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Composition operators on distinct
Bergman spaces over planar domains

Shan Li and Hansong Huang

Abstract. In this paper, we will consider composition operators de-
fined between distinct Bergman spaces over planar domains. The smooth-
ness on boundary of the domains plays an important role in our study.
On one hand, an essential extension of Littlewood’s Subordination Prin-
ciple is obtained. Precisely, for each holomorphic map that is defined
between bounded domains of smooth boundaries, the associated com-
position operator is always bounded. This essentially depends on a
“standard decomposition” of holomorphic functions over a classical do-
main, bounded by finitely many disjoint circles. On the other hand, the
situation becomes complex if domains with cusp boundary points are
concerned, and there exists a link between the boundary behavior of
the function symbol and the boundedness of the associated composition
operator, where a detailed discussion is presented. Finally, we give esti-
mates of norms for some classes of such composition operators. A deep
interplay of function theory, geometry, and operator theory is revealed.
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1. Introduction

Let Ω1 and Ω2 be bounded domains in the complex plane C, and let
H(Ω1) and H(Ω2) be the class of all holomorphic maps over Ω1 and Ω2,
respectively. Each holomorphic map ϕ : Ω1 → Ω2 induces a composition
operator Cϕ : f 7→ f ◦ ϕ from H(Ω2) to H(Ω1). The study of composition
operators on various spaces of holomorphic functions has attracted a lot of
attention in the past four decades. The reader can consult, for example, the
references [CM] and [Sh2] for an overview of many aspects on the theory of
composition operators, and also refer to [CHZ, CKS, CZ2, CZ1, KSZ, GM,
Ma, ManPZ, MaS, OSZ, Sm, Sh1].

In this paper, we focus on the Bergman space L2
a(Ω) where Ω is a bounded

planar domain. Precisely, let dA denote the area measure over Ω, and the
Bergman space L2

a(Ω) consists of all holomorphic functions f such that

‖f‖2 =
1

m(Ω)

∫
Ω
|f(z)|2dA(z) <∞,

where m(Ω) denotes the area measure of Ω.
One main motivation of this study arises from Littlewood’s Subordination

Principle, which says that a holomorphic selfmap ϕ of the unit disk D with
ϕ(0) = 0 gives a bounded composition operator on the Bergman space L2

a(D)
(or the Hardy space H2(D)). As well known, it has a direct generalization.

Theorem 1.1 (Littlewood’s Subordination Principle). If ϕ : D → D is a
holomorphic map. Then Cϕ : f → f ◦ ϕ defines a bounded composition
operator from L2

a(D) to L2
a(D).

One soon sees that a plain generalization of Littlewood’s Subordination
Principle fails on high dimensional domain, even if D is replaced by a unit
ball in Cd(d ≥ 2) (see Examples 1 and 2 in [Wo2]). Then it is natural
for us to elaborate on holomorphic maps between planar domains and the
associated composition operators between distinct Bergman spaces. The
first question is posed as follows.

If ϕ is a holomorphic map from the unit disk to the annulus Ω, does
Cϕ : f → f ◦ϕ define a bounded composition operator from L2

a(Ω) to L2
a(D)?

The answer turns out to be yes (see Theorem 3.2). Moreover, if ψ is a
holomorphic map from the annulus to the unit disk, then the analogue is also
true (see Theorem 3.1); the map f → f ◦ ψ defines a bounded composition
operator from L2

a(D) to L2
a(Ω). But the ideas for the proofs of these two

facts are quite different. Furthermore, we have the following generalized
theorem, whose proof depends heavily on a decomposition of holomorphic
functions on special domains (see Lemma 3.5).

Theorem 1.2. Suppose both Ω0 and Ω are bounded domains of C2-boundary.
Let ϕ : Ω0 → Ω be a holomorphic map. Then the map Cϕ : f → f ◦ϕ defines
a bounded composition operator from L2

a(Ω) to L2
a(Ω0).
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The definition of C2-boundary is presented in Section 2, and it simply
guarantees some regularity of the boundary of a domain. We caution the
reader that a bounded domain of C2-boundary is always finite connected.

In Theorem 1.2 the smoothness on the boundaries of domains Ω0 and Ω
does play an important role in our study. If either ∂Ω0 or ∂Ω has at least
a cusp point, then Theorem 1.2 would fail. For example, a conformal map
from a triangle 4 onto the unit disk never defines a bounded composition
operator from L2

a(D) to L2
a(4) (see Example 5.5).

The above examples indicate that cusp boundary points of a domain may
destroy the boundedness of a composition operator. However, for bounded
planar domains Ω1 and Ω2, if a holomorphic map ϕ from Ω1 to Ω2 behaves
well at “bad” points on ∂Ω1, then ϕ still induces a bounded composition
operator (a point p ∈ ∂Ω is called a bad point if it is not a regular boundary
point of class C1). This is formulated as below.

Theorem 1.3. Suppose that Ω1 is a bounded domain of piecewise C2-
boundary, and Ω2 is a bounded domain of C2-boundary. If ϕ : Ω1 → Ω2

is a holomorphic map such that for each bad point p on ∂Ω1, there is a
neighborhood Up such that ϕ(Up ∩ Ω1) is contained in a compact subset of
Ω2. Then the map Cϕ : f → f ◦ ϕ defines a bounded composition operator
from L2

a(Ω2) to L2
a(Ω1).

In general, the situation for domains of cusp boundary points is complex.
It is known that if ϕ is a selfmap of the unit disk and its image is contained
in a polygon inscribed in D, then Cϕ : f 7→ f ◦ϕ defines a compact operator
on L2

a(D) [ShT]. Inspired by this we obtain the following result, but the idea
is essentially different from that in [ShT].

Theorem 1.4. Let Ω be a domain of C2-boundary and Σ be a convex poly-
gon. If ϕ is a holomorphic map from Ω to Σ, then Cϕ : f → f ◦ ϕ defines a
bounded composition operator from L2

a(Σ) to L2
a(Ω).

The convexity of Σ can not be dropped in Theorem 1.4. To see this, let
Σ be a concave polygon and ϕ is a conformal map from D onto Σ. Later,
by Theorem 2.8 it follows that there exists a point ζ on ∂D such that ϕ′(z)

tends to zero as z → ζ. Since f ◦ϕ = (f ◦ϕϕ′) 1

ϕ′
and

1

ϕ′
is unbounded, it is

easy to see that the map Cϕ : f → f ◦ϕ fails to give a bounded composition
operator from L2

a(Σ) to L2
a(D).

Another motivation is to find a link between the boundedness of com-
position operators Cϕ and the behavior of function symbols ϕ. This line
has been attacked under various settings. For example, in [Wo1] Wogen
presented a sufficient and necessary condition for boundedness of Cϕ on

the Hardy space H2(Bn), where ϕ is a C3-map on the closed unit ball Bn,
and he gave some geometric characterizations for bounded composition op-
erators in [Wo2]. The Bergman-space version of Wogen’s result are fully
discussed in [KS], and later Koo and Wang [KW] generalized Wogen’s work
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under a wider setting, where the symbol ϕ is not necessarily holomorphic,
the domain is the unit ball or the polydisk, and the underling spaces are
(harmonic) weighted Bergman spaces.

All characterizations mentioned above require certain local analytical
treatise to deal with smoothness of the symbol ϕ, and we give a try to
investigate how some properties of ϕ globally act on the boundedness of the
map Cϕ. For this, let us turn to holomorphic maps between two polygons
and the Bergman spaces over the polygons. The following present a suffi-
cient condition on a map ϕ such that Cϕ is bounded. For a point ξ ∈ ∂Ω, if
N is a neighborhood of ξ, then N ∩Ω is called an inside-neighborhood of ξ.

Theorem 1.5. Let Σ0 be a polygon, and Σ1 a convex polygon. Suppose ϕ
is a holomorphic map from Σ0 to Σ1. If for each vertex p of Σ0, one of the
following hold:

(i) ϕ maps an inside-neighborhood of p into a compact subset of Σ1;

(ii) ϕ is continuous at p, ϕ(p) is a vertex of Σ1, and |ϕ(z)−ϕ(p)|π/β−1

|z−p|π/α−1 is

bounded on an inside-neighborhood of p, where α and β denotes the
interior angles at p and at ϕ(p), respectively.

Then Cϕ : f → f ◦ ϕ defines a bounded composition map from L2
a(Σ1) to

L2
a(Σ0).

