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On the existence of local quaternionic
contact geometries

Ivan Minchev and Jan Slovak

ABSTRACT. We exploit the Cartan-Kéahler theory to prove the local ex-
istence of real analytic quaternionic contact structures for any prescribed
values of the respective curvature functions and their covariant deriva-
tives at a given point on a manifold. We show that, in a certain sense,
the different real analytic quaternionic contact geometries in 4n + 3
dimensions depend, modulo diffeomorphisms, on 2n + 2 real analytic
functions of 2n + 3 variables.
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1. Introduction

The quaternionic contact (briefly: qc) structures are a rather recently
developed concept in the differential geometry that has proven to be a very
useful tool when dealing with a certain type of analytic problems concern-
ing the extremals and the choice of a best constant in the L? Folland-Stein
inequality on the quaternionic Heisenberg group [6], [8], [7]. Originally, the
concept was introduced by O. Biquard [1], who was partially motivated by a
preceding result of C. LeBrun [11] concerning the existence of a large family
of complete quaternionic Kéhler metrics of negative scalar curvature, defined
on the unit ball B+4 ¢ R4"*4. By interpreting B*"** as a quaternionic
hyperbolic space, B4 = Sp(n +1,1)/Sp(n) x Sp(1), LeBrun was able to
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construct deformations of the associated twistor space Z—a complex man-
ifold which, in this case, is biholomorphically equivalent to a certain open
subset of the complex projective space CP?"+3—that preserve its induced
contact structure and anti-holomorphic involution, and thus can be pushed
down to produce deformations of the standard (hyperbolic) quaternionic
Kihler metric of B+, The whole construction is parametrized by an ar-
bitrary choice of a sufficiently small holomorphic function of 2n + 3 complex
variables and the result in [11] is that the moduli space of the so arising fam-
ily of complete quaternionic Kéhler metrics on B4"*4 is infinite dimensional.
LeBrun also observed that, if multiplied by a function that vanishes along
the boundary sphere S43 to order two, the deformed metric tensors on
B4t extend smoothly across S*"+3 but their rank drops to 4 there.

It was discovered later by Biquard [1] that the arising structure on
is essentially given by a certain very special type of a co-dimension 3 dis-
tribution which he introduced as a qc structure on S**3 and called the
conformal boundary at infinity of the corresponding quaternionic Kéhler
metric on B4, Biquard proved also the converse [1]: He showed that
each real analytic qc structure on a manifold M is the conformal bound-
ary at infinity of a (germ) unique quaternionic K&hler metric defined in a
small neighborhood of M. Therefore, already by the very appearance of the
new concept of a qc geometry, it was clear that there exist infinitely many
examples—mnamely, the global qc structures on the sphere S4"+3 obtained
by the LeBrun’s deformations of B¥*+4,

However, the number of the explicitly known examples remains so far very
restricted. There is essentially only one generic method for obtaining such
structures explicitly. It is based on the existence of a certain very special
type of Riemannian manifolds, the so called 3-Sasaki like spaces. These
are Riemannian manifolds that admit a special triple Ry, Ry, R3 of Killing
vector fields, subject to some additional requirements (we refer to [7] and
the references therein for more detail on the topic), which carry a natural qc
structure defined by the orthogonal complement of the triple {R;, Ry, Rs3}.
There are no explicit examples of qc structures (not even locally) for which
it is proven that they can not be generated by the above construction.

The formal similarity with the definition of a CR (Cauchy-Riemann) man-
ifold, considered in the complex analysis, might suggests that one should
look for new examples of qc structures by studying hypersurfaces in the
quaternionic coordinate space H"T!. This idea, however, turned out to be
rather unproductive in the quaternionic case: In [10] it was shown that each
qc hypersurface embedded in H"*! is necessarily given by a quadratic form
there and that all such hypersurfaces are locally equivalent, as qc manifolds,
to the standard (3-Sasaki) sphere.

In the present paper we reformulate the problem of local existence of qc
structures as a problem of existence of integral manifolds of an appropriate

S4n+3
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exterior differential system to which we apply methods from the Cartan-
Kahler theory and show its integrability. The definition of the respective
exterior differential system is based entirely on the formulae obtained in [12]
for the associated canonical Cartan connection and its curvature. We com-
pute explicitly the relevant character sequence vy, ve,... of the system (cf.
the discussion in Section 2.1) and show that it passes the so called Cartan’s
test, i.e., that the system is in involution. From there we obtain our main
result in the paper—this is Theorem 3.3—that asserts the local existence
of qc structures for any prescribed values of their respective curvatures and
associated covariant derivatives at any fixed point on a manifold.

Furthermore, since the last non-zero character of the associated exterior
differential system is va,43 = 2n + 2, we obtain a certain description for
the associated moduli spaces. Namely, we have that, in a certain sense (the
precise formulation requires care, cf. [2]), the real analytic qc structures in
4n + 3 dimensions depend, modulo diffeomorphisms, on 2n + 2 functions of
2n + 3 variables. Comparing our result to the LeBrun’s family of qc struc-
tures on the sphere S4"T3 —parametrized by a single holomorphic function
of 2n + 3 complex variables (which has the same generality as two real an-
alytic functions of 2n + 3 real variables)—we observe that it simply is not
”big enough” in order to provide a local model for all possible qc geometries
in dimension 4n + 3.

2. Quaternionic contact structures as integral manifolds of
exterior differential systems

Our work has been inspired and heavily influenced by the series of lec-
tures by Robert Bryant at the Winter School Geometry and Physics in Srni,
January 2015, essentially along the lines of [2]. In particular our description
of the qc structures in the following paragraphs follows this source closely.

2.1. Exterior differential systems. In general, an exterior differential
system is a graded differentially closed ideal Z in the algebra of differential
forms on a manifold N. Integral manifolds of such a system are immersions
f: M — N such that the pullback f*a of any form a € Z vanishes on M.
Typically, the differential ideal Z encounters all differential consequences of
a system of partial differential equations and understanding the algebraic
structure of Z helps to understand the structure of the solution set. We
need a special form of exterior differential systems corresponding to the
geometric structures modelled on homogeneous spaces, the so called Cartan
geometries. This means our system will be generated by one-forms forming
the Cartan’s coframing intrinsic to a geometric structure and its differential
consequences (the curvature and its derivatives).

For this paragraph, we adopt the following ranges of indices: 1 < a, b, ¢, d,
e <n,1<s<I, where [ and n are some fixed positive integers.
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We consider the following general problem: Given a set of real analytic
functions Cy., : Rl — R with b = —C%, find linearly independent one-
forms w®, defined on a domain Q C R™, and a mapping u = (u®) : @ — R!
so that the equations

dw® = —%Cgc(u) w? A w® (2.1)
are satisfied everywhere on €.

The problem is diffeomorphism invariant in the sense that if (w®, u) is any
solution of (2.1) defined on Q@ C R"™ and ® : Q' — Q is a diffeomorphism,
then (®*(w®), ®*(u)) is a solution of (2.1) on Q. We regard any such two
solutions as equivalent and we are interested in the following question: How
many non-equivalent solutions does a given problem of this type admit?

Next, we reformulate this into a question on solutions to an exterior dif-
ferential system. Let N = GL(n,R) x R" x R! and denote by p = (p§) :
N — GL(n,R), z = (%) : N = R" and u = (u®) : N — R! the respective

projections. Setting w® </ Dy dz®, we consider the differential ideal Z on N
generated by the set of two-forms

1
o % gua 4 §Cgc(u) Wb A W

Then, the solutions of (2.1) are precisely the n-dimensional integral man-
ifolds of Z on which the restriction of the n-form w! A --- A w™ is nowhere
vanishing. The reformulation of the problem (2.1) in this setting allows for
an easy access of tools from the Cartan-Kéahler theory. We shall see, we may
restrict our attention to a certain set of sufficient conditions for the integra-
bility of the system, known as the Cartan’s Third Theorem, and refer the
reader to [2] or [3] and the references therein for a more detailed and general
discussion on the topic.

Differentiating (2.1) gives

1
0= d*w" = —§d(Cgcwb A w®)

190G ()
2 Ous
+ C8 (1) Cg(u) + Co(u) Cho(u)) w® Aw® Aw.

_ (2.2)

du® A wb A w® + %(Cge(u) CSy(u)

If . were curvature functions of a Cartan connection, then these differential
consequences are governed by the well known Bianchi identities, and they
are then quadratic.

2.2. Assumptions and conclusions. In order to employ the Cartan--
Kahler theory we need to replace the quadratic terms by some linear objects.
Thus we posit the following two assumptions:
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Assumption I: Let us assume that there exist a real analytic mapping
F = (F?) : Rl = R"™ for which
9C4,(u)

a b c\
d(Cpw® Aw®) = B

(du® + Fjwd) Awb A we. (2.3)

Of course, this assumption is equivalent to the requirement

1
5 (i) Clalw) + () Ciy (1) + Cla(w) o)) & A w' Aot

10CE (u)
= —5# F(f(u) wb A wc /\wd.
and then, on the integral manifolds of Z, (2.2) takes the form
10C¢
0= d*w* = —28”C£u) <dus + Fj(u) wd) A wb A WS (2.4)
U

Assumption II: Interpreting (2.4) as a system of algebraic equations
for the unknown one-forms du® (for a fixed u), we assume that it is non-
degenerate, i.e, that (2.4) yields du® € span{w®}. As a consequence, at any
u, the set of all solutions du® is parametrized by a certain vector space (since
the system (2.4) is linear). We will assume that the dimension of this vector
space is a constant D (independent of u).

Let us take the latter two assumptions as granted in the rest of this
paragraph. Since Z is a differential ideal, it is algebraically generated by the
forms Y% and dY“. By (2.3), we have

24T = d(C{fc(u) Wb A wc>
2.5)
ace (
= é’cgu) (dus + Fj(u)wd) A WP A w4 208 TP A we
u
and therefore, 7 is algebraically generated by T% and the three-forms
—a def acgc(u)
T o
If we take Q2% to be some other basis of one-forms for the vector space
span{w®}, we can express the forms =% as

=0 =TI A QP A QS (2.6)
where IIj are linear combinations of the linearly independent one-forms
{du® + F5(w)w® : s=1,...,n}.

