimage p−1(C) ∼= X × C. As blow-ups are determined locally, the
open dense embedding X × C ⊂ X × P1 induces an open dense embedding
Z ⊂W and an open dense embedding Z◦ ⊂W ◦. The advantage of W over
Z is that the open complement C of {0} in P1 is contractible and has the
structure of a complex vector space, while neither is true for C∗. The factor
projection pr1 : X×C→ X induces a smooth pullback pr∗1,BM : HBM

∗ (X)→
HBM
∗+2(X × C) on Borel-Moore homology. (We continue to use real, not

complex, indexing for Borel-Moore homology.) By the Thom isomorphism
theorem, this suspension map is an isomorphism. Thus we may invert it
and define

lim
t→0

:= SpBM ◦(pr∗1,BM)−1 : HBM
∗+2(X × C) −→ HBM

∗ (N). (6.11)

The closed embedding i : N ↪→ W ◦ is regular (with trivial algebraic
normal bundle pulled up from the trivial normal bundle of {0} in P1). Thus
there is a Gysin homomorphism

i! = i∗BM : HBM
∗+2(W ◦) −→ HBM

∗ (N).

The following proposition is a special case of Schürmann’s specialization for
motivic Hirzebruch classes ([64]), a proof is sketched in [44, Theorem 4.6,
Corollary 4.7].

Proposition 6.24. Let Y ↪→ X be a closed algebraic embedding with normal
cone N = NYX and associated deformation to the normal cone p : W ◦ →
P1. Then the diagram

K0MHM(W ◦)
ψ′Hp //

MHT1∗
��

K0MHM(N)

MHT1∗
��

HBM
∗+2(W ◦;Q)

i! // HBM
∗ (N ;Q)

commutes. (Actually, this holds more generally for MHTy∗, but we use it
only for y = 1.)

For a complex variety V , Ak(V ) denotes the Chow group of algebraic
k-cycles in V modulo rational equivalence.
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Lemma 6.25. Let Y ↪→ X be a closed algebraic embedding with normal
cone N = NYX and associated deformation p : W ◦ → P1 to the normal
cone. Then the diagram

HBM
∗+2(W ◦)

i! //

j∗BM ''

HBM
∗ (N)

HBM
∗+2(X × C)

limt→0

77

commutes on algebraic cycles, where j∗BM denotes restriction of a Borel-
Moore cycle to an open subset, i.e. the diagram commutes on the image of
the cycle map cl : A∗+1(W ◦)→ HBM

2∗+2(W ◦).

Proof. There is a short exact sequence

A∗+1(N)
i∗−→ A∗+1(W ◦)

j∗A−→ A∗+1(X × C) −→ 0,

where the map i∗ is proper pushforward under the proper map i : N ↪→W ◦,
and j∗A is restriction to an open subset. Let i!A : A∗+1(W ◦)→ A∗(N) denote

the Gysin map for divisors. Then the composition i!A ◦ i∗ is zero, since the
algebraic normal bundle of N in W ◦ is trivial. (Intuitively, the triviality of
the normal bundle implies that any cycle in N can be pushed off of N in W ◦

and thus its transverse intersection with N is zero.) By exactness, we may
identify A∗+1(X × C) with the cokernel of i∗. Then im i∗ ⊂ ker i!A implies

that i!A induces uniquely a map

A
lim
t→0

: A∗+1(X × C) −→ A∗(N)

such that

A∗+1(W ◦)
i!A //

j∗A ''

A∗(N)

A∗+1(X × C)
limA

t→0

88
(6.12)

commutes. Note that this is the diagram in the statement of the lemma, only
on Chow instead of Borel-Moore. To finish the proof, one uses that the Gysin
map of a regular embedding, as well as smooth pullback, commute with the
cycle map from Chow to Borel-Moore. The Chow level specialization map
SpA : A∗(X) −→ A∗(N) is defined to be the composition

A∗(X)
pr∗1,A−→ A∗+1(X × C)

limA
t→0−→ A∗(N),

see [29, p. 89, Proof of Prop. 5.2] or [63, p. 15, (25)], or [70, p. 198], and is
known to commute with the cycle map. �
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Proposition 6.26. Let X,Y be pure-dimensional compact complex algebraic
varieties. If g : Y ↪→ X is an upwardly normally nonsingular embedding with
algebraic normal bundle NYX, then

SpBM IT1∗(X) = IT1∗(NYX).