If both Σ0 and Σ1 are convex, Condition (ii) in fact says that ϕ satisfies a
Lipschtz condition on an inside-neighborhood of the vertex p; that is, there
is a constant M such that

|ϕ(z)− ϕ(p)| ≤M |z − p|s,

where s = π/α−1
π/β−1 > 0.

So far, the above context has presented a bird’s eye view of boundedness
of such composition operators defined by general holomorphic maps between
bounded planar domains, either of smooth boundary or of boundary with
cusp points. If one takes a look on composition operators defined by con-
formal maps, then one will find an interplay between function theory and
geometry. For example, it is clear that every conformal selfmap of the unit
disk simply gives a bounded composition operator on the Bergman space
L2
a(D). However, if ϕ is a holomorphic automorphism of a polygon Σ, and

if Cϕ : f 7→ f ◦ϕ defines a bounded composition operator on L2
a(Σ), then ϕ

maps vertices of Σ to vertices of Σ (see Theorem 6.1). Since three boundary
values fix a holomorphic automorphism ϕ, only finite members of ϕ give a
bounded composition operator Cϕ on L2

a(Σ). In particular, if Σ is a triangle
or a quadrilateral, the only candidate for ϕ is the identity map unless Σ is
an equilateral triangle or a parallelogram (see Examples 6.3 and 6.4). We
also give norm estimates for some composition operators.

This paper is arranged as follows. Section 2 contains some notations and
preparatary lemmas. In Section 3, we will present the proof of Theorem 1.2.
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Section 4 establishes Theorem 1.3 and also give some examples of composi-
tion operators defined by holomorphic maps on domains of cusp boundary
points. The proofs of Theorems 1.4 and 1.5 are contained in Section 5,
and Section 6 deals with composition operators defined by conformal maps.
Section 7 presents norm estimates for some classes of composition operators.

2. Some preparations

In this section, we will present basic notions and preparatary lemmas, in-
cluding Ck-boundary (1 ≤ k ≤ ∞), Carathéodory’s theorem, and Schwarz-
Christoffel transformation.

In the sequel, two kinds of domains will be involved: domains of C∞-
boundary and polygons. The definition of C∞-boundary is needed [BerG,
p. 22, Definition 1.4.1].

Definition 2.1. An open subset Ω of R2 is said to have a regular boundary
of class Ck(1 ≤ k ≤ ∞) if for each point p on ∂Ω, there exist a neighborhood
Up of p, a neighborhood Vp of 0 in R2, and a diffeomorphism ϕp : Up → Vp
of class Ck such that ϕp(p) = 0,

ϕp(Up ∩ Ω) = Vp ∩ {(x, y) ∈ R2 : x ≤ 0},

and the Jacobian determinant J(ϕp) of ϕp is positive in Up.

Throughout this paper, a domain Ω is said to be of Ck-boundary if it has
a regular boundary of class Ck.

Example 2.2. The unit ball and the ellipse are domains of C∞-boundary.
More generally, given 1 ≤ k ≤ ∞, if for each point p ∈ ∂Ω there is

a neighborhood Up of p such that by omitting a translation and a rotation
transformation, ∂Ω ∩ Up is the image of the function

y = f(x), −δ < x < δ,

where f ∈ Ck[−δ, δ], with p = (0, f(0)), and

Ω ∩ Up = Vp ∩ {(x, y) ∈ R2 : y > f(x),−δ < x < δ} (2.1)

for some neighborhood of Vp, then Ω is of Ck-boundary.

To see this, let p ∈ ∂Ω, and define the map ϕp : Ω ∩ Up → R2 by

(x, y) 7→ (f(x)− y, x).

Since each point (x, y) in Ω ∩Up satisfies y > f(x) by (2.1), and J(ϕp) = 1,
one can shrink Up such that ϕp becomes a diffeomorphism from Ω∩Up onto
Vp ∩ {(x, y) ∈ R2 : x ≤ 0}, where Vp is a neighborhood of 0 in R2. Thus Ω is

of Ck-boundary provided that f is of class Ck.

In view of Example 2.2, one can construct more domains of Ck-boundaries.
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Example 2.3. For ε > 0, let Ωε be the domain bounded by

{(x, y) ∈ R2 : x4 + y2 = ε2}.
Then Ωε is of C∞-boundary.

Furthermore, one can construct a band for Ωε. Precisely, one can cut Ωε

into two parts through the y-axis, and then glue a rectangle of height 2ε in
the middle. The new domain is denoted by Ω′ε, and we claim that Ω′ε is of
C2-boundary. To this end, observe that at a neighborhood of (0, ε) ∈ ∂Ωε

y =
√
ε2 − x4.

By taking derivative, one obtains that y′(x) = −2x3(ε2 − x4)−
1
2 , and

y′′(x) = −6x2(ε2 − x4)−
1
2 − 4x6(ε2 − x4)−

3
2 .

Then it is straightforward to check that the function

h(x) =

{
y(x), x ≥ 0;

0, x < 0.

is in class C2, and it follows that Ω′ε is of C2-boundary.

By using the idea in Example 2.3, one can construct a band of C∞-
boundary by replacing Ωε with the domain

{(x, y) ∈ R2 : x2 exp(− ε
2

x2
) + y2 = ε2e−1}.

For each r ∈ (0, 1), write

Ar = {z ∈ C : r < |z| < 1

r
}.

The construction in Example 2.3 can be used to prove the following lemma.

Lemma 2.4. For 0 < r < 1, each annulus Ar is contained in a union of
finitely many simply connected sub-domains of Ar bounded by C∞-boundary.

Proof. Let ρ be such that r < ρ < 1. It is obvious that the compact set
{z ∈ C : ρ ≤ |z| ≤ 1

ρ} is contained in a union of finitely many disks in the

annulus Ar. Thus it is enough to show that the domains {z ∈ C : r < |z| < ρ}
and {z ∈ C : 1

ρ < |z| < 1
r} are contained in a union of finitely many

simply connected sub-domains Ωj(1 ≤ j ≤ N) of Ar bounded by C∞-
boundary. Observe that the function z 7→ 1

z maps {z ∈ C : r < |z| < ρ}
conformally to {z ∈ C : 1

ρ < |z| <
1
r}, and it suffices to consider the domain

{z ∈ C : r < |z| < ρ}.
Since {z ∈ C : |z| = r} can be divided into finitely many arc segments,

which are biholomorphic to a same line segment, to prove the lemma boils
down to showing that {z ∈ C : 0 < Rez < 1, 0 < Imz < ε} can be covered
by finitely many simply connected sub-domains of C∞-boundary, lying in the
upper half plane. This follows directly from the constructions in Example 2.3
and the comments below it, because {z ∈ C : 0 < Re z < 1, 0 < Imz < ε}
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can be covered by finitely many copies of translations of Ω′ε. The proof is
complete. �

A slight generalization of Lemma 2.4 is presented as follows.

Corollary 2.5. A bounded open set Ω in C of C∞-boundary is contained
in a union of finitely many simply connected sub-domains Ωj(1 ≤ j ≤ N) of
Ω bounded by C∞-boundary.

We emphasize here that a bounded open set in C of C∞-boundary is nec-
essarily a simply connected domain or a multiply connected domain with
finitely many holes [BerG, p. 24, Proposition 1.4.7].

Corollary 2.5 follows directly from a combination of Lemma 2.4 and The-
orem 2.6 below.

Theorem 2.6. Every bounded open set Ω1 in C of Ck(1 ≤ k ≤ ∞)-boundary
is biholomorphic to a bounded open set Ω2, whose components are analytic
curves. Let h : Ω1 → Ω2 be such a map. Then both h and h−1 have Ck−1-
extension up to the boundaries.

The case k ≥ 2 of Theorem 2.6 is of special interest, where both h and
h−1 have bounded derivatives. The case of k =∞ is due to Bell and Krantz
[BeK], and an alternative reference is [BerG, pp. 431-432, Propositions
4.8.22, 4.8.23]. The proofs for 1 ≤ k <∞ can be founded in Warschawski’s
work in the book [Pom].

In the study of boundedness of composition operators, our first question is
whether a conformal map between distinct domains induces bounded com-
position operators between Bergman spaces on these domains. We have the
following lemma, which will be used frequently later.

Lemma 2.7. Suppose that ϕ : Ω1 → Ω2 is a conformal map between two
planar domains Ω1 and Ω2. Then Cϕ : f → f ◦ ϕ defines a bounded com-
position operator from L2

a(Ω2) to L2
a(Ω1) if and only if ϕ′ is bounded away

from zero.