Consider the sequence vy (u), va(u),. .., v,(u) of non-negative integers de-
fined, for any fixed u, as vi(u) = 0,

(dus + Fj(u)wd> Awb A we.

Ud(u):rank{ be(w) - a=1,...,n, 1§b<c§d}

— rank{ be s a=1,...,m, 1§b<c§d—1};
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forl<d<n-—1, and
vp(u) =1— rank{ be ta=1...n, 1§b<c§n—1}.

If, for every v € R!, one can find a basis Q% of span{w®} for which the
Cartan’s Test
v1(u) + 2va(u) + - - + nvy(u) = D, (2.7)
is satisfied (D is the constant dimension from Assumption II), then the
system (2.1) is said to be in involution (this method of computation for the
Cartan’s sequence of an ideal is based on [3], Proposition 1.15). It is an
important result of the theory of exterior differential systems (essentially
due to Cartan, cf. [2]) that if the system is in involution, then for any wq,
there exists a solution (w®, u) of (2.1) defined on a neighborhood 2 of 0 € R"
for which u(0) = up and

du®lo = Fj(ug)w?o.

Moreover, in certain sense (see again [2] for a more precise formulation),
the different solutions (w*,u) of (2.1), modulo diffeomorphisms, depend on
v (u) functions of k variables, where v (u) is the last non-vanishing integer
in the Cartan’s sequence vi(u), ..., v, (u).

The geometric significance of the above is quite clear: Assume that we
are interested in a geometric structure of a certain type that can be charac-
terized by a unique Cartan connection. Then, the structure equations of the
corresponding Cartan connection are some equations of type (2.1) involving
the curvature of the connection. The solutions of the so arising exterior
differential system are precisely the different local geometries of the fixed
type that we are considering.

2.3. Quaternionic contact manifolds. Let M be a (4n+ 3)-dimensional
manifold and H be a smooth distribution on M of codimension three. The
pair (M, H) is said to be a quaternionic contact (abbr. qc) structure if
around each point of M there exist 1-forms 11,792, 73 with common kernel
H, a positive definite inner product g on H, and endomorphisms Iy, Io, I3 of
H, satisfying

(0)? = (L) = (I3)* = —idg, Lly=-IL =Is, (2.8)
dns(X,Y) =2¢(1:X,Y) forall X,Y € H.

As shown in [1], if dim(M) > 7, one can always find, locally, a triple
&1, &9, &3 of vector fields on M satisfying for all X € H,

0s(&) = 67, dns(§, X) = —dmi(&s, X) (2.9)

(67 being the Kronecker delta). &1, &2, &3 are called Reeb vector fields corre-
sponding to n1,m2,n3. In the seven dimensional case the existence of Reeb
vector fields is an additional integrability condition on the gc structure (cf.
[5]) which we will assume to be satisfied.
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It is well known that the qc structures represent a very interesting instance
of the so called parabolic geometries, i.e. Cartan geometries modelled on
G/P with G semisimple and P C G parabolic. The above definition is a
description of these geometries with the additional assumption that their
harmonic torsions vanish.

As the authors showed in [12], the canonical Cartan connection with the
properly normalized curvature can be computed explicitly, including closed
formulae for all its curvature components and their covariant derivatives.
This provides the complete background for viewing the structures as inte-
gral manifolds of an appropriate exterior differential system (cf. paragraph
2.6), running the Cartan test, checking the involution of the system, and
concluding the generality of the structures in question (the section 3 below).

For the convenience of the readers we are going to explain the results from
[12] in detail now. This requires to introduce some notation first.

2.4. Conventions for complex tensors and indices. In the sequel, we
use without comment the convention of summation over repeating indices;
the small Greek indices «, ,7,... will have the range 1,...,2n, whereas
the indices s, t, k, 1, m will be running from 1 to 3.

Consider the Euclidean vector space R*" with its standard inner product
(,) and a quaternionic structure induced by the identification R*" = H"
with the quaternion coordinate space H™. The latter means that we endow
R*" with a fixed triple Ji, Jo, J3 of complex structures which are Hermitian
with respect to (,) and satisfy Jy Jo = —JyJ;1 = J3. The complex vector
space C*", being the complexification of R*", splits as a direct sum of +i
and —i eigenspaces, C*" = W @ W, with respect to the complex structure
J1. The complex 2-form T,

7(u,v) = (Jou,v) + i(J3u,v), u,v € C*",

has type (2,0) with respect to Ji, i.e., it satisfies w(Jiu,v) = 7(u, Jiv) =
im(u,v). Let us fix an (, )-orthonormal basis (once and for all)
{ea € W, e5 € W}, ¢ = o) (2.10)

with dual basis {e®, ¢} so that 7 = e} A e+ e2 Ae™2 4 .00 4 e A2,
Then, we have

() :9a3€a®2ﬁ+gaﬁea‘®eﬁ, T = mage® Al (2.11)
with
1 if =
1, ifa=0 , HMatn=7_
905 =950 =\ ifapp T Ma=) L ffa=Fd4n
’ 0, otherwise.
(2.12)

Any array of complex numbers indexed by lower and upper Greek letters
(with and without bars) corresponds to a tensor, e.g., {Aa@ 7} corresponds
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to the tensor

ALTe* ®es @ es.
Clearly, the vertical as well as the horizontal position of an index carries
information about the tensor. For two-tensors, we take Bg to mean Bﬁf‘,

Le., the lower index is assumed to be first. We use g,5 and gO‘B = gBC“ = Joj
to lower and raise indices in the usual way, e.g.,

Ay =95, ALT, AT = g7 A

B

We use the following convention: Whenever an array {Aa‘j} appears,

the array {Aa? 7} will be assumed to be defined, by default, by the complex
conjugation

Aa[:h. = Aoﬁ:.y-
This means that we interpret {Aaﬁ, ﬁ} as a representation of a real tensor,

defined on R*", with respect to the fixed complex basis (2.10); the corre-
sponding real tensor in this case is

ALTC@es@e+ AT C ez e

Notice that we have 72 ﬂ'g = — 0 (05 is the Kronecker delta). We

introduce a complex antilinear endomorphism j of the tensor algebra of R*",
which takes a tensor with components T,,, ,, 3, 3. to a tensor of the same

«
type, with components (jT") ..., by the formula

aj...apfB.

3 e 01 Ok Tl T I
(]T)a1...ak51..ﬁl... = E Ty - Tap Mg, - Tg Ty .

01...0kT1...T]...

By definition, the group Sp(n) consists of all endomorphisms of R*" that
preserve the inner product (,) and commute with the complex structures
J1, J2 and J3. With the above notation, we can alternatively describe Sp(n)
as the set of all two-tensors {Ug'} satisfying

go;UgUg = Juj TorUgUj = Tag- (2.13)
For its Lie algebra, sp(n), we have the following description:

Lemma 2.1. For a tensor {X,z}, the following conditions are equivalent:
(1) {X,5} € sp(n).
(2) XaB = _XBOU (JX)CXB = XaB‘
(3) X§ = m*7Y,5 for some tensor {Yos} salisfying Yop = Yso and

(Y )ap = Yas.

Proof. The equivalence between (1) and (2) follows by differentiating (2.13)
at the identity. To obtain (3), we define the tensor {Y,3} by

Ygg = —WUTXZ;- = _W;Xﬁf. [
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2.5. The canonical Cartan connection and its structure equations.
It is well known that to each qc manifold (M, H) one can associate a unique,
up to a diffeomorphism, regular, normal Cartan geometry, i.e., a certain
principle bundle P; = M endowed with a Cartan connection that satisfies
some natural normalization conditions. In [12] we have provided an explicit
construction for both the bundle and the Cartan connection in terms of
geometric data generated entirely by the qc structure of M. Here we will
briefly recall this construction since it is important for the rest of the paper.
The method we are using is essentially the original Cartan’s method of
equivalence that was applied with a great success by Chern and Moser in [4]
for solving the respective equivalence problem in the CR case. It is based
entirely on classical exterior calculus and does not require any preliminary
knowledge concerning the theory of parabolic geometries or the related Lie
algebra cohomology.

By definition, if (M, H) is a qc manifold, around each point of M, we can
find ns, Is and g satisfying (2.8). Moreover, if 7,172,173 are any (other) 1-
forms satisfying (2.8) for some symmetric and positive definite g € H* @ H*
and endomorphisms I, € End(H) in place of g and I respectively, then it
is known (see for example the appendix of [10]) that there exists a positive
real-valued function p and an SO(3)-valued function ¥ = (as)3x3 so that

Ns = [4 Qs N, g=npng, Is = ays 1.

