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Cobordism bicycles of vector bundles

Shoji Yokura

ABSTRACT. The main ingredient of the algebraic cobordism of M. Levine and

F. Morel is a cobordism cycle of the form (M LN ; L1, -+, L) with a proper
map h from a smooth variety M and line bundles L;’s over M. In this paper,
we consider a cobordism bicycle of a finite set of line bundles (X < V 2
Y; Ly, ,L,) with a proper map p and a smooth map s and line bundles L;’s
over V. We will show that the Grothendieck group 2°*(X,Y") of the abelian
monoid of the isomorphism classes of cobordism bicycles of finite sets of line
bundles satisfies properties similar to those of Fulton-MacPherson’s bivariant
theory and also that 2°*(X,Y") is a universal one among such abelian groups,
i.e., for any abelian group 2 (X,Y) satisfying the same properties there exists
a unique Grothendieck transformation y : 27*(X,Y) — %" (X,Y) preserving

the unit.
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1. Introduction

V. Voevodsky first introduced algebraic cobordism or higher algebraic cobor-
dism MGL**(X) in the context of motivic homotopy theory and used it in his
proof of the Milnor conjecture [26, 28, 27]. Later, in an attempt to understand
MGL**(X) better, M. Levine and F. Morel [20] constructed another algebraic
cobordism Q. (X) in terms of what they call a cobordism cycle (which is of the

form [V LN ; Ly, Lo, - -+, L] with line bundles L;’s over V' which is smooth)
and some relations on these cobordism cycles, as the universal oriented cohomol-
ogy theory. To be a bit more precise, using cobordism cycles they first defined
an oriented Borel-Moore functor Z, with products satisfying twelve conditions
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(D1) - (D4) and (A1) - (A8), and then defined an oriented Borel-Moore functor
with products of geometric type by further imposing on the functor Z, the rela-
tions R corresponding to three axioms (Dim) (dimension axiom), (Sect) (section
axiom) and (FGL) (formal group law axiom), which correspond to “of geometric
type”. The functor Z, /R is nothing but Levine—Morel’s algebraic cobordism 2.
In [19], M. Levine showed that there is an isomorphism Q,(X) = MGL?**(X)
for smooth X.

In [12], W. Fulton and R. MacPherson have introduced bivariant theory B(X i>
Y') with an aim to deal with Riemann—Roch type theorems for singular spaces
and to unify them. The extreme cases B,(X) := B~*(X == pt) becomes a
covariant functor and B*(X) := B*(X e, x ) becomes a contravariant functor.
In this sense, B(X i) Y') is called a bivariant theory. In [29] (cf. [30]), the
author introduced an oriented bivariant theory and a universal oriented bivariant

theory in order to construct a bivariant-theoretic version *(X ER Y') of Levine—

Morel’s algebraic cobordism so that the covariant part Q*(X =, pt) becomes

isomorphic to Levine-Morel’s algebraic cobordism .. (X).

Our universal oriented bivariant theory OME P (X ERN Y') is defined to be

sm
the Grothendieck group of the abelian monoid of the isomorphism classes [V 2,
X; Ly, Ly, - -+, L] such that:

(1) h:V — X is a proper map,
(2) the composite foh : V — Y is a smooth map. (Note that this requirement
implies that if the target Y is the point pt, then the source V' has to be

smooth, thus [V b x ; L1, Lo, - -+, L,] becomes a cobordism cycle in the
sense of Levine—Morel.)

Here for the monoid we consider the following addition

=ViuV, 22 X L UL, Ly ULl

where U is the disjoint union and L; L L; is a line bundle over V7 U V5 such that
(L; ULY)|y, = Lyand (L; U L})|y, = L.. In other words, OMEP(X ER Y) is the
free abelian group generated by the isomorphism classes [V 2 XLy, Lo, -- -, L,
modulo the additivity relation (1 D!