Proof. Let Ω1 and Ω2 be planar domains, and let ϕ : Ω1 → Ω2 be a
conformal map. Then the map Uϕ defined by

Uϕf = f ◦ ϕϕ′, f ∈ L2
a(Ω2)

proves to be a unitary operator from L2
a(Ω2) onto L2

a(Ω1). By the observation
that

f ◦ ϕ =
1

ϕ′
(f ◦ ϕϕ′) =

1

ϕ′
Uϕf, f ∈ L2

a(Ω2),

Cϕ : f → f ◦ ϕ defines a bounded composition operator from L2
a(Ω2) to

L2
a(Ω1) if and only if h 7→ h 1

ϕ′ , h ∈ L
2
a(Ω1) defines a bounded multiplication

operator, which holds if and only if 1
ϕ′ is bounded. Then it is direct to get

the desired conclusion. �
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By Theorem 2.6, if both Ω1 and Ω2 are of smooth boundary, then the
conformal map ϕ : Ω1 → Ω2 induces a bounded composition map from
L2
a(Ω2) to L2

a(Ω1). However, things change if one of Ω1 and Ω2 has cusp
boundary points, and more techniques are needed (see Section 5).

For this, we introduce a notion called (a, θ, ε)-circular section. Given
a ∈ C, θ ∈ (0, 2π), and ε > 0, an (a, θ, ε)-circular section is a domain Ω
satisfying

{z : 0 < arg(z − a)e−it < θ, |z − a| < ε} ⊆ Ω,

and

{z : 0 < arg(z − a)e−it < θ, |z − a| < ε′} ⊇ Ω

for some t ∈ R and ε′ > 0, and a is called the vertex of (a, θ, ε)-circular
section Ω. The following is of considerable importance in our study.

Theorem 2.8. Suppose ϕ is a biholomorphic map from an (a, α, ε)-circular
section Ω0 onto a (b, β, δ)-circular section Ω1, and ϕ is continuous at a such
that b = ϕ(a). Then the following hold:

(i) If α > β, then lim
z→a

ϕ′(z) =∞.
(ii) If α < β, then lim

z→a
ϕ′(z) = 0.

(iii) If α = β, then ϕ′(z) is bounded and bounded away form zero if |z−a|
is small enough.

In particular, suppose that Σ is a polygon and ϕ is a holomorphic auto-
morphism of Σ. Let a and b be points on ∂Σ, b = ϕ(a), α and β be the
interior angles at a and b, respectively. Then ϕ is a biholomorphic map from
an (a, α, ε)-circular section onto a (b, β, δ)-circular section.

Proof of Theorem 2.8. Without loss of generality, assume a = b = 0 and

{z : 0 < arg z < α, |z| < ε} ⊆ Ω0 and {z : 0 < arg z < β, |z| < δ} ⊆ Ω1.

Also, we assume that both Ω0 and Ω1 are of C2-boundary except at the
vertex 0. Define

f0(z) = z
π
α , 0 < arg z < α,

and

f1(z) = z
π
β , 0 < arg z < β,

with f0(1) = f1(1) = 1. Let Σ0 and Σ1 be the images of Ω0 and Ω1 under
f0 and f1, respectively; that is,

Σ0 = f0(Ω0),Σ1 = f1(Ω1).

Then H(z) = f1 ◦ ϕ ◦ f−1
0 (z), z ∈ Σ0 defines a biholomorphic map from Σ0

onto Σ1. Since both Σ0 and Σ1 are of C2 boundary, by Theorem 2.6 both
H ′ and (H−1)′ are bounded by a positive constant M.

Rewrite w1 = f0(z), w2 = H(w1), and w = f−1
1 (w2). Then

w = f−1
1 ◦H ◦ f0(z) = ϕ(z),



1192 SHAN LI AND HANSONG HUANG

and by taking derivatives

ϕ′(z) =
dw

dz
=

dw

dw2

dw2

dw1

dw1

dz
=
β

α
z
π
α
−1w

β
π
−1

2

dw2

dw1
.

Since both H ′ and (H−1)′ are bounded by M, there is a positive constant
C such that

|w2| ≤ C|w1|, |w1| ≤ C|w2|,
which gives

|ϕ′(z)| ≤M β

α
C

β
π
−1z

π
α
−1w

β
π
−1

1 = M
β

α
C

β
π
−1z

β
α
−1.

If α > β, it immediately follows that lim
z→a

ϕ′(z) =∞.
For α < β, note that ϕ−1 is a biholomorphic map from the (b, β, δ)-

circular section Ω1 to (a, α, ε)-circular section Ω0. Similarly, one obtains
that lim

w→b
(ϕ−1(w))′ =∞, which leads to lim

z→a
ϕ′(z) = 0.

If β = α, by similar reasoning ϕ′(z) is bounded as z tends to a and
(ϕ−1(w))′ is bounded as w tends to b. Therefore, ϕ′(z) is bounded and
bounded away form zero as z tends to a. �

Remark 2.9. The definition of (a, θ, ε)-circular section Ω can be generalized.
Recall that the domain Ω is contained in the angular domain Σ

{z : 0 < arg(z − a)e−it < θ}

for some t ∈ R, where ∂Σ consists of two half lines {z : arg(z − a)e−it = 0}
and {z : arg(z − a)e−it = θ}. In fact, these half lines can be replaced
by circular arcs. In this case, Theorem 2.8 still remains true, with a bit
modification of the proof.

We record two theorems on complex analysis that will be needed later.
One is Carathéodory’s theorem [Ah], which states that if Ω is a Jordan

domain, then the conformal map f from D onto Ω extends to a continuous
bijective map F from D onto Ω and F maps ∂D bijectively onto ∂Ω. If three
boundary values of f are assigned, then f is uniquely determined [Ru, pp.
290-291]. These immediately lead to the following theorem.

Theorem 2.10 (Carathéodory’s theorem). If Ω1 and Ω2 are Jordan do-
mains, then each conformal map f from Ω1 to Ω2 extends to a continuous
bijective map from Ω1 to Ω2. If three boundary values of f are assigned,
then f is necessarily unique.

Specifically, if in Theorem 2.10 Ω1 is allowed to be the half plane, and Ω2

be a polygon, the conformal map is given by Schwarz-Christoffel transfor-
mation [Neh, Pom].

Theorem 2.11 (Schwarz-Christoffel). Let Σ be a polygon in the complex
plane with vertices a1, · · · , an in counterclockwise order and interior angles
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α1, · · · , αn. Then for each conformal map f from the upper half plane onto
Σ satisfying f(∞) = an, f can be expressed as

f(z) = A

∫ z

z0

n−1∏
i=1

(ζ − zi)
αi
π
−1dζ + C,

where A and C are suitable constants, and z0 < z1 < z2 < · · · < zn−1 are
real numbers such that f(zk) = ak, 1 ≤ k ≤ n− 1.

3. Composition operators induced by holomorphic maps
between bounded domains of smooth boundary

This section is devoted to the proof of Theorem 1.2.
To begin with, we establish two stepping-stone theorems. Recall that for

each r ∈ (0, 1),

Ar = {z ∈ C : r < |z| < 1

r
}.

The following tells us that a holomorphic map from an annulus to the
unit disk induces a bounded composition operator between the associated
Bergman spaces.

Theorem 3.1. If ϕ : Ar → D is a holomorphic map, then the map Cϕ :
f → f ◦ ϕ defines a bounded composition operator from L2

a(D) to L2
a(Ar).

Proof. Let f be a function in L2
a(D). For each compact subset K of Ar,

f ◦ ϕ is bounded on K, and thus
∫
K |f ◦ ϕ(z)|2dA(z) <∞. Then it suffices

to show that for a positive number ρ (r < ρ < 1),∫
{r<|z|<ρ}

|f ◦ ϕ(z)|2dA(z) <∞,

and ∫
{ 1
ρ
<|z|< 1

r
}
|f ◦ ϕ(z)|2dA(z) <∞.

By Lemma 2.4, {r < |z| < ρ} is contained in a union of finitely many
simply connected sub-domains Ωj(1 ≤ j ≤ N) of Ar, each bounded by a
C∞-boundary Jordan curve. For each j (1 ≤ j ≤ N), denote by ψj the
Riemann mapping from Ωj onto D, and its inverse by φj .