Therefore, there exists a natural principle bundle n, : P, — M with struc-
ture group CSO(3) = Rt x SO(3) whose local sections are precisely the
triples of 1-forms (m1,72,73) satisfying (2.8). Clearly, on P, we obtain a
global triple of canonical one-forms which we will denote again by (11, 72, 73).
The equations (2.8) yield ([12], Lemma 3.1) the following expressions for the
exterior derivatives of the canonical one-forms (using the conventions from
Section 2.4)

dm = —po A — w2 A1z + 03 A1 + 2ig,5 0% A 67 i
dns = —po A 12 —4,03/\771+<p1/\173+7ra59°‘/\05+7r&305‘/\95
dns = —po A1z — @1 Az + @2 Ay — imap 0% A 0P +imy 507 A 6P,
(2.14)
where g, p1, P2, @3 are some (local, non-unique) real one-forms on P,, 6
are some (local, non-unique) complex and semibasic one-forms on P, (by
semibasic we mean that the contraction of the forms with any vector field
tangent to the fibers of 7, vanishes), 903 = Ypa and Tap = —Tpe are the
same (fixed) constants as in Section 2.4.
One can show (cf. [12], Lemma 3.2) that, if B0, B1, Pa, 3, 0% are any
other one-forms (with the same properties as g, 1, P2, ©3,0%) that satisfy
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(2.14), then

6% = Ug0® +irm + ngr? (m + in)

B0 = o + 2Up5r70° + 2U5,770° + A+ Aoz + Asns

@1 = 1 — 2iUssr708 + 2iUBU7“"9f3 + 2r577n1 — A3n2 + Aams,

P2 = 3 — ZWGTUngeﬁ - 2775ng7“%96 + A3m1 + 21,17 n2 — A3,

@3 = 3+ 2ime UGrT0% — zmﬁUgr*eﬁ — Xom1 4+ A + 216703,
(2.15)

where U g‘, r® A\s are some appropriate functions; A1, Ao, A3 are real, and

{Ug} satisty (2.13), i.e., {Ug} € Sp(n) C End(R*"). Clearly, the functions
Ug,r® and A give a parametrization of a certain Lie Group G diffeomorphic

to Sp(n) x R¥+3, There exists a canonical principle bundle 7wy : P, — P,
whose local sections are precisely the local one-forms g, 1, p2, @3, 0% on P,
satisfying (2.14).

We use ¢g, ¢1, p2, ¢3, 0% to denote also the induced canonical (global) one-
forms on the principal bundle P;. Then, according to [12], Theorem 3.3, on
Py, there exists a unique set of complex one-forms I', 3, ¢ and real one-forms

1, 12,13 so that
Tos=Tsas  (D)ag = Lag. (2.16)

and the equations

do® = —ip® A — 2P A (n2 + inz) — 1*Ly3 /\ﬂﬂ
—5(0 +ip1) A9 — 55 (2 +ip3) A 67

dpo = =1 At —tha A1 — b3 Az — 265 A 0% — 265 N6

dpr = —pa A3 — o A1z + b3 A1 + 25 N 07 — 2ig5 NOP

dps = —p3 A1 — Y3 A+ 1 A1y — 26,07 N 0% — 2m,56° N O7

do3 = —p1 Ny — 1 A + o A+ 2im,¢7 A 07 — 2im, 507 NG,
(2.17)

are satisfied. The so obtained one-forms {ns}, {6}, {wo}, {¥s}, {Tas},

{¢*}, {1s} represent the components of the canonical Cartan connection

(cf. [12], Section 5) corresponding to a fixed splitting of the relevant Lie
algebra

sp(n+1,1) =g 2®g-1 DR sp(1) © sp(n) ©g1 O ga.

go

The curvature of the Cartan connection may be represented (cf. [12],
Proposition 4.1) by a set of globally defined complex-valued functions

Saﬁ’yéa Vaﬂ'ya Eaﬁa Maﬁa Com Ha7 Pa Q7 R (218)

satisfying:
(I) Each of the arrays {Sagys}, {Vasy} {Las}, {Map} is totally symmet-
ric in its indices.
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(IT) We have

(iS)aprs = Sapys
(jﬁ)ag =Lap (2.19)

R=R.

(III) The exterior derivatives of the connection one-forms I'ng, ¢ and
s are given by

dTap = —7" Too ATrp + 275 (¢p A 05 — d5 A O5)
+ 27Tg(¢a A 95— — ¢5 N ea) —+ 71-(%7 Saﬁ’yo 97 A 9(5
+ (Vaﬁw 07 + 75 75 Vars 9;’) A = i7g Vape 07 A (12 + i13) (2.20)

+i(V)agy 07 A (2 —in3) — iLapg (M2 +in3) A (12 — in3)
+ Magm A (2 +1im3) + (M )agm A (12 — in3),
1 - 1 - v _ & 5
dpo = 5(800 +ip1) A ¢ + §7row(902 —ip3) N QT —mg Loy N @
7 1 . . 5
=5 V1 Al = 5 Tay (Y2 = ith3) AOY = inf Vare 07 A O° o)
Moy 07 Ay 47 L5 07 A+ iLany 07 A (02 — in3) ‘
—im Mag 07 A (12 +in3) — Ca(n2 + in3) A (12 — in3)
+Hom A (n2 +i13) + imae C7n1 A (12 — in3),

dyr = oo NP1 — o2 NP3+ o3 N ha — digy A @7
47T Lo 07 N0+ 4C, 07 Ay
+4C5 07 A — 4imsz C7 00 A (2 + ing) + 4imye C7 07 A (n2 —ing) (2.22)
+Pm A2+ in3) + P A (2 — in3)
+ iR (2 +in3) A (n2 — in3),

dpatidys = (po —ip1) A (Y2 + i) +i(p2 +ips) A
+ 4507 A @0 + 4ind Mys 07 A6 + 4ind C5 07 Ay
—AH5 07 Ay — 4iC5 07 A (n2 + in3) (2.23)
— 4im He 07 A (2 — inz) — iR m1 A (2 + in3)
+Qmi A (n2 — ing) — P (12 +in3) A (12 — im).
2.6. The qc structures as integral manifolds of an exterior differen-

tial system. As we have seen above, each qc structure (M, H) determines
a principle bundle P; over M with a coframing

7787 007 9007 9087 FO{,B: ¢O¢7 17/}5 (224)
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satisfying (2.16), (2.14), (2.17), together with a set of functions
Saﬁ'yéy Vaﬂva Ea,@a Maﬁu Cor Ha, P, @, R (225)

with the respective properties (I), (IT) and (IIT) of Section 2.5. As it can be
easily shown, the converse is also true, i.e., each manifold P; endowed with a
coframing (2.24) and functions (2.25), satisfying all the respective properties,
can be viewed, locally (in a unique way), as the canonical principle bundle of
a (unique) qc structure. Therefore, finding local qc structures is equivalent
to finding linearly independent one-forms (2.24) and functions (2.25) on an
open domain in RI™(P1) gatisfying the above properties. This is, clearly, a
problem of type (2.1) and thus it reduces—as explained in Section 2.1—to
a typical problem from the theory of exterior differential systems that can
be handled using the Cartan’s Third Theorem.

For the respective exterior differential system, the validity of Assumption
I, Section 2.1 follows immediately from [12], Proposition 4.2 which says
that the exterior differentiation of (2.20), (2.21), (2.22) and (2.23) produces
equations that can be put into the form:

2 o Q* 5 *
(@Tag =) TS200 AO A + Vig, AOT A
+ Th Th Vis AT A — ind Vig, AOT A (2 4 ing)

+ dmh ﬂg 7r§ V;pg NG N (2 —inz)

—iLhg A (n2 +in3) A (2 — in3)
+ Mg Am A (2 +ins) + Th TEMs AmA (2 —inz) = 0; (2.26)

(d%a :) — Y Vg, AOP AT T L5 0% A+ M 0P Ay

—iw% MZV/\HB/\ (n2+1in3) +i£;5/\05/\ (n2—1in3) —CAHA (n2+ins) A (n2—ins)
+imh CaAmA (2 —ing) + Hi Am A (m2 +in3) = 0; (2.27)

(@0r =) 4t L5, A 6% A OT +4C5 A 07 Ay +4C5 N7 Ay
+ dimly Ch A 0% A (n2 —ing) — 4imh C AT A (2 +im3) +P* At A (n2 +ins3)
+P*An A (7]2 — ing) +1R* A (772 + ing) A (772 — z'773) = 0; (2.28)

(d2 (12 +ivp3) = ) 4i7rg M NOP N7 +4z'7r§ Co NOP Ay — AHENOT Ay
—ACENOT A (m2 + ins) — dimly Hy, A 0P A (g — img) — iR* Ay A (n2 + i)
+Q AMmA (112 —ing) = P*A (2 +ins) A (2 —ing) = 0, (2.29)
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where
S:‘B'Y(S’ V:‘B'Y’ ’CZ,B’ Zﬂ, C;, HZ, P*, Q*7 R* (230)
are certain (new) one-forms on P; each one of which begins with the differ-

ential of the corresponding curvature component followed by certain correc-
tions terms. More precisely, we have

Saﬁ»yé = dSa,B’yé — 71Ty 87',876 -7 Tup SoaT’yé -7 Ty Saﬁ'ré
—71""Tys SaB'yT — %0 Saﬂ'yé —2i (77047' V&B'y + 7 Vowé + Ty Vaﬁé + 57 Vaﬁy) 0"

= 2i(gar (V) + 957 (V)asy + 937 (W)ags + g7 (V) )07 (2.31)

d
o Was — 7T Vegy — 7T s Vary — 77Ty Vagr

afy
o F 1 . 1 . .
+ 1TE ¢ Saﬁ'yo - 5 (3900 + 71‘101) Va,B’y + 5(()02 - 1803) (Jv)aﬁ'y
+2(7Ta7 Mpy+msr May +7y7 Maﬁ)m +2(9fﬁ Loy +987 Lay+9y7 Eaﬂ)m

(2.32)

« d
af éf d£a6 - WTUFO’Q ET,B - WTJFUIB ‘CQT B 2SDO £a6

1 . 1 ) . . TR
- 5(902 + 2503)Maﬁ - 5(902 - Z@S)(JM)aﬁ — ¢” Vago — h T3 ¢° Vs

— 2i(7arCs + m3:Ca) 07 — 2i(gar 75 Co + g7 75, C5)07  (2.33)

w d )
af ;f dMoz,B — 71 Toa M‘rﬁ - WTJFO’B Mar — (2('00 + ZSOI) MO‘B

+ (SOQ_iSO3)£aB+27T?— qu_— Vaﬁo+2 (WQTH,8+7TﬂTHa) 07 —2i (goﬁ' C,B"f_gﬁff Ca) o7
(2.34)

1 _
¢t dc, — 7Ty Cr — 5 (590 + 1) Ca + 77 (92 — itp3) Co

7 ' 1 1 _
+2in7 ¢" Lo — 19" Mar — %(302 + 2'903)Ha + Qﬂ—on' PO — an‘? RO"
(2.35)