Proof. By Definition (6.11), SpBM IT1∗(X) = limt→0 pr∗1,BM IT1∗(X). We
regard π := pr1 : X × C → X as the projection of the trivial line bundle
1X over X. Then Tπ = π∗(1X) = 1X×C and hence, using (5.3), T ∗1 (Tπ) =
T ∗1 (1X×C) = L∗(1X×C) = 1. By Proposition 6.23,

π∗BMIT1∗(X) = 1 ∩ π∗BMIT1∗(X) = T ∗1 (Tπ) ∩ π∗BMIT1∗(X) = IT1∗(X × C).

With n = dimCX, we thus have

SpBM IT1∗(X) = lim
t→0

IT1∗(X × C) = lim
t→0

MHT1∗(IC
H
X×C[−n− 1]).

Let j denote the open embedding j : X ×C ↪→W ◦ associated to the defor-
mation to the normal bundle; j−1ICHW ◦ = ICHX×C. Since the transformation
MHTy∗ commutes with restriction to open subsets,

SpBM IT1∗(X) = lim
t→0

j∗BMMHT1∗(IC
H
W ◦ [−n− 1]).

By Remark 5.12, the class MHT1∗(IC
H
W ◦ [−n− 1]) = IT1∗(W

◦) is algebraic.
Hence, by Lemma 6.25,

lim
t→0

j∗BMMHT1∗(IC
H
W ◦ [−n− 1]) = i!MHT1∗(IC

H
W ◦ [−n− 1]).

By Proposition 6.24,

i!MHT1∗(IC
H
W ◦ [−n− 1]) = MHT1∗ψ

′H
p (ICHW ◦ [−n− 1]).

Finally, by Proposition 6.20 (which requires upward normal nonsingularity
of the embedding, pure-dimensionality and compactness),

ψ′Hp (ICHW ◦ [−n− 1]) = ψHp [1](ICHW ◦ [−n− 1]) = ψHp (ICHW ◦ [−n]) = ICHN [−n].

We conclude that SpBM IT1∗(X) = MHT1∗(IC
H
N [−n]) = IT1∗(N), since

dimCN = n. �

The following cap product formula for homological Gysin maps is stan-
dard, see e.g. [12, Ch. V, §6.2 (c), p. 35]) or [7, Lemma 5, p. 613].

Lemma 6.27. Let Y be a complex algebraic variety and let π : N → Y be
an algebraic vector bundle projection. If η ∈ H∗(Y ) and a ∈ HBM

∗ (Y ) are
classes in even degrees, then

π∗BM(η ∩ a) = π∗(η) ∩ π∗BM(a).

Proposition 6.28. Let Y be a pure-dimensional complex algebraic variety
and let k : Y ↪→ N be the zero section of an algebraic vector bundle projection
π : N → Y . Then

k!ITy∗(N) = T ∗y (N) ∩ ITy∗(Y ).
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Proof. By the Thom isomorphism theorem, the Gysin pullback k! = k!
BM

and the smooth pullback π∗BM are inverse isomorphisms on Borel-Moore ho-
mology, see Chriss-Ginzburg [27, Prop. 2.6.43, p. 107]. The relative tangent
bundle of π is given by Tπ = π∗N . Since T ∗y is a natural characteristic class in
cohomology, T ∗y (Tπ) = π∗T ∗y (N). Thus, using Proposition 6.23 and Lemma
6.27, we get

k!
BMITy∗(N) = k!

BM(T ∗y (Tπ) ∩ π∗BMITy∗(Y ))

= k!
BM(π∗T ∗y (N) ∩ π∗BMITy∗(Y ))

= k!
BMπ

∗
BM(T ∗y (N) ∩ ITy∗(Y )) = T ∗y (N) ∩ ITy∗(Y ).

�

Lemma 6.29. Let g : Y ↪→ X be a closed regular embedding of possibly
singular varieties. Let N = NYX denote the algebraic normal bundle and
let c be the complex codimension of Y in X. The Gysin map g! : HBM

∗ (X)→
HBM
∗−2c(Y ) factors as

HBM
∗ (X)

g! //

SpBM &&

HBM
∗−2c(Y )

HBM
∗ (N),

k!

88

where k! is the Gysin restriction to the zero section and SpBM is Verdier’s
Borel-Moore specialization map ( 6.10).