By Theorem 2.6, φ′j is bounded on D, and then there is a constant C such

that |φ′j |2 ≤ C for all j. Thus∫
Ωj

|f ◦ ϕ(z)|2dA(z) =

∫
D
|f ◦ ϕ ◦ φj(z)|2|φ′j(z)|2dA(z)

≤ C

∫
D
|f ◦ ϕ ◦ φj(z)|2dA(z)

≤ C ′
∫
D
|f(z)|2dA(z),
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where C ′ is a constant independent on f , and the last inequality follows
from Littlewood’s Subordination Principle. Hence,∫

{r<|z|<ρ}
|f ◦ ϕ(z)|2dA(z) ≤

N∑
j=1

∫
Ωj

|f ◦ ϕ(z)|2dA(z) <∞.

By the same reasoning as above, one obtains∫
{ 1
ρ
<|z|< 1

r
}
|f ◦ ϕ(z)|2dA(z) <∞

to finish the proof. �

By exchanging the positions of the disk D and the annulus Ar, one has
an analogue of Theorem 3.1, but with a different proof.

Theorem 3.2. If ψ is a holomorphic map from D to Ar. Then the map
Cψ : f → f ◦ ψ defines a bounded composition operator from L2

a(Ar) to
L2
a(D).

Proof. Let f be a function in L2
a(Ar) and expand the Laurent series of f

as

f(z) =

∞∑
n=−∞

cnz
n, r < |z| < 1

r
.

Write f0(z) =
∑∞

n=0 cnz
n and f1(z) =

∑−1
n=−∞ cnz

n. Since∫
Ar

|f(z)|2dA(z) <∞,

both f0 and f1 lie in L2
a(Ar). By direct computations, there is a constant

c > 0 satisfying∫
Ar

|zn|2dA(z) ≥ c
∫
D 1
r

|zn|2dA(z), n = 0, 1, · · · ,

which implies that f0 ∈ L2
a(D 1

r
), with D 1

r
= {z ∈ C : |z| < 1

r}. Then by

Littlewood’s Subordination Principle, f0 ◦ ψ ∈ L2
a(D).

Since f1 ∈ L2
a(Ar), a change of variable yields that f1(

1

z
) ∈ L2

a(Ar), and

by similar reasoning as above one obtains that f1(
1

z
) ∈ L2

a(D 1
r
). Note that

1
ψ : D→ Ar, by applying Littlewood’s Subordination Principle

f1 ◦ ψ = f1(
1

z
) ◦ 1

ψ
∈ L2

a(D).

Therefore, by f ◦ ψ = f0 ◦ ψ + f1 ◦ ψ we get f ◦ ψ ∈ L2
a(D) as desired. �
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To extend Theorems 3.1 and 3.2 to multiply connected domains of C∞-
boundary, we need some preparations. It is well known that each doubly
connected domain is biholomorphic to the annulus Ar for some r ∈ (0, 1)
[Go, Chapter 5]. This, along with Theorem 2.6, yields the following lemma.

Lemma 3.3. Suppose Ω is a doubly connected domain bounded by two dis-
joint circles. Then there is a conformal map ψ from Ω onto Ar for some
r < 1. Furthermore, both ψ′ and 1

ψ′ are bounded on Ω.

Using Lemma 3.3 we get an immediate consequence of Theorem 3.2.

Corollary 3.4. Suppose Ω is a doubly-connected domain of C∞-boundary
and ψ is a holomorphic map from D to Ω. Then the map Cψ : f → f ◦ ψ
defines a bounded composition operator from L2

a(Ω) to L2
a(D).

We also need the following lemma, which gives the decomposition of a
function in the Bergman space over a multiply connected domain. It is of
independent interest.

Lemma 3.5. Let D0 be an open disk and C0 is the boundary of D0. Let
C1, · · · , Ck be k disjoint circles contained in the disk D0, and Ω be the do-
main bounded by C0, · · · , Ck. Then for each f ∈ L2

a(Ω), there is a decompo-
sition

f = f0 −
k∑
j=1

fj ,

where f0 ∈ L2
a(D0), and fj ∈ L2

a(D\Dj) for 1 ≤ j ≤ k, where Dj stands for
the domain bounded by Cj, and D is any bounded domain containing D0.

Proof. For 1 ≤ j ≤ k, write Cj = {z ∈ C : |z − aj | = rj} and define
C0 = {z ∈ C : |z − a0| = r0}. Rewrite∫

C0

f(w)

w − z
dw = lim

t→r+
0

∫
|z−a0|=t

f(w)

w − z
dw,

and ∫
Cj

f(w)

w − z
dw = lim

t→r−j

∫
|z−aj |=t

f(w)

w − z
dw, 1 ≤ j ≤ k. (3.1)

Note that for each z ∈ Ω, as t tends closely enough to rj , an applica-
tion of Cauchy’s formula [Ru, p.218, Theorem 10.35] gives that the integral∫
|z−aj |=t

f(w)
w−z dw does not depend on the choice of t. Therefore, the right

hand side of (3.1) makes sense.
Again by Cauchy’s formula,

f(z) =
1

2πi

∫
C0

f(w)

w − z
dw −

k∑
j=1

1

2πi

∫
Cj

f(w)

w − z
dw, z ∈ Ω
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Set

fj(z) =
1

2πi

∫
Cj

f(w)

w − z
dw, z ∈ Ω, 1 ≤ j ≤ k. (3.2)

and we will prove that fj enjoys the desired property in Lemma 3.5.
For this, let 1 ≤ j ≤ k, z ∈ Ω, and fix an sj close to rj (sj > rj). With

|w − aj | = sj ,

1

w − z
=

1

(w − aj)− (z − aj)
= − 1

z − aj
(1−w − aj

z − aj
)−1 = −

∞∑
n=0

(w − aj)n

(z − aj)n+1
.

(3.3)
Since f ∈ L2

a({rj < |z − aj | < sj}) and f extends analytically to a neigh-
borhood of {z : |z − aj | = sj}, expanding the Laurent series of f yields
that

f(w) =
∞∑

m=−∞
cm(w − aj)m, rj < |w − aj | ≤ sj (3.4)

With (3.3) and (3.4) substituted in (3.2), one gets

fj(z) =
1

2πi

∫
|w−aj |=sj

f(w)

w − z
dw

= − 1

2πi

∫
|w−aj |=sj

∞∑
n=0

f(w)(w − aj)n

(z − aj)n+1
dw

= − 1

2πi

∞∑
n=0

∫
|w−aj |=sj

∞∑
m=−∞

cm(w − aj)m(w − aj)ndw
1

(z − aj)n+1

= −
−1∑

m=−∞
cm(z − aj)m.

Also noting that f ∈ L2
a({rj < |z − aj | < sj}), by straightforward compu-

tations one gets that fj ∈ L2
a(D\Dj) for 1 ≤ j ≤ k, where D can be any

bounded domain containing D0. By similar discussions as above, we have
f0 ∈ L2

a(D0) to finish the proof. �

Now we are ready to prove that a holomorphic map from a simply con-
nected domain to a multiply connected domain (both of smooth boundaries)
induces a bounded composition operator.

Proposition 3.6. Suppose that D is a simply connected domain of C2-
boundary, and that Ω is a multiply connected domain bounded by k + 1
disjoint closed curves of class C2. Let ϕ : D → Ω be a holomorphic map.
Then the map Cϕ : f → f ◦ ϕ defines a bounded composition operator from
L2
a(Ω) to L2

a(D).
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Proof. First assume D = D, and Ω is of the form in Lemma 3.5. Then for
each f ∈ L2

a(Ω),

f = f0 −
k∑
j=1

fj , (3.5)

where f0 ∈ L2
a(D), and fj ∈ L2

a(D\Dj) for 1 ≤ j ≤ k. Since ϕ : D → Ω

can also be regarded as a map from D to D\D1, · · · , or D\Dk, by Corollary
3.4 we have fj ◦ ϕ ∈ L2

a(D) for 1 ≤ j ≤ k. With ϕ : D → Ω considered as
a map from D to D, by applying Littlewood’s Subordination Principle one
gets f0 ◦ ϕ ∈ L2

a(D). Therefore, by (3.5) it follows that f ◦ ϕ ∈ L2
a(D).

Next let D = D, and Ω is a general multiply connected domain bounded
by k + 1 disjoint closed curves of class C2. Then there is a biholomorphic
map φ from a domain Ω′ onto Ω, where Ω′ is of the form in Lemma 3.5.
Moreover, by Theorem 2.6 φ′ is away from zero, and by Theorem 2.7 Cφ is
bounded. Since each map ϕ : D → Ω can be written as the composition of
φ with a map h : D→ Ω′, ϕ = φ ◦ h,

Cϕ = ChCφ.