. 1
Hz d:f d?‘la o ﬂ,‘l‘o'l‘\o_a ’HT — 5 (5@0 —|— 3@@1) ,Ha
31

_ 1 ) _
- 5 (902 - ng)ca + 371-?'— qu Mao - 577047’ QGT - %ga? 7307 (236)

R* AR — 300 R + (0o +ip3) P + (02 — ip3) P + 867 Cr + 87 C (2.37)
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e ) ' . 3 .
P ap - (30 + 1) P + %(902 +ip3)Q — 5(902 —ip3)R
— 4i¢"H, + 1275907 C5  (2.38)

Q" 40 — (3py + 2i01) Q + 2i(ipy — ips) P — 16m5 ™ HT  (2.39)

In order to show that the Assumption II, Section 2.1 holds true for the
differential system under consideration, we observe that the Bianchi identi-
ties (2.26), (2.27), (2.28) and (2.29) imply that the one-forms (2.30) belong
to the linear span of 7, 19, 13, 0%, 0% Furthermore, if we are consider-
ing the above Bianchi identities as a system of algebraic equations for the
unknown one-forms (2.30), then—since this system is clearly linear—the so-
lutions may be parametrized by elements of a certain vector space. In [12],
Proposition 4.3 we have given an explicit description for this vector space.
Namely, we have shown that, on P, there exist unique, globally defined,

complex valued functions
Aaﬂ’y&v chﬁw& Caﬁyz?a Da,@’ya gozﬁ’yv Faﬂ'ya gaﬁv Xaﬂv yaﬁv Zaﬁ7 (2 40)
(Nl)om (NQ)ou (NS)om (N4)Ou (NE))on u& Ws .

so that:

(I) Each of the arrays {Aagsct, {Bapysts {Caprs}s {Dapyts {Eapy}s
{Fapyts 1Gasy}s {Xas), {Vas}, {24} is totally symmetric in its indices.
(IT) We have

agrs = Aaprse0° — 1 (1 A)apyso 0+ (Baw + (jB)aﬂvé)m
+iCapys (M2 + in3) — i(IC)apys (N2 — in3)

57 = Capye 0 + 77 Bapyo 0 + Doagymi + Eagey(n2 + ins)
+Fapr (112 — i13)
b = —(F)ase 0 — 7L Fapo 0+ i((2)ap — Zap)m
+iGap (12 + i13) — 1(iG)as (n2 — in3)
ap = —Capel+mE ((J’f Japo = iDa/sa> 0 + Xopm + Vas (112 + in3)

+Zap(n2 — in3)
Co = Gacl —inl Zao 05+ (N1)am + (N2)a(772 + i773)
+(N3)a(n2 — in3)
Hy = Va0 +inZ (Goo — Xao)0°+ Na)am + (Ns)a(n2 + in3)
(W a + i (No)s ) (2 — o)
R* = 477(N3)s 60 + 477 (N3), 0 + i (Us — Us)m
—i(Ur +Ws) (n2 +in3) +i(Us + W3) (2 — ins3)
P = —A(NG) 0 — 4((Na)e + imZ (M) ) 0 + Uy
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+Us (02 + in3) + Us (2 — in3)
Q" = A(N5)e0 +dinf (N2)s + (M2)o ) 0° + Wi
+Wh (12 + in3) + Ws(n2 — ins). (2.41)

2.7. The Cartan test. For the (real) dimension D of the vector space
determined by (2.40), we calculate

D:2<2”5+4> +4<2"Z 3) +6(2”; 2) +8<2"2+1> 1 20n + 12

= 2 @n )+ B+ B+ M+ 1) (242

Following the scheme of Section 2.1, the problem of finding all possible
coframings (2.24) and functions (2.25) satisfying the respective relations
(i.e., the problem of finding all local qc structures) may be seen, equivalently,
as the problem of solving a certain associated exterior differential system,
which we describe next: Let us denote the (real) dimension of P; by d;. We
have

2

The functions (2.25), with their respective properties (I) and (II) assumed,
determine a vector space for which these functions represent the coordinate
components of vectors. For the dimension ds of this vector space, we easily
compute

on+3 on+2 on+1
d2=<n: >+2<n; >+3<n2—i— >—|—8n+5
(2.44)

= L0 +5)(2n+3)(n+ 2)(n + 1)

Then, the associated exterior differential system that we are considering
is defined by a differential ideal Z on the product manifold

N = GL(d1,R) x R% x R%, (2.45)

We can interpret, in a natural way (cf. Section 2.1), (2.24) and (2.25) as
one-forms and functions on N respectively. Then, the ideal Z is algebraically
generated by the two-forms given by the structure equations (2.14), (2.17),
(2.20), (2.21), (2.22), (2.23), and by the three-forms determined by the
Bianchi identities (2.26), (2.27), (2.28) and (2.29) (these are the only non-
trivial equations that we obtain by exterior differentiation of the structure
equations). Since only the latter are relevant for the computation of the
character sequence of the ideal (cf. Section 2.1), we will denote them by
A, Aq and VU, respectively, i.e., we have:

d — (2" N 5> = (2n+5)(n+2) (2.43)

NOYAG + Vig NG A+ TEaG Vi AGT A

— 112 Vage A 07 A (n2 +ins) + ik 7rg ™, ;175 ANOY A (n2 —in3)

Aap = 7§ ;,370
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—iLg A (m2+in3) A (n2 —ing) + Mig Amu A (2 + ins)
+ b wg M, Ay A (2 —ins);  (2.46)

Ao = — im§Vig, N0 NOT + 7l L5 N7 Ay + Mg AO° A
—im sz/\eﬁ/\(772+z'773)—i—iﬁzﬂ/\Qﬁ/\(ng—ing)—C;A(ng+i7]3)/\(n2—ing)
+ dmh C; Am A (772 - ing) +HL A A (7]2 + ing); (2.47)

Uy = 4dnl L3, N0 NOT+4C5 0P Ay +4CE AGT Ay +dimly CAGP A (11— i)
— 4imh C N0 A (2 4 in3) +P* Am A (n2 +inz) + P Am A (n2 — in3)
+iR*A (2 +in3) A (2 —ins);  (2.48)

Wy + Wy = dinly My AO° N7 + dimly CE A0 Ay — AHE A OT Ay
— 4(11; AOT A (772 + ing) — 4i7rg ’H;‘—L A6OB A (772 — ing) — iR Am A (772 + i773)
+ @ A A (7]2 — ing) —P*A (772 + ’L"f}g) VAN (772 — ’L"f]g). (2.49)

In order to show that our exterior differential system Z is in involution—
which would allow us to apply the Cartan’s Third Theorem to it—we need
to compute the character sequence vy, v2,vs,...,v4, of the system and show
that the Cartan’s test

D:U1+2U2+3U3+'--+dlvd1

is satisfied. We will do this in the next section.

3. Involutivity of the associated exterior differential system

3.1. Setting out a few more conventions. According to our current
conventions the Greek indices «, 3, are running from 1 to 2n. Here, how-
ever, we will need also indices that have the range 1,...,n for which we
will use again the small Greek letters but already printed in black, e.g,

a,B,7,.... Primed bold indices will be used to indicate a shift by n, e.g.,

o Y a + n, and thus they will always have the range (n +1),...,2n. If a

number in brackets is used as an index (e.g., [15]), it means that we take a
index in the range 1,...,n that is congruent to the original number in the
brackets modulo n (so if n=6, then [15] as an index corresponds to 3). With

this conventions, the constants 7,3 from Section 2.4 are determined by
a _ o _sa_ _ _a
g = 0, T = 0 = T

Furthermore, the properties of the functions S,g.5 and L,5 given by
(2.19) may be, equivalently, written as

(65 being the Kronecker delta).

Sa’ﬁ"y’&’ = 80:;3767 SaB"y'b" = _Sa'ﬁ'y§7 SaB'y’J’ = Sa’ﬁ"y§7 (3.1)
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Lyg = Lag, Log =—Lyp. (3.2)
Similarly, since by (2.46) it can be easily verified that (jA)as = Ang, we
have also the equations

Aa'ﬂ’ = Aaﬂ7 Aaﬂ' == _Aa’ﬁ' (33)

3.2. Introducing an appropriate coordinate system. Let us fix an
integral element F C T,N at the origin o € N of the associated exterior
differential system, defined by the equations

and the structure equations (2.14), (2.17), (2.20), (2.21), (2.22) and (2.23).

In order to compute the sequence of Cartan characters of the ideal 7
(cf. Section 2.1) we need to introduce a real basis for the vector space
span{ns, 0%,0%}. Let us take £€%,(“ to be the real one-forms defined by % =
¥ +i¢* and consider the basis {ns, %, (“}. In general, in the terminology of
[2] and [3], the choice of a bases here corresponds to a choice of an integral
flag

{O}ZElCEQC"'CEdle

which we construct by dualizing the corresponding coframe of E. Part of
the difficulty in showing the Cartan’s test and computing the corresponding
Cartan characters of an ideal lies in the appropriate choice of the integral
flag. Unfortunately, the natural choice of real coordinates that we have
suggested above does not produce a Cartan-ordinary flag (i.e., a flag for
which the Cartan’s test is satisfied). Therefore, we will need a slightly more
complicated construction here.
Let pu® and v* be (real) one-forms on N determined by the equations

E = pt ¢+,
& = pr (el ifa £ 1
B =B 4+ B2 foralll1 <B<n.