Proof. This is simply Verdier’s description of the Gysin map as given in [70,
p. 222], observing that (π∗BM)−1 = k!

BM according to the Thom isomorphism
theorem on Borel-Moore homology. �

Theorem 6.30. Let X,Y be pure-dimensional compact complex algebraic
varieties and let g : Y ↪→ X be an upwardly normally nonsingular embed-
ding (Definition 6.5). Let N = NYX be the algebraic normal bundle of g
and let ν denote the topological normal bundle of the topologically normally
nonsingular inclusion underlying g. Then

g!IT1,∗(X) = L∗(N) ∩ IT1,∗(Y ) = L∗(ν) ∩ IT1,∗(Y ).

Proof. By Lemma 6.29, g!IT1,∗(X) = k! SpBM IT1,∗(X). Proposition 6.26,
which requires (pure-dimensionality and) upward normal nonsingularity of
the embedding, yields k! SpBM IT1,∗(X) = k!IT1,∗(N), while by Proposition

6.28, k!IT1,∗(N) = T ∗1 (N)∩IT1,∗(Y ). Finally, we recall that T ∗1 (N) = L∗(N),
(5.3). Since g is tight, there is a bundle isomorphism N ∼= ν of topological
vector bundles. Hence L∗(N) = L∗(ν). �
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variety theorem. Comment. Math. Helv. 65 (1990), no. 2, 198–233. MR1057240, Zbl
0707.57017. 1297

[48] Peters, Chris A.M.; Steenbrink, Joseph H.M. Mixed Hodge structures. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys
in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series
of Modern Surveys in Mathematics], 52. Springer-Verlag Berlin, 2008. xiv+470 pp.
ISBN: 978-3-540-77015-2. MR2393625, Zbl 1138.14002 doi: 10.1007/978-3-540-77017-
6. 1310, 1322

[49] Ranicki, Andrew A. Algebraic L-theory and topological manifolds. Cambridge
Tracts in Mathematics, 102. Cambridge University Press, Cambridge, 1992. viii+358
pp. ISBN: 0-521-42024-5. MR1211640, Zbl 0767.57002. 1295, 1301

[50] Ranicki, Andrew A. The total surgery obstruction. Algebraic topology, Aarhus,
1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), 275–316, Lect. Notes in Math.,
763, Springer, Berlin, 1979. MR0561227, Zbl 0428.57012, doi: 10.1007/BFb0088091.
1286

[51] Rourke, Colin P.; Sanderson, Brian J. Block bundles. Bull. Amer. Math. Soc.
72 (1966), 1036–1039. MR0214079, Zbl 0147.42501, doi: 10.1090/S0002-9904-1966-
11635-X. 1282

[52] Rourke, Colin P.; Sanderson, Brian J. Block bundles. I. Ann. of Math. (2) 87
(1968), 1–28. MR0226645, Zbl 0215.52204 doi: 10.2307/1970591. 1282, 1290, 1292

[53] Rourke, Colin P.; Sanderson, Brian J. Block bundles. III. Homotopy
theory. Ann. of Math. (2) 87 (1968), 431–483. MR0232404, Zbl 0215.52302,
doi: 10.2307/1970714. 1282, 1292

[54] Rourke, Colin P.; Sanderson, Brian J. On topological neighbourhoods. Compo-
sitio Math. 22 (1970), 387–424. MR0298671, Zbl 0218.57005. 1282

[55] Rudyak, Yuli B. On Thom spectra, orientability, and cobordism. Springer Mono-
graphs in Mathematics. Springer-Verlag Berlin, 1998. xii+587 pp. ISBN: 3-540-62043-
5. MR1627486, Zbl 0906.55001. 1281, 1284

[56] Saito, Morihiko. Modules de Hodge polarisables. Publ. Res. Inst. Math.
Sci. 24 (1988), no. 6, 849–995 (1989). MR1000123, Zbl 0691.14007,
doi: 10.2977/prims/1195173930. 1277, 1306

[57] Saito, Morihiko. Mixed Hodge modules. Publ. Res. Inst. Math. Sci. 26 (1990), no.
2, 221–333. MR1047415, Zbl 0727.14004 doi: 10.2977/prims/1195171082. 1306, 1318,
1319, 1323, 1324

[58] Saito, Morihiko. Introduction to mixed Hodge modules. Actes du Colloque de
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