By the discussions in the above paragraph, Ch is bounded as well as Cϕ,
and then Cϕ is bounded as desired.

Finally, by another application of Theorem 2.6, it is easy to see that the
unit disk D can be replaced with a simply connected domain bounded by a
C2-boundary. The proof is finished. �

Remark 3.7. Proposition 3.6 is also true if Ω is replaced by a simply con-
nected domain bounded by a C2-boundary. This follows from a combination
of Theorem 2.6 and Littlewood’s Subordination Principle.

Now it comes to the proof of our main result (=Theorem 1.2) in this
section.

Theorem 3.8. Suppose both Ω0 and Ω are bounded domains of C2-boundary.
Let ϕ : Ω0 → Ω be a holomorphic map. Then the map Cϕ : f → f ◦ϕ defines
a bounded composition operator from L2

a(Ω) to L2
a(Ω0).

Proof. Each bounded domains of C∞-boundary is biholomorphic to a bounded
domain bounded by finitely many analytic Jordan curves, and the latter do-
main is biholomorphic to either the unit disk D or a domain bounded by
a big circle and finitely many disjoint circles inside it (as in Lemma 3.5).
In view of Theorem 2.6, to prove Theorem 3.8 it is enough to consider the
special case of Ω0 being D or the domain in Lemma 3.5.

As done in the proof of Theorem 3.1, write Ω0 as a union of finitely
many simply connected sub-domains Ωj(1 ≤ j ≤ N) of Ω0 bounded by C∞-
boundary Jordan curves, and a compact subsetK. Then for each f ∈ L2

a(Ω0),∫
Ω0

|f ◦ ϕ(z)|2dA(z) ≤
∫
K
|f ◦ ϕ(z)|2dA(z) +

N∑
j=1

∫
Ωj

|f ◦ ϕ(z)|2dA(z).
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It is clear that
∫
K |f ◦ ϕ(z)|2dA(z) < ∞ follows from the boundedness of

f ◦ ϕ on compact sets, and by Proposition 3.6 and Remark 3.7, for each j∫
Ωj

|f ◦ ϕ(z)|2dA(z) <∞.

Hence
∫

Ω0
|f ◦ ϕ(z)|2dA(z) < ∞ for each f ∈ L2

a(Ω0). Then by an appli-
cation of the closed graph theorem, the map f → f ◦ ϕ defines a bounded
composition operator from L2

a(Ω) to L2
a(Ω0). �

In conclusion, a holomorphic map between two bounded domains of smooth
boundaries gives arise to a bounded composition operator between Bergman
spaces over these domains. Next section will elaborate on the case that at
least one domain has some cusp boundary points.

4. Bounded domains of piecewise smooth boundary

In this section, we study boundedness of composition operators induced by
holomorphic maps between two bounded domains, where one is of piecewise
smooth boundary. As one will see, the behavior of those maps at “bad”
points do have impact on boundedness of composition operators.

For an open set Ω in C, let us call a point p on ∂Ω a regular point of
class Ck(1 ≤ k ≤ ∞) if it satisfies the condition in Definition 2.1. If p ∈ ∂Ω
and p is not a regular boundary point of class C1, let us call p a bad point.
For example, each vertex of a polygon is a bad point. A simply connected
domain can have infinitely many bad points.

Example 4.1. Let Lr denote the segment connecting 0 and 1
q e
ir, where

r = p
q is a rational number, p and q are positive integers such that

gcd(p, q) = 1 (q > 0).

Set

Ω = (D\[0, 1])\
⋃

r∈(0,1)∩Q

Lr.

Then 0 and all points 1
q e
ir are bad points on ∂Ω.

The following result (=Theorem 4.2) can be regarded as a slight general-
ization of Theorem 1.2. It indicates that if both Ω1 and Ω2 have reasonably
smooth boundary, and if a holomorphic map ϕ : Ω1 → Ω2 behaves well at
bad points on ∂Ω1, then ϕ induces a bounded composition operator.

Theorem 4.2. Suppose that Ω1 is a bounded domain of piecewise C2-
boundary, and Ω2 is a bounded domain of C2-boundary. If ϕ : Ω1 → Ω2

is a holomorphic map such that for each bad point p on ∂Ω1, there is a
neighborhood Up such that ϕ(Up ∩ Ω1) is contained in a compact subset of
Ω2. Then the map f → f ◦ ϕ defines a bounded composition operator from
L2
a(Ω2) to L2

a(Ω1).
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Proof. If there is no bad point on ∂Ω1, then the conclusion follows from
Theorem 3.8. Otherwise, by assumption one can find finitely many open
disks U1, · · · , Uk, whose union covers these bad points, and the union

∪kj=1ϕ(Uj ∩ Ω1)

is contained in a compact subset of Ω2. Therefore, for each f ∈ L2
a(Ω2)∫

∪kj=1Uj∩Ω1

|f ◦ ϕ(z)|2dA(z) <∞.

Besides, since Ω1 is of piecewise C2-boundary, there exists a perturbation
Ω′1 of Ω1 with C2-boundary, Ω′1 ⊆ Ω1, and Ω1\Ω′1 ⊆ ∪kj=1Uj ∩Ω1. Hence by
Theorem 3.8 ∫

Ω′1

|f ◦ ϕ(z)|2dA(z) <∞,

where f is considered as a function in L2
a(Ω

′
1). Since

Ω1 ⊆ Ω′1 ∪ (∪kj=1Uj ∩ Ω1),∫
Ω1

|f◦ϕ(z)|2dA(z) ≤
∫

Ω′1

|f◦ϕ(z)|2dA(z)+

∫
∪kj=1Uj∩Ω1

|f◦ϕ(z)|2dA(z) <∞.

Then an application of the closed graph theorem leads to the desired con-
clusion. �

In general, if either Ω1 or Ω2 has bad points, and if ϕ : Ω1 → Ω2 is a
holomorphic map, then it can happen that Cϕ is not bounded.

Example 4.3. Put U = {z ∈ C : |z − 1| < 1, Imz > 0}. One can construct
a conformal map ϕ from U onto D by defining

ϕ(z) =
(1
z −

1
2)2 + i

(1
z −

1
2)2 − i

, z ∈ U.

By direct computations,

ϕ′(z) =
4i

[(1
z −

1
2)2 − i]2

(
1

z
− 1

2
)

1

z2
.

Hence lim
z→0

ϕ′(z) = lim
z→2

ϕ′(z) = 0, where the limits are taken for z ∈ U. Since

1

ϕ′
is unbounded, by Lemma 2.7 f 7→ f ◦ϕ is a (densely-defined) unbounded

operator from L2
a(D) to L2

a(U).

On the other hand, ϕ′ is bounded on U and therefore
1

(ϕ−1)′
is bounded

on D. This, combined with Lemma 2.7, implies that

g 7→ g ◦ ϕ−1, g ∈ L2
a(U)

defines a bounded composition from L2
a(U) to L2

a(D).

To conclude this section, we give one more example.



1200 SHAN LI AND HANSONG HUANG

Example 4.4. Let Ω0 = D\[−1
2 ,

1
2 ], and there is an r (0 < r < 1) such that

there is a conformal map ϕ from Ω0 onto Ar, where

Ar = {z ∈ C : r < |z| < 1

r
}.

By applying Theorem 2.8, ϕ′ is away from zero. Then by Lemma 2.7 we
conclude that Cϕ induces a bounded composition operator from L2

a(Ar) to
L2
a(Ω0). By similar reasoning, Cϕ−1 defines an unbounded composition op-

erator from L2
a(Ω0) to L2

a(Ar).

There exist abundant domains that have finitely many cusp points, such
as the polygons. In the following section, the focus will be on the case where
one of the domain is a polygon.

5. Composition operators induced by holomorphic maps
from a domain to a polygon

This section will study boundedness of composition operators induced by
holomorphic maps from a domain to a polygon.

Our first result (=Theorem 1.4) shows that a holomorphic map from a
smooth domain to a convex polygon always induces a bounded composition
operator.

Theorem 5.1. Let Ω be a domain bounded by a C2-boundary and Σ be a
convex polygon. If ϕ is a holomorphic map from Ω to Σ, then Cϕ : f → f ◦ϕ
defines a bounded composition operator from L2

a(Σ) to L2
a(Ω).