Then, we choose a new basis of one-forms {e', ..., €*"*3} for span{n,, 6%, 6%}
by setting

60[ — 507 €a+n — Caa

E2n+1 —_ 62n—|-2 _ 62n-|—3 €a+2n+3 — Iua €a+3n+3 _

, v
(3.5)

Notice that because of (3.3), we can restrict our attention only to the
three-forms Agg, Aggr, Aa, Ay and W, Substituting (3.5) into (2.46),
(2.47), (2.48) and (2.49) gives:

1 * * )
Aaﬂ - 5( aB,Y&I - Saﬁ&’y’) /\ f’y /\§

— (ZSaﬁ,yy + ZSa,BtS’y' + Saﬂ,y[éJrl] + OLB’Y’[J-FHI) A {y AN C

m, 12, =13,
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1 * *
+ 5( aprs’ ~ Sapsy T 1Sapyisr1y ~ Sapsyr1r ~ Sapyis+1) T 1Sapsiy-1)

+8, Bly+1][6+1)" — S:ﬂ[6+1][7+1]'> ACTA C + ( oy T Vo o By ) & Am
+(Vagy— Vg HVagmsrr Vg ) NN = i (Vigy—Vargis ) A A2
+(— by~ Var gy TV apiy1) m) AN A + (M;ﬁm) A AN
+ (Vagy + Vagy = Saom — Sapre + iSagaiy ~Sapyisy ) NE Ay
T (_ Vapy + ch*z'ﬂ"y' ~Vapiy+1] ~ Vargy1) o Bly+1] T iSapy1r ~ 1Sapy + Saﬂ['7+1}
~ Saptrerys ~ Sapuis) ~ Sapyir +Sagryenay T Sappery) AC A
+ (iMag — Moy Vg~ Varg — Vagisy + Vargray) A A

+ < — 2£:;5 ZV afl + ZV ,,BI — ;ﬂ[g] — V;,ﬁ,[g]) A\ 2 A\ UE + ... 5 (36)

1 * * )
Aaﬂ’ == *( aﬂ"y&' - Saﬂl&yl) /\ g'y /\5

o )
— (7,8 B'~6' + ZS By + S B”Y[&‘H] Sa’ﬁ’y[5+1]> A 5’)‘ A C

+ %(S;ﬁ"ﬂ?’ ~ Sapsy ~ Sarpyis i) T Sarpsiyi1]  Sapryisry T Sapsiy)
+ Sapanay — Sapisrunar) ACAC + (Vagy — Vg, ) A€ AM
(zV it VeV agiy 1y m) ACY A, — z(VaB, AV )/\57/\772
(Vg gy Vi e+ Vg ) NN + (Mg =g ) A
+ (Vagry = Viogy = Sapt + Sirgs + Saggapy + 15, ’ﬂ7[3]) N A

- S e *
+ ( —WVapry ~ WVarpy = Vagye1) T Varppyaa)

—1S*

y+1]1
* Y

B rt171 ~ Sapiyis) T Sy + Sapiy sy T Sa ﬁ'[smﬂl') ACT AT
<ZMaﬂ' + ’LM Iﬁ aﬂlll + V ',31' ZV ﬂ'[?’]' — ZV;'ﬂ[S]') A\ m A\ 13

Ba = %( apy’ VZﬁ"Y) NP NET

: 5
~ (Vagy + Vagrs — Vasmen — Vagiyiay) NP A
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+ % (= Vasy + Vagy +Vapiyery ~ Vavipoay = Vasivs + Ve
—Vr alB+1]py+1 + A% [7+1][ﬂ+1],) ANCPACY + ( — L’zﬂl + /\/lf,ﬁ) ANEBAm
+ (L + Mg+ Laggrag + Magg 1y ) AP A+ (i35 — Mg ) AEP A
+ (— op — Mg Tilyg iy +z’Mj;[B+1]) NP A + (z’Cf,JrH;) AL A2
+ (Lag+ Mo+ Vags + Vg + Vagi — Vagiar ) A€ Ans
+ (iﬁj;ﬂ —iMog T Log 1y = Majgi) T Vapr = Vapi = Vapgrr +Vagiar
+ Vogzy T WVapis) T Vagrr T Va [3}[ﬂ+1]’> AP A
+ (C;, +iHg — Loy — M+ iﬁg[g} - z’M;m,) Amp An3
+ (2¢c;'; — L — iMy + Ll — Mj;[g]) A Ans + ... (3.8)
Ay = %(v*,ﬁ, Vi) NEEAE
~ (Vs + Vs — Vatgryery — Vargigsn)) NN
+ %(Wéﬂ' ~ Varyp T Vargyrry = Varyiprr = Varpiyr1] T Varalp
+ Vg iy ~ fo'mu'[ﬂm) NN + (—Top+M; 'ﬁ) NP N
+ (z'T;Bﬂ‘M;,ﬁJrﬁ;,wﬂ] +M;§,[ﬂ+1},) ANCB AL + (iﬁ;,ﬁ—i/\/l;;,ﬁ,> AEB AT,
+ (—L;;,ﬁ—M;;,ﬁ,ﬂmﬂ/\/l;,[ﬂﬂ]) ACP A + (—z‘@+%*,) Ani AT
- (Lavg + Mg + Viogr + Viogr + Vg — Vargisy) N8 s
+ <i£Z'ﬁ_iM:/ﬂ' +%_MZ' [B+1] +V;'ﬁ’1’ _V;’,Bl iV g [B+1]"1 — WV [B+1]1
Vg + Voo + Varigeryin T Verpripe) A A
(= G+ iy — Ly — Mgy + L — M) A A

o+ (20C — Ly — iMipy + Ly = Ml ) A At + -5 (3.9)

Uy = 2<£;;ﬂ, - EZ//S) ANEXNER

1(iL0g +iLg + Loy + Lapeny) NE* AP
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+ 2L — Lo~ iLpr) + Liasy + Laipr ~ Ly
— Liniapipin + Lgorpiary) A AP + 4(Ca+CE) ne* Am
—|—4<iC* iCk + Clatay +Coy ) ACEAM — 4z(C* CT;,) A EX Ay
- 4(c* +C5 —iCh +zc[a+1) ACE AT + (77* +ﬁ*) A A
+ 4(Co + T — Lan — Loy + Ly — Lo ) ANE* A
+ 4= iCly + T — Ciora — Oy — 11 + 131 — Ligyaps + Ll

— Lam) — Laga + 1Lapap + iﬁf?»}'[aﬂ]) ACE A
+ (ﬁ?* — P — AC}, — ACT, — 4iClyy + 42'@) A A

+ (2R*—4i0f+4i?f—4c§,,] —4@) Amp Ans + ... 5 (3.10)

Uy — W = = 2i( Mg — Mg ) NEXAE
+4( Mg+ Mg — iMiig 1y — iMEggig) AETACP
+ 2= iMg + iMeg + Mijgin) — Mpjary — Mgy + Mipiasny
— iMiapipin + Mg yapiain) ACTACE — 4(iCh +HE) A Ay
4= Gy — M+ Clyyy — Hig 1y ) AC* A+ 4i(iC + M ) AE* A
— 4(7562 —Hy + C[ZH}' + z‘HfaH]) ANC* Ay + (zR + Q*) ANt A1
4 — My — iMyy — My — Mgy + My ) AE* A

4= Cart 1y +iCiyyp + Hiay + Mt = Miy, —iM;

(o

+1)'1 +ZM[a+1}
Mgy~ My~ Migivis — Misgian) A C* A3
+ (R +0Q" — 4iCT + 4H, — AC + 41'%[*3],) A A

(= 20"+ 4C} + 4H] + 4iCly + AH) A Ang + o (311)

In the above identities we have omitted all the terms involving wedge
products with basis one-forms (3.5) of index grater than 2n + 3 (and have
replaced them by ”...”) since they will turn out to be irrelevant for our
further considerations here.

For each integer 1 < A < d; (d; is given by (2.43)), we let §) be the real
subspace §) C Ty N generated by the real and the imaginary parts of all
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one forms ® for which the term ® A e, A ¢, with 1 < a,b < X appears on
the RHS of (3.6), (3.7), (3.8), (3.9), (3.10) or (3.11). Then, the character
sequence vi,va,...,vq, of the ideal Z corresponding to the fixed basis (3.5)
is given by (cf. Section 2.1)

v = 0;
{7))\ = dim(F/Sa-1) = dimFy —dimF_1), if2< A< dy

3.3. The characters va,...,v,. Let us fix an integer number A between
2 and n. By definition, the (real) vector space Fy is generated by the real
and imaginary parts of the one-forms

* * * *
Saﬁ,yal - Saﬂ‘s,yl, Saﬂl,yal - SaBIJ,Yh
* * * * * * * *
ays' Va’y'ts’ Va/,y/(; - Va'ts"y’ o £,7/67 M'YIJ - I
where 1 < a,8 <nand1l < 7,68 <A.
Let us introduce the one-forms
def 1 * *
Xaﬁ’ﬂs - 5( afys Saﬂ&y’)’

s 1 (3.12)
€ * * % *
Yaﬁ’y& = Z (‘Saﬂ'yJ' + aBsy + 80'75,3' + 3’750'>'

Then, as it can be easily verified, Xog,s is symmetric in o, 8 and skew-
symmetric in 4, 4. Furthermore, it has the property

Xapys + Xayep + Xasgy = 0. (3.13)
Whereas Y,g45 is totally symmetric in a, 8,7,d. By a straightforward sub-

stitution, one can immediately verify the identity

. 1

By = 5 (XaB'Yt? + Xpyas + X'yaB6> + Yapys- (3.14)
Next, we will choose a reduced set of generators for the linear space
span{Re(XaW), Im (X apys) ’ 1 <afB <n 1<m8< ,\} (3.15)

considered as a subspace in §y/$x_1. Notice that by (3.13), for any 1 <
a,B,vy <X —1, we have
Xopyr + Xargy tXayag =0
——
EF(a—1)
and thus, modulo §x_; we have the relation Xog,0 = Xaqga, i€, Xagyr is

symmetric in @, 8,4, considered as an element of the quotient space Fy/§r_1-
Therefore,

Sa
Sa-1

span{Re(Xagyp) Im(Xagpp) [ 1 < @B,y <A-1}C
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can be generated (over the real numbers) by

1
2 <’\ + ) (3.16)
3
elements.