'We remark that in [29] we consider the free abelian group generated by the isomorphism
classes [V 2y X:Li, Ly, , L], however the results in [29] still hold even if we consider the
Grothendieck group by modding it out by the additivity relation (1.1).
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X Y X Y

(1.2)
If we forget or ignore the given map f in the left-hand-side diagram above, then
we get the right-hand-side diagram above, which is

a correspondence X Ly ﬂ Y with a finite set of line bundles {L1,--- , L.},

where h : V — X isaproper map and f o h : V — Y is a smooth map. Such
a correspondence (or sometimes called a span or a roof) can be considered for any
pair (X,Y") of varieties X and Y:

{L,--- L} E

Vv Vv
X Y, X Y
with a proper map p and a smooth map s. In the right-hand-side diagram F is one
vector bundle over V, not necessarily a line bundle. These two correspondences
are denoted by (X &V 5 Y;Ly,---L,) and (X & V 3 Y; E) respectively.
It turns out that such a correspondence has been already studied in C*-algebra, in

particular for Kasparov’s KK-theory K K (X,Y") ([17]), another kind of bivariant
theory which has been studied by many people in operator theory. For example, in

[9], (cf. [5] and [10]) A. Connes and G. Skandalis consider (X & v i> Y;¢)
with b a proper map, f a smooth K -oriented map and £ a vector bundle over M. In
[6], P. Baum and J. Block consider such a correspondence for singular spaces with
a group action on it and call such a correspondence an equivariant bicycle. So we
shall call the above correspondence a cobordism bicycle of vector bundles.

In our previous paper [31], we consider the above cobordism bicycle (X &
V3Y; E) of vector bundles as a morphism from X to Y and furthermore con-
sider the enriched category of such cobordism bicycles of vector bundles. Then
we extend Baum—Fulton—-MacPherson’s Riemann—Roch (or Todd class) transfor-
mation 7 : Go(—) — H.(—) ® Q (see [7]) to this enriched category.

If we consider the above (1.2), it is quite natural or reasonable to think that
there must be a connection or a relation between the above two kinds of bivariant
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theories, Fulton—-MacPherson’s bivariant theory (in topology) and Kasparov’s bi-
variant theory (in operator theory). So, as an intermediate theory between these
two theories we consider the free abelian group 27*(X,Y") generated by isomor-
phism classes of cobordism bicycles of vector bundles and finite sets of line bundles
modulo the additive relation like (1.1):

(X &V 25 VB +H(X &2 V5 25V By = [X &2 v, 252 v BiUE,),

XEViSY L, L]+ XE WY.L, L]

=X &2y, ey gL, L UL
For example, we can show the following:

Theorem 1.3. For a pair (X,Y) the Grothendieck group 2°*(X,Y") of the abelian
monoid of the isomorphism classes of cobordism bicycles of finite sets of line bun-
dles satisfies the following (similar to those of Fulton—-MacPherson’s bivariant the-
ory):
(1) it is equipped with the following three operations
(1) (product) e : ZY(X,Y)® ZNY,Z) — Z(X,Z)
(2) (Pushforward)
(@) Forapropermap f: X — X', fu : Z4X,Y) — ZY(X",Y).
(b) Forasmoothmapg:Y —Y', .¢*: Z/(X,Y) — Zitdima(X v7),
(3) (Pullback)
(a) Forasmoothmap f : X' — X, f*: ZY(X,Y) — Z+dmf(X' V).
(b) Forapropermap g:Y' —Y,*¢’: ZY(X,Y) = ZY(X,Y").

(2) the three operations satisfies the following nine properties:

(A1) Product is associative.
(As) Pushforward is functorial.

(As)’ Proper pushforward and smooth pushforward commute.
(As) Pullback is functorial.

(A3)’ Proper pullback and smooth pullback commute.

(A12) Product and pushforward commute.

(A13) Product and pullback commute.

(As3) Pushforward and pullback commute.

(A123) Projection formula.

(3) Z* has units, i.e., there is an element 1x € 29(X, X) such that 1x e a = «
for any element a € Z*(X,Y ) and B  1x = [3 for any element § € Z*(Y, X).
(4) Z* satisfies PPPU (Pushforward-Product Property for units) and PPU (Pull-
back Property for units). (For the details of these properties, see Lemma 5.9 and
Lemma 5.14.)

ZFor this unusual notation . g instead of g, see §4
3For this unusual notation * g instead of g* see §4
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(5) Z* is equipped with the Chern class operators: for a line bundle L over X
and a line bundle M overY

ci(Lye: ZHX,Y) = ZTHX,Y), ec; (M) : ZY(X,Y) = ZTHX,Y)
which satisfy the properties listed in Lemma 5.11.

We do not have a reasonable name for this naive theory 27*(X,Y") satisfying
those properties above, so in this paper we call it a “bi-variant” theory.