If Σ is a polygon but is not convex, then Cϕ is not necessarily bounded even
if ϕ is a biholomorphic map from a simply connected domain Ω to Σ.

Proof. In view of Theorem 2.6, to deal with a domain bounded by a C2-
boundary is equivalent to treating with a domain bounded by finitely many
disjoint circles. By the strategy in Lemma 3.1, such a domain can be cov-
ered by finitely many simply connected domains of C2-boundary. Again by
Theorem 2.6, this reduces to the case of Ω = D.

First, assume that ϕ is a conformal map from D to Σ. By Lemma 2.7,
the boundedness of Cϕ is equivalent to the boundedness of 1

ϕ′ . Assume

conversely 1
ϕ′ is not bounded on D. Then there is a point ξ on the unit circle

∂D such that 1
ϕ′(z) is unbounded as z tends to ξ. However, since Σ is convex,

all its interior angles at vertices or at points on edges are less than π. Since
either ϕ(ξ) is a vertex of Σ or ϕ(ξ) lies on an edge of Σ, by Theorem 2.8
either lim

z→ξ
ϕ′(z) =∞ or ϕ′(z) is bounded away form zero as z tends to ξ. In

each case, 1
ϕ′(z) is bounded as z tends to ξ, which is a contradiction. Thus

Cϕ is bounded.
In general, ϕ is a holomorphic map from D to Σ. In this case, let h

be a conformal map from D to Σ and put φ = h−1 ◦ ϕ, a self-map of D.
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Then the map f → f ◦ ϕ = f ◦ h ◦ φ is the multiplication of two bounded
composition operators, Ch and Cφ, and hence Cϕ : f → f ◦ ϕ defines a
bounded composition operator from L2

a(Σ) to L2
a(Ω). �

Theorem 5.1 assumes that Σ is a convex polygon. In general, this as-
sumption can be replaced by the condition that Σ is a domain bounded by
piece-wise C2-boundaries, and all interior angles of Σ are less than π. This
observation just follows from the proof of Theorem 5.1. For example,

Σ = 4 \D1 ∪D2,

where D1 = {z : |z + 0.9| < 1}, D2 = {z : |z− 0.9| < 1}, and 4 is a triangle
containing D1 ∪D2.

The following example illustrates another side of Theorem 5.1.

Example 5.2. Let Ω be a simply connected domain of C2-boundary and Σ
be a polygon. Then there is a holomorphic map ϕ from Σ to Ω such that
Cϕ : f → f ◦ ϕ defines a (densely-defined) unbounded composition operator
from L2

a(Ω) to L2
a(Σ).

To see this, it is enough to consider the case of Ω = D by Theorem 2.6.
Let ϕ be a conformal map from D onto Σ. Since Σ has an interior angle that
is less than π, by an application of Theorem 2.8 1

ϕ′ is not bounded. Then

Lemma 2.7 leads to that Cϕ is not bounded.

If ϕ is a holomorphic map between two polygons, things are different
from Theorem 5.1. We present as below a sufficient condition on ϕ to
define a bounded composition operator Cϕ. Geometrically, it says that the
boundedness of Cϕ depends heavily on the behavior of ϕ near the vertices
of a polygon.

Theorem 5.3. Let Σ0 be a polygon, and Σ1 a convex polygon. Suppose ϕ
is a holomorphic map from Σ0 to Σ1. If for each vertex p of Σ0, one of the
following hold:

(i) ϕ maps an inside-neighborhood of p into a compact subset of Σ1;

(ii) ϕ is continuous at p, ϕ(p) is a vertex of Σ1, and |ϕ(z)−ϕ(p)|π/β−1

|z−p|π/α−1 is

bounded on an inside-neighborhood of p, where α and β denotes the
interior angles at p and at ϕ(p), respectively.

Then Cϕ defines a bounded composition map from L2
a(Σ1) to L2

a(Σ0).

In Condition (ii), if α = β, then the boundedness of |ϕ(z)−ϕ(p)|π/β−1

|z−p|π/α−1 re-

duces to that of |ϕ(z)−ϕ(p)|
|z−p| .

Proof. To prove that Cϕ is a bounded composition map from L2
a(Σ1) to

L2
a(Σ0), we need show that for each f in L2

a(Σ1),∫
Σ0

|f ◦ ϕ(z)|2dA(z) <∞.
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The idea is to cut the n-gon Σ0 into n + 1 blocks: n small corners Ωp at
vertices p (these corners are (p, α, ε)-circular sections) and one big block Σ′.
Precisely, one can choose a sufficiently small ε > 0, and for each vertex p
the corner Ωp is nothing but a (p, α, ε)-circular section, where α = α(p) is
the interior angle at p. Such a corner Ωp is required of C2-boundary except
at the vertex p. There exists a domain Σ′ of C2-boundary such that

Σ0 −
⋃
p

Ωp ⊆ Σ′ ⊆ Σ0 −
⋃
p

O(p, ε/2),

where p runs over all vertices of the polygon Σ0. Since Σ0 =
⋃
p Ωp ∪ Σ′, it

is enough to prove that for each f in L2
a(Σ1),∫

Σ′
|f ◦ ϕ(z)|2dA(z) <∞,

and
∫

Ωp
|f ◦ ϕ(z)|2dA(z) <∞ for each vertex p.

Since ϕ : Σ′ → Σ1 is a holomorphic map, by Theorem 5.1 Cϕ|Σ′ defines a

bounded composition operator from L2
a(Σ

′) to L2
a(Σ0), and therefore∫

Σ′
|f ◦ ϕ(z)|2dA(z) <∞.

To finish the proof, it remains to prove that for each vertex p,∫
Ωp

|f ◦ ϕ(z)|2dA(z) <∞.

For this, there are two case to distinguish: either ϕmaps an inside-neighborhood
of p into a compact subset of Σ1, or ϕ satisfies Condition (ii).

If there is an inside-neighborhood U of p such that ϕ(U) is contained in a
compact subset of Σ1, then the prescribed number ε can be chosen enough
small such that Ωp ⊆ Σ0 ∩ O(p, ε) ⊆ U , which gives that f ◦ ϕ is bounded
on Ωp, forcing

∫
Ωp
|f ◦ ϕ(z)|2dA(z) <∞.

Now assume ϕ satisfies Condition (ii), and this will be the main focus of
our discussion. For convenience, assume p = ϕ(p) = 0, let Ωp be contained
in the angular domain {z : 0 < arg z < α}, and its image ϕ(Ωp) is contained
in Σ1 ∩ {z : 0 < arg z < β}.

First we construct holomorphic maps φ, V and T such that

ϕ|Ωp = V ◦ φ ◦ T.
To be precise, set

T (z) = z
π
α , 0 < arg z < α,

and

V (z) = z
β
π , 0 < arg z < π.

Let Ω∗p be a (ϕ(p), β, δ)-circular section of C2-boundary (except one possible
cusp point ϕ(p)) such that

ϕ(Ωp) ⊆ Ω∗p.
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Let Ω′p = T (Ωp), Ω′′p = V −1(Ω∗p), and φ = V −1 ◦ ϕ ◦ T−1 : Ω′p → Ω′′p. Then

ϕ|Ωp = V ◦ φ ◦ T.
Since

1

T ′(z) · V ′(φ ◦ T (z))
=

1

zπ/α−1(φ ◦ T (z))β/π−1
=
ϕ(z)π/β−1

zπ/α−1
(5.1)

by assumption (ii)
1

T ′(z) · V ′(φ ◦ T (z))
is bounded on Ωp.

Since f ∈ L2
a(Σ1),∫

Ω′′p

|f ◦ V (z)V ′(z)|2dA(z) =

∫
Ω∗p

|f(z)|2dA(z) <∞.

Since both Ω′p and Ω′′p are of C2-boundary and φ : Ω′p → Ω′′p is a holomorphic
map, applying Theorem 3.8 leads to that∫

Ω′p

|(f ◦ V · V ′) ◦ φ(z)|2dA(z) <∞,

and noting that T : Ωp → Ω′p is a biholomorphic map, one obtains∫
Ωp

|T ′(z)(f ◦ V · V ′) ◦ (φ ◦ T )(z)|2dA(z) <∞.

Since

f ◦ ϕ = f ◦ V ◦ φ ◦ T = T ′ · (f ◦ V · V ′) ◦ (φ ◦ T )
1

T ′(z) · V ′(φ ◦ T (z))

then by boundedness of
1

T ′(z) · V ′(φ ◦ T (z))
(see (5.1))∫

Ωp

|f ◦ ϕ|2dA(z) <∞.