If we consider the index ranges A < a < n, 1 < 8,y < X —1, we have
again the identity
Xa,B’y)\ + Xa)\ﬂ'y +Xa'y)\ﬂ =0,
~——
€Sa-1)

and thus X,gyy is symmetric in B, considered as an element of the quotient
space §x/&xr_1. In this case, the respective subspace

Span{Re(Xaﬂ'y)\)7 Hm(Xaﬂ'y/\) ‘ A<a<n, 1 < By <A-— 1} C %S)‘
A-1
can by generated by
A
2(n—A+1) <2> (3.17)
elements.
Similarly, the subspace
{ Sx
span{ Re(Xappa) Im(Xapya) ‘ A<aB<n 1<~y <A— 1} 3
A-1
can by generated by
—A+2
2\ — 1) (n A * > (3.18)

elements.
The sum of the numbers (3.16), (3.17) and (3.18) gives an upper bound
for the dimension of (3.15).
We proceed in a similar fashion with the linear subspace
span{Re(S;ﬂ,,yy - S;ﬁ/‘;,y/), Hm(S;B,,Y‘;, - S:ﬁ/&y/) ’
1< B <n 1< v6 <A} (319)

of Fx/Fr_1. We first introduce some new real one-forms

dif 1 * *
Raﬂ’Yts - §R€ (Saﬁ"yé’ - Saﬂ'&y')’
def * * *
Tapys = Re <Saﬂ"y&’ + SfyB'tSa' + S&ﬁ’a’y’ >’
dzf 1 * *
Uapys = 3 Hm( aflys Sa,B'&y’ :

Then, the properties (3.1) of S;ﬂ'»y&’ imply that R,gys is skew-symmetric
with respect to each of the two pairs of indices a, 8 and «,d, and satisfies
the identities

Rapys + Ryaps + Bgyas =0, Rapys = Rysaps (3.20)
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i.e., it has the algebraic properties of a Riemannian curvature tensor. We
have that T,g,s is totally symmetric, whereas Uygys is symmetric in o, 8,
skew-symmetric in 4y, d and satisfies
Uapvs + Uaspy + Uaysg = 0.
We have also that
« 2 1
Re(Sagmer) = 3 (Raﬁvé + Ra&vﬂ) + 3Tars
1 (3.21)
Hm(S;ﬂ"YJ') =3 (Uaﬂ'yé + Uygas + Uasys + U,ygaﬁ).

Clearly, the subspace (3.19) is generated by {Raﬂ,ﬂ;, Uaprys ‘ 1 <apf <

n, 1 < 7,68 < )\}. We will next reduce the number of its generators

by using the above symmetry properties. The dependence of the one-forms
Uapys On their indices is a subject to the exactly same algebraic relations as
that of Xogys . Therefore, by (3.16), (3.17) and (3.18), the subspace

Sa

A-1

span{Uaﬂ,yg ’ 1 <apf <n 1< 49,6 S)\} C

can be generated by

(M3 reaen(G)ra-n(" 37 e
elements.

If we assume 1 < a, 8,7 < XA — 1, then the properties (3.20) easily imply
that Ragyx = 0 modulo §y_;. Let us consider the index ranges A < a < n,
1< B,y <AXA—1. We have

Rapyn + Raxgy +Rayag =0,
——
€Fn-1)

and hence, modulo §x_1, Ragyr = Raypxr. Thus

span{ Ragpy [A<a<n, 1 < By <A-1}c Sf:
can be generated by
(n—X+1) (2) (3.23)
elements. Whereas
span{Raﬁv,\ ‘ A<a,f<n 1 <9 <A-— 1} C Sfil

can by generated by

(A— 1)(”_;\+ 1) (3.24)
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elements, since Rogyxn = —Rgayx. Therefore, the dimension of (3.19) is less
or equal to the sum of (3.22), (3.23) and (3.24).

Similarly, the linear span in §/&x_1 of the real and imaginary parts of
the one-forms

{V*'B’)‘I_V*'Yﬂ“ V;',B"Y_V;"Ylﬂ ) 1 < « §n, 1 < ,3,’)’ S)\}

« «

can be generated by
A
4<2> +4n—-A+1)(A—-1) (3.25)
elements. Whereas for the linear span of the real and imaginary parts of

(Lo = Lourr Mig — My

1 <a<n1<By <A

in §/&r_1, we need only
3A—1) (3.26)
generators (notice that by (3.2), the imaginary part of £ 5~ E:};a, vanishes).

The sum of (3.16), (3.17), (3.18), (3.22), (3.23), (3.24), (3.25) and (3.26)
gives an upper bound for the dimension of §y/§r_1, i-e., we have

dim(gfil) < 3<A;1> + 3(n—/\+1)<;‘>
+3(/\—1)(n_;\+2> + (n—,\+1)<’2\> + (,\—1)(”_;\“>

+4<;‘> + A=A+ 1A —=1) + 3(A—1)

1
= 5()\ —1A—=2n—4)(A—2n—5).
The vector space §, is freely generated by the real and imaginary parts

of all the one-forms (modulo their respective symmetries)

Xaﬂ'y& Ra,B'yJa Uaﬂ'yé
apy — VaryB' Va'ﬁ"y — Yo'y B> ap — 'C,Ba" I Mﬂa'

and hence we can easily compute its dimension,

n(n—1) n(n+1)
. - +1 n mnr2)
dHﬂ(%)z[( Yy >—<4> +3< . )
—_——
this is for {Ragqs} {Xapys, Uapys}
n—+1 n -+ 2 n
()OO o)
N——

{V‘;ﬁ,yl - V:ﬂyﬂ” V;'ﬁ"y - V;I’Ylﬂ} {l::;ﬂ' - E;a" M:;ﬁ' - M;a'}

1
= 5yn - 1)(11n? + 61n + 86).



EXISTENCE OF LOCAL QUATERNIONIC CONTACT GEOMETRIES 1117
By construction 0 = §; C §2 C --- C §, and thus

5.2(2)s (o0 ()

Therefore we can calculate (by using, for example, some of the computer
algebra systems) that

dim(n) Zdlm( 2 ) < Z(%(,\—1)()\—271—4)(,\—271—5))

A=2

1
= 5 - 1)(11n% + 61n + 86),

which implies that the above inequality must actually be an equality, i.e.,
we have shown

1

UA:dim< iz ) —SA-DA—21-4)A—2n-5), 2<A<n
Sa-1 2

3.4. The characters v(,11);...,v2n. Notice that, modulo §,, we have

(cf. (3.14), (3.21))

* _ * _1
SaB’ytS' = YO‘B’W ’ Sa,B"y&’ = gTaﬂ'yé

and that each of the arrays
Yaﬂfy(s’ Ta,B'va VZB,YI 3 V;BI')'/ 5 /C;;ﬂ/ 5 M:;ﬁl

depends totally symmetrically on its indices.

Let us fix X to be an integer number between 1 and n. By definition, the
quotient space §(,4x)/Fn is generated by the real and imaginary parts of
the one-forms:

Aans 2 i85 5+ iSig5 + Sipyisin + Sy 5+1)

= 2iYapys + Sapyis41) T 3Taﬂ'y[5+1} I1<a,By<n, 1<6<AN

def . % *
Bapys = _Z< by~ Sapsy T Sapys11) ~ Capstlyr1y ~ Sapylsi)
+iSagsiy+1) T Saly 1By S;ﬁ[5+1]h+1})
1 1
= §Ta57[6+1} ~ gltaBsy+1] T Sapyls+1) T ~Sapsiy+1);
1<a,B<n, 1<9,0 <)
def 1 % o
Capys = —§<ZS pirs t 1Sapsy + Sapiyisit) — Sa'ﬁfy[6+1])

1
= §Taﬁ'y¢5 + ]Im(YaB'y[ts-i-l})? 1< Ol,ﬁ,’)' <n, 1<6<N
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def . % * o ¥ . *
Dapys = _Z( apnd ~ Sapsy ~ Sarpyisir) T Sapsiyy T I Sapis)
+iSapspy 1) t Sap iy 3/3’[5+1m+11')

= —Re(Yopypr1)) + Re(Yagspy1)): 1<a@,B<n, 1<v,8<X

E2’LV I+V /3[7+1}+V ﬁl[,y+1]'71§aa:37§n7 IS’)’SA,

def . -\ )k * *
Bagy = ~WVapy + Vapy t Vagiyiay = Vayipry ~ Vagri + Vayigi)

= Va1 T Vapyrypiay
= Vagirrry ~ Vayips) ~ Ve T Vanjprap LS @< LBy <X

def * * -y % *
V l,BI + Va"y'ﬂ - ZVC!’,BI[’Y—‘FH ZV Iﬂ[’7+1]

l<a,B,<n, 1<y<X

Capy
= 2V ,BI ’ ZVa'ﬂl[’y-‘rl}l — iva/ﬂ[,y+1],

Dog. “ iy Ve g+ VE —V: _yr TV
aBy = Walpy T Vs T Vel p 1) T Vel 1) T el Byt T Ve[

Vg ~ Varysayipe)
= V:;Iﬂl[,y+1]l V ! I[ﬂ+1} Va/ﬂh+1]+v ] y[B+1]? 1 S 0] S n, 1 S ,B,'Y S A,

def 1 s y
Aaﬂ == (Zﬁaﬂl‘f'lﬁ ,ﬁ+£a[ﬂ+1}+£a[ﬂ+1}) = Zﬁaﬂ’ +R€(£a[ﬂ+1})7

1<a,<n, 1<B<A

Baﬂ = 5( af' 'Ca"g - Z»Ca[ﬂ"‘u + l‘cﬂ[a—&-l] + Z‘Ca[ﬂ-i—l} - l’cﬂ[a-&-l]
N EE;H]'[BH} + [’rﬂ+1}'[a+1]>
= Im(Lopiy) —Im(Lpjagyy), 1< B <X

def

= 2Maﬁ' - iMZ’[ﬂ—Fl]' - ZMZ[ﬂ+1], 1 < o, < n, 1 < ﬁ < /\7

def * *
Daﬁ = —ZM o'B + ZMa,B’ + Ma[ﬂ—i—l} Mﬁ[a+1} - Ma’[ﬁ+l]’



EXISTENCE OF LOCAL QUATERNIONIC CONTACT GEOMETRIES 1119
+ MZ' leet1]7 iMFaH}’[BH] + iMEb-&-l]'[a—i—l}
= M;[ﬂ-‘rl] - Mz[a-&-l] - MZ'[,B+1]/ + MZ![Q+1}/, 1 S a7ﬂ S A

Lemma 3.1. The linear space §(n4x)/T(nr—1) is generated (over the real

numbers) by the real and imaginary parts of the one-forms
{Aaﬂ'y)n Aa,B)\y Aa)n Caﬁ’y)\v Ca,B)\: Ca)\ ’ 1< a,,B,'y < n}
(3.27)
U {BM, Da,\‘ 1<a< A}.