The proof of Theorem 5.3 is complete. �

Also, Theorems 5.1 and 5.3 are true for curvilinear polygons (a domain
bounded by finitely many circular arcs is called a curvilinear polygon [Neh]),
and the proofs are just the same. For example,

{z : Imz > 1, |z +
√

3i| > 2, |z| < 1}
is a curvilinear polygon with vertices −1 and 1.

Theorem 5.3 fails if the condition that Σ1 is convex is dropped. This is
illustrated by the following.

Example 5.4. Let 4 be the equilateral triangle with vertices −1, 1 and
√

3i,
and let Σ be the polygon 4 minus the square with vertices −1

4 ,
1
4 ,

1+i
4 , and

−1+i
4 . Let ϕ be the conformal map from 4 onto Σ, preserving the vertices

−1, 1 and
√

3i. Then by Theorem 2.8 Condition (ii) in Theorem 5.3 holds.
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However, by Theorem 2.10 there is a unique point p on the edge of 4 such
that ϕ(p) = −1+i

4 , at which the interior angle equals 7π
4 > π. Again by an

application of Theorem 2.8, lim
z→p

ϕ′(z) = 0. Then by Lemma 2.7 Cϕ is not

bounded.

The following construction can be found in many textbooks of complex
variable.

Example 5.5. Let 4 be the equilateral triangle with vertices −1, 1 and√
3i. Then one can construct a conformal map ϕ from the unit disk onto

the triangle 4. For this, let f be a conformal map of upper half-plane onto
4. Precisely, by Theorem 2.11 there are two constants C0 and C1 such that

f(z) = C0

∫ z

0
w−

2
3 (w − 1)−

2
3dw + C1.

If we require that f(0) = −1 and f(1) = 1, we get

f(z) = (−1 +
√

3i)
Γ(2

3)

Γ2(1
3)

∫ z

0
w−

2
3 (w − 1)−

2
3dw − 1,

where Γ denotes the Gamma function.
Let h be a conformal map from the unit disk to the upper half-plane, and

put ϕ = h ◦ f . By Theorem 5.1 Cϕ induces a bounded composition operator
from L2

a(D) to L2
a(4).

On the other hand, by a combination of Lemma 2.7 and Theorem 2.8
one can prove that Cϕ−1 is an unbounded composition operator from a dense

subspace of L2
a(4) to L2

a(D).

So far, we have given characterizations for boundedness of a composition
operator arising from a holomorphic map from a domain to a polygon under
mild setting. The next content will focus on conformal holomorphic maps
between polygons, and present a close link between the rigidity of polygons’
geometry and the boundedness of the composition operators defined by such
maps.

6. Composition operators induced by conformal maps
between polygons

This section will treat with composition operators induced by conformal
maps between polygons. One will see how the rigidity of polygons’ geometry
and the behavior of conformal maps together work on the boundedness of
the associated composition operators.

Every conformal selfmap of the unit disk simply gives a bounded compo-
sition operator on the Bergman space L2

a(D). However, if the unit disk is
replaced by polygons, rarely does a conformal map define a bounded com-
position operator.
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Theorem 6.1. Suppose Σ is a polygon and ϕ is a holomorphic automor-
phism of Σ. If Cϕ : f 7→ f ◦ ϕ defines a bounded composition operator from
L2
a(Σ) to L2

a(Σ), then ϕ maps vertices of Σ to vertices of Σ. In this case, for
each vertex a of Σ, the interior at a equals the interior at ϕ(a).

Proof. Suppose Σ is a polygon, and ϕ is a holomorphic automorphism of
Σ such that Cϕ : f 7→ f ◦ ϕ defines a bounded composition operator L2

a(Σ)
to L2

a(Σ).
To derive a contradiction, assume that ϕ does not map all vertices of Σ to

vertices. For this, there are two cases to distinguish: Σ is a convex polygon
or Σ is not a convex polygon.

Case I: Σ is a convex polygon.
Since ϕ does not map all vertices of Σ to vertices, there is a vertex a such

that ϕ(a) lie on an edge of the polygon Σ, and the interior angle at ϕ(a)
equals π. But the interior angle at a is less than π since Σ is convex. Then
by Theorem 2.8 lim

z→a
ϕ′(z) = 0. It follows from Lemma 2.7 that Cϕ is not

bounded, which contradicts with the assumption in Theorem 6.1.
Case II: Σ is not a convex polygon.
In this case, let a1, · · · , aj ; b1, · · · , bk be all vertices of Σ, and α1, · · · , αj ;

β1, · · · , βk be the interior angles at these vertices, respectively, and

αi > π, βl < π, 1 ≤ i ≤ j, 1 ≤ l ≤ k.

By Theorem 2.10, ϕ extends to a continuous bijection from ∂Σ onto ∂Σ. By
the same reasoning as in Case I, for each i the interior angle at ϕ−1(ai) is
not less than αi(αi > π), and thus ϕ−1(ai) lies in {a1, · · · , aj}. Therefore

{ϕ−1(a1), · · · , ϕ−1(aj)} = {a1, · · · , aj}.

This immediately gives that

{a1, · · · , aj} = {ϕ(a1), · · · , ϕ(aj)}. (6.1)

Similarly, for each l the interior angle at ϕ(bl) is not larger than βl(β1 < π),
and thus ϕ(bl) lies in {b1, · · · , bk}. This yields that

{ϕ(b1), · · · , ϕ(bk)} = {b1, · · · , bk},

which, along with (6.1), shows that ϕ maps all vertices of Σ to vertices. This
is a contradiction.

Now it remains to prove that for each vertex a of Σ, the interior at a
equals the interior at ϕ(a). Let q be the number of vertices of Σ, which are

v1, · · · , vq

in anti-clockwise direction. Let [n] denote the element n+ qZ in the group
Zq ≡ Z/qZ. such that

ϕ(vi) = v[i+d], i = 1, · · · , q.
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If d = 0, then ϕ preserves all vertices of Σ, and the proof is finished. If
1 ≤ d < q, there is a least nonnegative integer m such that

v[i+(m+1)d] = vi.

Let γ1, · · · , γm, γm+1 denote the interior angles at

vi, vi+d, · · · , v[i+md], v[i+(m+1)d] = vi,

respectively. Since ϕ maps one vertex to the next one in the list above, by
Theorem 2.8

γ1 ≥ γ2 ≥ · · · ≥ γm ≥ γm+1 = γ1.

Hence γ1 = γ2; that is, the interior angle at vi equals the interior angle at
v[i+d] = ϕ(vi). By arbitrariness of i, for each vertex a of Σ the interior at a
equals the interior at ϕ(a). The proof is complete. �

Some special cases of Theorem 6.1 are of independent interest.

Example 6.2. Suppose Σ is a regular n-gon centered at zero, and ϕ is a
holomorphic automorphism of Σ. If Cϕ : f 7→ f ◦ ϕ defines a bounded com-
position operator from L2

a(Σ) to L2
a(Σ), we conclude that there is a positive

integer k < n such that ϕ(z) = ωkz, where ω = exp(2πi
n ).

To see this, note that by Theorem 6.1 ϕ maps vertices of Σ to vertices
of Σ. By Theorem 2.10, three assigned boundary values of a conformal map
between Jordan domains determine uniquely the map ϕ, and hence ϕ is of
the form as above.

Also, by Theorem 6.1 it is almost routine to show the following examples.

Example 6.3. Suppose Σ is a triangle. Then there is a holomorphic au-
tomorphism map ϕ that induces a bounded composition operator on L2

a(Σ)
with ϕ(z) 6= z, z ∈ Σ if and only if Σ is an equilateral triangle.

Example 6.4. Suppose Σ is a quadrilateral. Then there is a holomorphic
automorphism map ϕ that induces a bounded composition operator on L2

a(Σ)
with ϕ(z) 6= z, z ∈ Σ if and only if Σ is a parallelogram. In this case, ϕ is
a rotation preserving vertices of Σ.

7. Estimates for norms of composition operators

This section will give norm estimates for some classes of composition
operators.

To begin with, we recall a fact [Zhu, Chapter 11]. In the Bergman space
L2
a(D), if ϕ is a holomorphic selfmap of D, then Cϕ is bounded and

‖Cϕ‖ ≤
1 + |ϕ(0)|
1− |ϕ(0)|

.

For a holomorphic selfmap ϕ of D, we denote

v(ϕ) =
1 + |ϕ(0)|
1− |ϕ(0)|

.
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Proposition 7.1. If ϕ is a holomorphic map from D to Ar, then the com-
position operator Cϕ : L2

a(Ar)→ L2
a(D) is bounded and ‖Cϕ‖ ≤ t(ϕ), where

t(ϕ) = v(rϕ) + v(
r

ϕ
)

√
max{ 1

r4
, (

1

r4
− 1)

1

−8 ln r
}.

Proof. First note that if h : D→ D 1
r

is a holomorphic map, then rh(z) is a

holomorphic selfmap of D, and by direct computations,

‖Ch‖ = ‖Crh‖ ≤ v(rh),

where Ch : L2
a(D 1

r
) → L2

a(D) and Crh : L2
a(D) → L2

a(D) are composition

operators defined on distinct Bergman spaces.
For each function f in L2

a(Ar), let f = f0 + f1 be the decomposition in
the proof of Theorem 3.2. That is,

f(z) =
∞∑

n=−∞
cnz

n, r < |z| < 1

r
,

f0(z) =
∞∑
n=0

cnz
n and f1(z) =

−1∑
n=−∞

cnz
n. By the above paragraph,

‖f0 ◦ ϕ‖2

‖f‖2
=

1
m(D)

∫
D |f0 ◦ ϕ(z)|2dA(z)

1
m(Ar)

∫
Ar
|f(z)|2dA(z)

≤ v2(rϕ)

1
m(D 1

r
)

∫
D 1
r

|f0(z)|2dA(z)

1
m(Ar)

∫
Ar
|f(z)|2dA(z)

≤ v2(rϕ).

By the proof of Theorem 3.2, since f1 ∈ L2
a(Ar), f1(1

z ) ∈ L2
a(Ar), and then

f1(1
z ) can be considered as a function on D 1

r
. Since f1 ◦ ϕ = f1(1

z ) ◦ 1
ϕ ,

1

m(D)

∫
D
|f1 ◦ ϕ(z)|2dA(z) ≤ v2(

r

ϕ
)

1

m(D 1
r
)

∫
D 1
r

|f1(
1

z
)|2dA(z),
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and thus

‖f1 ◦ ϕ‖2

‖f‖2
=

1
m(D)

∫
D |f1 ◦ ϕ(z)|2dA(z)

1
m(Ar)

∫
Ar
|f(z)|2dA(z)

≤ v2(
r

ϕ
)

1
m(D 1

r
)

∫
D 1
r

|f1(1
z )|2dA(z)

1
m(Ar)

∫
Ar
|f(z)|2dA(z)

≤ v2(
r

ϕ
)
m(Ar)

m(D 1
r
)

sup
n≥1

∫
D 1
r

|z|2ndA(z)∫
Ar
|z|−2ndA(z)

≤ v2(
r

ϕ
)(1− r4) max{ 1

r4(1− r4)
,

1

r4

1

−8 ln r
}

≤ v2(
r

ϕ
) max{ 1

r4
, (

1

r4
− 1)

1

−8 ln r
}.

This inequality, combined with (7.1), immediately gives that

‖f ◦ ϕ‖
‖f‖

≤ ‖f0 ◦ ϕ‖
‖f‖

+
‖f1 ◦ ϕ‖
‖f‖

≤ v(rϕ) + v(
r

ϕ
)

√
max{ 1

r4
, (

1

r4
− 1)

1

−8 ln r
}.

�

It is worthy to point out that if U is an annulus conformally isomorphic
to Ar, then there is a map of the form z 7→ az + b(a 6= 0) which maps Ar
to U. For each holomorphic map ϕ : D → Ar, aϕ(z) + b maps D to U. It is
direct to check that

‖Cϕ‖ = ‖Caϕ+b‖.
In this situation, we define

t(aϕ+ b) = t(ϕ).

Remind that the modulus of an annulus {z : r < |z−a| < R} is the ratio R
r ,

and each planar doubly connected domains Ω are conformally isomorphic
to an annular Ar where r is uniquely determined [Go]. In this case, the
modulus of Ω, m(Ω), is defined to be the modulus of Ar.

The following context will provide an estimate of the norm of a composi-
tion operator defined by a map from D to the domain Ω in Lemma 3.5.

For this, let D0 be an open disk and C0 is the boundary of D0. Let
C1, · · · , Ck be k disjoint circles contained in the disk D0, and Ω be the
domain bounded by C0, · · · , Ck. For 1 ≤ i ≤ k, let Ωi be the minimal
annulus containing Ω such that ∂Ωi ⊇ Ci, let Ω′i be the maximal annulus
contained in Ω such that ∂Ωi ⊇ Ci, and put

ϕi = ϕ : D→ Ωi.

Then Cϕi denotes the composition operator from L2
a(Ωi) to L2

a(D), and t(ϕi)
is well defined. Denote by Ω0 the largest annulus contained in Ω such that
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∂Ω0 ⊇ C0, and define

ϕ0 = ϕ : D→ D0.

Proposition 7.2. Let Ω be the domain in Lemma 3.5, and let ϕi, Ωi, Ω′i
be defined as above. If ϕ is a holomorphic map from D to Ω, then for the
composition operator Cϕ : L2

a(Ω)→ L2
a(D),

‖Cϕ‖ ≤ t(ϕ0)

√
m(Ω)

m(D0)

1

1− 1/m2(Ω0)

+
∑

1≤i≤k
t(ϕi)

√
m(Ω)

m(Ωi)
max{1− 1/m2(Ωi)

1− 1/m2(Ω′i)
,
lnm(Ωi)

lnm(Ω′i)
}.

Proof. For each f ∈ L2
a(Ω), let f = f0 −

∑k
i=1 fi be the decomposition

in the proof of Lemma 3.5, where f0 ∈ L2
a(D0), and fi ∈ L2

a(D\Di) for
1 ≤ i ≤ k, where D is any bounded domain containing Ω. Since D can be
chosen sufficiently large, we have fi ∈ L2

a(Ωi) for 1 ≤ i ≤ k.
For 1 ≤ i ≤ k,

‖fi ◦ ϕ‖2

‖f‖2
=

1
m(D)

∫
D |fi ◦ ϕ(z)|2dA(z)

1
m(Ω)

∫
Ω |f(z)|2dA(z)

≤ t2(ϕi)

1
m(Ωi)

∫
Ωi
|fi(z)|2dA(z)

1
m(Ω)

∫
Ω |f(z)|2dA(z)

≤ t2(ϕi)
m(Ω)

m(Ωi)

∫
Ωi
|fi(z)|2dA(z)∫

Ω′i
|f(z)|2dA(z)

≤ t2(ϕi)
m(Ω)

m(Ωi)
sup
n≥1

∫
Ωi
|z − ai|−2ndA(z)∫

Ω′i
|z − ai|−2ndA(z)

≤ t2(ϕi)
m(Ω)

m(Ωi)
max{1− 1/m2(Ωi)

1− 1/m2(Ω′i)
,
lnm(Ωi)

lnm(Ω′i)
}.

In a similar way, one gets

‖f0 ◦ ϕ‖2

‖f‖2
=

1
m(D)

∫
D |f0 ◦ ϕ(z)|2dA(z)

1
m(Ω)

∫
Ω |f(z)|2dA(z)

≤ t2(ϕ0)

1
m(D0)

∫
D0
|f0(z)|2dA(z)

1
m(Ω)

∫
Ω |f(z)|2dA(z)

≤ t2(ϕ0)
m(Ω)

m(D0)

∫
D0
|f0(z)|2dA(z)∫

Ω0
|f(z)|2dA(z)

≤ t2(ϕ0)
m(Ω)

m(D0)

1

1− 1/m2(Ω0)
.
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Therefore, by f = f0 −
∑

1≤i≤k fi, it follows that

‖f ◦ ϕ‖
‖f‖

≤ ‖f0 ◦ ϕ‖
‖f‖

+
∑

1≤i≤k

‖fi ◦ ϕ‖
‖f‖

≤ t(ϕ0)

√
m(Ω)

m(D0)

1

1− 1/m2(Ω0)

+
∑

1≤i≤k
t(ϕi)

√
m(Ω)

m(Ωi)
max{1− 1/m2(Ωi)

1− 1/m2(Ω′i)
,
lnm(Ωi)

lnm(Ω′i)
}.

The proof is completed. �
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