Furthermore, modulo §(,,4x), for any 1 < e, 8 <n, 1 <4,6 < A, we have
the identities

Yopiy+116 = Yapyls+1)s  Sapiy+1s = Sapris+1r  Lapiy+1s = Lapys+1)s
Vair1s = Vayis+1r Vaweis = Vet Va1t = Vaiysr)
Miyis = Myisay Mpaps = Mysp Mppape = My
Loy = Lysy Lhgayps = Ly

(3.28)

Proof. Let us denote by &ly the sum of §(,11_1) and the linear span of the
real and imaginary parts of the one-forms (3.27), and consider the index
ranges 1 <a,B <n, 1 <v,0 <A Since Aygys = Capys = 0 modulo Uy, we
have
{—?ZYaﬂvé _E Sipniorn) T 3Lapysr] mod ;.
—3Tapys = Im(Yapy(s+1))
Using this, we obtain, modulo iy,

— 2i¥appy+16 = Sapiy+1)s+1] T 3 Lab+16+1)

* 1 y
= Saplsriyt1) T 3 a1+ = —2Vapis+1)y

which proves the first equation in (3.28). Similarly,

" 1 . _ . 1
Sapsiy+1] T 5Lasei+1) = —20¥apsy = —21¥apys = Sapyisin) T 3 Lapris+)

and also
1 B . _ » _ 1
- gTa,B['y+1]6 = Im(Yagp1is+1) =m0 (Yagssnpn) = _§Taﬂ[5+1h’

(3.29)
which yields the second and the third equations in the first line of (3.28).
The proof of the rest of (3.28) is completely analogous. Now, applying
(3.28), we have that, modulo iy,

1 . \ _
Bagyx = 5Tapyir1) — 5TapAr+1] — Sapyiatt] T Sapaiy+1 = 0

and similarly Dagyax = Bgyx = Dgya = 0. ([
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It is easy to observe that, by a repeated application of the identities in
the first line of (3.28), each Aagyx can be made equivalent, modulo §px—1,
to one of the elements in the following two sets:

{Aaﬁfyx)a,ﬂ,'ye{l,A,,\Jrl,...,n}}; .
{Aaﬂ’y)\’a,,BE{l,/\,)\—l—l,...,n},QS,YS)\_l}. (3.30)

Let us consider the one-forms Cygyx modulo
Sn—&-)\—l & span{Re (Aaﬂ'y)\)a Im (Aaﬁ'y/\)a }
If we suppose 1 <« <A —1, then

1
Capyr = 3Tapyr + Im(Yagyiri1y)

1
= STaprrinn-1) + Im(Yappys1a) = Cagyp = 0.

Therefore, each Cqgyy is equivalent to one of the forms in the set

{Caﬁ'y)\ ‘ ASO[,,B,’YSTL}}. (3'31)
Thus, by (3.30) and (3.31), the linear subspace

Sn—l—z\
gn—&-)\—l

Span{Re(Aaﬂ'y/\)a Hm(Aa,B'y)\)vCaﬂ'y/\ ‘1 < a,ﬂ,'y < n} -

can be generated by

(AT e

elements.

Similarly, by a repeated application of the identities in the second line of
(3.28), we obtain that each of the one-forms Aygy, Cogy can be transformed,
equivalently modulo §, 1, to one of the elements in the following two sets:

{Aaﬁ,\, Capr ‘ a,Bc {1,)\,)\+1,...,n}};
{Aapr, Copr | @€ AN+ 1 m), 2B <A -1},
Therefore,

span{Re(AaﬂA),Hm(Aaﬁ)\),Re(Caﬂ)\),]Im(Caﬁ)\) ‘ 1< a,,B < n} - M

gn—l—/\—l
can be generated by

4(n—;\+3>+4<)\12><n—i\+2> (3.33)

elements.
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Clearly,
span{Aa)\)l <a< n} @span{Ba)“l <a<\— 1} C Suir
Tnta-1
can be generated by
n+A—1 (3.34)

elements, and similarly

span{Re(C’aA)v]Im(CaA)‘l <a< n}@span{Da)“l <a< )\_1} CS?”;)‘
n+A-1

generates by
2(n+A—1). (3.35)
elements.

Therefore, the dimension of §,1x/§nia—1 is bounded above by the sum
of (3.32), (3.33),(3.34) and (3.35), i.e.,

T+ )

n+A—1

< LntA— DA+ -r+5). (3.36)

— di (
Untx m <35

Later on, we shell see that in (3.36) we have, actually, an equality.
Let us observe that equations (3.28) and (3.29) yield the identities

Supys = 2Y111a 11y 164 + IM(Yinijarpiy15-2))
Sapyst = YilljatBty+6-3) mod §2,
S;B,'Y‘s' = _Hm(}/lll[a—f—ﬁ—f—'y—&—ts—Q])

(3.37)
Similarly, the vanishing of all one-forms Ayg,, Cagy, modulo §2,, implies
that

{ apy = 2 Mlijarpiy—ar = Vivaspiy—2) mod Fon  (3.38)
Vagy = "Vijatsir—2r ~ 2V 1V a3y

and the vanishing of A,g, Cog gives

mod Fop, (3.39)

E:;B’ = iRe(£T[a+ﬂ})
-M

Map = —2iMip g oy Vieet 1)

3.5. The characters v(2,41);V(2n4+2) and v(ap43). The definition of
Son+1 together with the identities (3.37), (3.38), (3.39) and (3.28) implies
that the quotient space Fon+1/F2n is generated by the real and imaginary
parts of the one-forms:

lja—gy T1Im (Vikl'[a—Q}')3
fl[a—s}' + Hm(vikl'[a—Z]’) +ilm (Vfl[a—u')? (3.40)
]Im(vikl[afZ]’); Re(vikl[afﬂ') + Hm(vfl'[afl}’);
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QMT[C!—Q]' - iMT’[&—l]' + Re(—LTa)7
2M g gy — iMYg_ gy +iIm (L) + M] s (3.41)
Ll t Mijao1ps Ligyy + Moty T Re(Lijgyy) — iMigs

Re(Ch); Im(Cy) — Re(Cf;H],); iCor + My

e e - (3.42)
—ZCa/ + Ha - C[a+1] — ZH[O‘+1]/.

A brief inspection of the one forms in (3.40) shows that the linear span in
Son+1/Son of their real and imaginary parts can be generated by using only
the real and imaginary parts of the first expression there. Similarly, for the
the linear span of the real and imaginary parts of the forms in (3.41), we
need only the real and imaginary parts of the forms which are in the first
line, i.e.,

2M>{[a72}l - iM){I[afl]' + Re( Ta)
2M gy — iMiq_yy +ilm(Llg) + M.

Observing also that the first two expressions in (3.42) correspond to one-
forms that are real, we conclude that Fo,+1/82n can be generated, over the
real numbers, by using only 12n one-forms, and thus

Von+1 S 12n. (343)
Furthermore, we obtain the relations
le? = _Hm(vikl’[a—i-l]’)

Vie = View
Vit = _Hm(Vﬁ'[aH]') = 2iV (a1

o = iRe(L7,,)
Mia’ = TTO!

* _ Ay . * mod SQTL-ﬁ-l (344)
My = _QZﬁl[afl] - ZR@(EHaH])
Ll = iRe(D{[aH})
C = iRe( E;H-l]')

By (3.44), the quotient space §an+2/Fon+1 is generated by the real and
imaginary parts of

*

Vi o e Ch.  IRT+ QY PP
and therefore,
Vont2 < 6n + 3. (3.45)
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The quotient space Fon+3/82n+2 is generated by the real and imaginary
parts of the one-forms:

ok

P*—P; R*;

apy T Vargy = Sapyt = Sapy1 + 1apyfs) ~ Sapy(ay
= 2iY111ja—3] + 2Y111ja—1] + 20m(Yi11]a+1]);

v i aBly- 11!~ Saly+1r1 Saﬁ'v[B] = Sapypy + ZSaﬁ['erl] By T Saplalp1r
= —2Y111ja—3) + 20Y111[a—1) — 2iIm(Yi11ja—1)) + 2iY 111004 1];
:ﬂl,yl - V;'ﬂ’y' — Saﬂ"yl + S Iﬂ’Yl + ’LS By [3] + 1— S Iﬂ,y[ ]

= 2 (Re(Ynm) - Hm(Y111[a—2])>§

ZV ﬁl ’ /LV;Iﬂ’YI - V* - ZS*

ap'ty+11 T Vargy = iSagm + Sap|

o' Byl y+1]17

B 11~ Sapiyis) T Sz T 1Sap sy T iSap sy
= -2 <R6(Ylll[a—2]) + ]Im(Yllla) + ]Im(}/lll[a_,_g])) .

It is easy to observe that we can choose as generators the 2n+ 2 one-forms
sk

P* =P, R*, Re(Yiia) —In(Yii1ja—2));

Re(Yitija—g)) +Im(Yitia) + Im(Yi11ja+9),
and thus
Vopts < 2n + 2. (3.46)
Since the system of equations

Im (}/'111[&_4}) + Hm(yvlna) + Hm(Ylll[a+2]) =0 mod Sgn_;_g (3.47)

is non-degenerate (cf. the technical Lemma 3.2 below), we obtain that
Yiiia € Tonts and thus §o,43 is just the free vector space generated by
the real and imaginary parts of all the one forms S:vﬂvé’ ;Bv’ L’Zﬁ, B
Cr, H:, P*, QF, R*. Therefore, dimFont+3 = d2, where dy is given by
(2.44)). We have also

S@2nt3) = S@nta) = = Tdy
and thus vap44 = vop45 = ... = vg, = 0, i.e., non-zero characters may

appear only among v, ..., v2p43.

Since §n C Fnt1 C -+ C F2n C F2n+1 C S2n+2 C F2nt1, we obtain, by
using the inequalities (3.36), (3.43),(3.45) and (3.46), that
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dy = dim Fopss = dim F,, + dim Sotl Ly Qi 203
g n % 2n+2
=dim§, + vpp1 + ...+ Vopg3

1
< ﬂn(n —1)(11n* + 61n + 86)

n

+ 2
A=1
Computing the sum of the terms on the RHS of the above inequality
produces again the number dy. This implies that each of the inequalities
(3.36), (3.43),(3.45), (3.46) is actually an equality and thus, we have shown

(vy =LA —1)(A—2n—4)(A —2n - 5)

Upix = 3(n+A—1)(n—A+4)(n—A+5)

m+A=1)(n—=A+4)(n—A+5) + 12n + (6n+3) + (2n+2).

N | —

Vant1 = 12n (3.48)
Von4+2 = 6n + 3

Von4+3 = 2n + 2

Voptd = Vop4s = ... = vg = 0.

3.6. A technical lemma. Here we give a proof to an algebraic lemma
which is used in Section 3.5 to show that the system of equations (3.47)
yields

Hm(Ynla) =0 mod Font3-

Lemma 3.2. Let Z,, ={0,1,...,n — 1} be the least residue system modulo
n. If f:Zy, — C is any function satisfying

fB)+ f(k+4)+ f(k+6) =0, Vk € Zy, (3.49)
then, necessarily, f = 0.

Proof. We consider the values f(1),..., f(n) as unknown variables x1, ...,
xy,. For each k € N, we let

f
Q) = Tk + Tpta) T Llk+o)s
where, by following the conventions adopted in 3.1, we use indices enclosed
in square brackets to indicate that their values are considered modulo n.
Then, in order to proof the lemma, we need to show that the system of
linear equations

Qi=Q2=--=0Qn=0 (3.50)
is non-degenerate.

Let us define the sequence of numbers aq,...,ag,... by the recurrence
relation

a + apy1 + ag+3 =0, a1 =1, as =0, ag = —1. (3.51)
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Then a small combinatorial calculation shows that, for each m € N, we have
the identity
m
> arQpi-1) = 1 — Gmi1T2mi1] — Gmi2Tmed T GmTpmys  (3.52)
k=1
and, similarly,

m

Z akQ[2k+1] = T3 = Am41T2m+3] — Am42T[2m+5] T AmT[2m+7]s

k=1

-~ (3.53)
Z akQ2k+3] = T5 — Am+1T2m45] — Am+2T2m+7] T AmT[2m+9]-

k=1

Setting m = n into (3.52), we obtain that (3.50) yields the equation
(1 — apy1)x1 — apyoxs — apxs = 0. (3.54)

Similarly, setting m = n—1 into the first equation of (3.53), and m = n—2
into the second, we get, respectively,

—anx1 + (1 —apt1)rs — ap—125 =0

3.55
—Qp_1T1 — ApT3 + (1 + ap—2)xs = 0. ( )
Next we show that the determinant
Il —apy1  —apy2 —0n
—0n, 1—ans1 —Anp—1 | = ai — 2apap—1an41
—0p—1 —anp 1+ Qp—2 (356)

2 2
—UpOp—20n42 + Ay _1Apt2 + Qp—205, 11 + 20p0n 1
2
—QnQn42 — 2a4n—20p41 + Qg + G2 — 2an41 + 1

is never vanishing. Indeed, consider the three different roots z1, zo, z3 of
the polynomial 23 4+ z 4+ 1 = 0 and take ¢, ca, c3 to be the unique complex
numbers satisfying

c121 + 220 +c323 = 1

clz% + 02,2% + 63z§ =0

123 + co23 + 325 = —1.
Then, the solution of the recurrence relation(3.51) has the form az = ¢ 25 +
o2k + c32k. Substituting back into (3.56) and using the Vieta’s formulae,
we obtain that

l—apt1  —ap2 —an
—ap 1—apt1 —Qp—1 | = (Z? - 1)(23 - 1)(2:? - 1)7
—Qp—1 —Qnp 1 + Ap—9

which is a never vanishing number, since non of the roots of the polynomial
23+ 2z +1 =0 has a unite norm. Therefore, the linear equations (3.54) and
(3.55) have a unique solution x; = z3 = x5 = 0. Since the system (3.50)
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is invariant under cyclic permutations of the indices of its variables, this is
enough to conclude that it is non-degenerate. ([

3.7. Main theorem. Now, we are in a position to check that the Cartan’s
test (cf. (2.7)) is satisfied for our exterior differential system. Indeed, using
(3.48), we compute

Z ()‘ UA+(”+A)%+A) + (2n+1)vans1 + (2n+2)vonte + (2n+3)v2n4s
A=1
_ 2

15(2n +5)2n+3)(n+3)(n+2)(n+1). (3.57)

The number on the RHS above is equal to the constant D determined by
(2.42). Therefore, the system is in involution.

Theorem 3.3. Assume we are given some arbitrary complexr numbers

82pu5: Vo Logn Mg, Co Mo, P°, Q°, R°

Aagser Baprsr Caprer Papyr Eapyr Fapyr Yapr Xagr Vasr Zapr (3.58)
Mo, Nas NF)ay NF)ay N5)as U, WS

that depend totally symmetrically on the indices 1 < «, 8,7, < 2n and
satisfy the relations

(jSO)aﬂvd = 52575
(jfo)aﬁ = 'C;ﬁ
Re =R°.

Then, there exists a real analytic qc structure defined in a neighborhood )
of 0 € R™3 such that for some point u € Py with m,(m1(u)) = 0 (here, we
keep the notation m : P — Py and 7, : P, — € for the naturally associated
to the qc structure of Q principle bundles, as defined in section Section 2.5),
the curvature functions (2.18) and their covariant derivatives (2.40) take at
u values given by the corresponding complex numbers (3.58).

Furthermore, the generality of the real analytic qc structures in 4n + 3
dimensions is given by 2n + 2 real analytic functions of 2n 4+ 3 variables.

Proof. By the computation (3.57), we have shown that the Cartan’s test
is satisfied at the origin o € N (cf. (2.45)) for the chosen integral element
E C T,N which we have determined by the equations (3.4). In order to
prove the theorem, we need to extend this computation to a slightly more
general situation. Namely, let us consider the point

def (. o o o o o o o o o
p = (1d70; (Saﬂyévvaﬁ’y? [’aﬁ’? afr Cou Hoﬂ P ’ Q ’ R >> €N
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and define the one-forms

/: def * o : AO € o : 120
S*aprs = Shgys— {Aamae 0° — 72 (1 A°) apyso 0° + (Baﬁw + (B )ama) m
+iCo s (2 + im3) — i(IC%)apys (M2 — iﬂs)}

—~ def

V*aﬁ'y - V*a,@’y - {C(i,@'ye ‘96 + 77'? 835’70 HE + ’DZ/B,YTH —+ 5;5’}/ (7’]2 —+ 2773)

+ Fapy (12 — Z'773)}
Frog def Lros— { — (1F°)ape 0 —7Z Fpp 05 + i((jZO)aﬁ _ 225)771
+iGos (m2 + in3) — i(iG°)ap(n2 — ina)}
Meas M o5 — { — E05 0+ 7 ((ij)aﬁg - ipgﬁg) 0+ Xopm
+ Vog(n2 +ins) + Z55(n2 — in3) }
Cr, " er, - {gg’% 0° — in? 22, 6
+ N )am + N3)a(n2 +inz) + (N5)a(m2 — ins)}
Heo < H Y — { — Vae 0 + i1 (Gag — X36)0° + (ND)am
+ (NS)a (2 + ing) + ((Nf)a + mg(N;)&) (n2 — i773)}
R e {47rg(/\/§)5 6 + AT (ND)o 6° + i (US — UP3)my
— iU+ W3) (n2 +in3) + i (U1 + W°3) (12 — ina)}

B el p { ANG). 6 (D) + im2 (A ) 6+ e

+ Us (n2 + ing) + Us (n2 — ’i773)}
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0" & Qr — LN 0 + aim? (NF)o + (NF)r) 6+ Wims

+ W3 (n2 + inz) + W3 (n2 — in3)

Since we have used here the formulae (2.41), we know (by Proposition 4.3
from [12]) that the three-forms Az, A, and ¥y given by (2.46), (2.47),
(2.48) and (2.49) on N will remain the same if replacing everywhere in the
respective expressions the one-forms

Sapror Vapy Lags Mag, Con Hyy P7, QF, RY

by the one-forms

— — —_ —— ~ ~

S*aﬁ'y& V*aﬁ'ya »C*a,B, M*a,g, C*a, H*a, P*, é\*, 7/?,\* (359)

Therefore, if we repeat our computation from above for the new integral
clement £ C T, »IN, which is now determined by the vanishing of (3.59), we
will end up with the same result: The character sequence of Z will be given
again by the formulae (3.48) and the Cartan’s test will remain satisfied.
Thus E must be again a Cartan-ordinary element of Z and the Theorem
follows by the Cartan’s Third Theorem, as explained in Section 2.1. O
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