Definition 1.4. Let &, %’ be two bi-variant theories on a category ¥'. A Grothen-
dieck transformation y : 8 — ' is a collection of homomorphisms #(X,Y) —
P'(X,Y) for a pair (X,Y) in the category ¥, which preserves the above three
basic operations and the Chern class operator:

1) v(a ez B) =~(a) ez v(B),

() v(fsa) = fuy(a) and y(a+g) = v(a) g,

(3) v(g*a) = g*y(a) and y(a ™ f) = y(a) * f

@ (c1(L)ea)=ci(L)ey(a)and y(aeci(M)) =y(a) e ci(M).

We show the following theorem.

Theorem 1.5. The above Z*(—, —) is the universal one among bi-variant theo-
ries in the sense that given any bi-variant theory %*(—, —), there exists a unique
Grothendieck transformation

Y% - g*(_a _) — %*(_7 _)
such that vz(1ly ) = 1y € B(V,V) for any variety V.
Remark 1.6. In [1], T. Annala has succeeded in constructing what he calls the bi-

variant derived algebraic cobrodism * (X ER Y'), a bivariant theoretic analogue
of Levine-Morel’s algebraic cobordism 2, (X ) (which the author has been trying
to aim at), using the construction of Lowrey-Schiirg’s derived algebraic cobordism
dQ.(X) [23] in derived algebraic geometry and the author’s construction of the
universal bivariant theory. Roughly speaking, in [1], Annala considers the bivari-

ant theory OMEI P (X EN Y’) for the category of derived algebraic schemes in

qusm
derived algebraic geometry, where qusm refers to quai-smooth morphisms, and

furthermore imposes some relations % (X ER Y') on OMET?P (X EN Y') to ob-

tain its quotient OM®7? (X ERN Y)/%(X EN Y’) , which is the bivariant derived

qusm
algebraic cobordism Q* (X ERN Y).
The “forget” map defined in (1.2) gives rise to the following canonical homo-
morphism
fromrrr(x Ly) o 24(X,Y)

defined by j([V 2 YL, . L) = [X & V L% v,L;,--, L] This
“forget” map is compatible with the bivariant product e, the bivariant pushforward
and the Chern class operator, but not necessarily with the pullback. As to corre-
spondences, D. Gaitsgory and N. Rozenblyum study correspondences in derived
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algebraic geometry intensively in their recent book [13] (cf. [14]) . For example
they consider the category Corr(C)yert horiz for a category C equipped with two
classes of morphisms vert and horiz (both closed under composition) such that

(1) the objets of Corr(C)yert,hori- are the same as those of C and
(2) the morphisms are correspondences, i.e., a morphism from cg to ¢; is a
correspondence (drawn as follows in [13]):

g
Co,1 —> C

d

C1

where f is vert and g is horiz. If we use our notation, Corr(C)yert horiz can

be denoted by Corr(C)rori# and the above diagram is ¢y < co 1 ER c1. So, in
this way of thinking of two kinds of bivariant theories, it remains to see whether
one could get a “correspondence” version of Annala’s bivariant derived algebraic
cobordism, i.e., whether one could consider some reasonable relations Z(X,Y)
on Z2sh(X,Y) which is a derived algebraic geometric version of Z7*(X,Y)
with smooth morphism being replaced by quasi-smooth morphism, such that the
following diagram commutes:

oMz, (X L) ZIE(X,Y)

Trl 0
2GR (X)Y)

/
oMz (X DY) _ ey Iy XY e
a(xLv) ( ) f (X.Y) A(XY)

We hope to be able to treat this problem in a different paper. It would be nice that
there were some relation between Annala’s bivariant derived algebraic cobordism

O (X EN Y') and Kasparov’s bivariant K K-theory K K (X,Y’) via the “forget”
map f: Q*(X EN Y) - KK(X,Y) for certain reasonable maps f : X — Y.

2. Fulton—MacPherson’s bivariant theory

We make a quick review of Fulton—-MacPherson’s bivariant theory [12] (also see
[11]) (cf. a universal bivariant theory [29, 30]).

Let ¥ be a category which has a final object pt and on which the fiber product
or fiber square is well-defined. Also we consider a class of maps, called “con-
fined maps” (e.g., proper maps, projective maps, in algebraic geometry), which are
closed under composition and base change and contain all the identity maps, and
a class of fiber squares, called “independent squares” (or “confined squares”, e.g.,
“Tor-independent” in algebraic geometry, a fiber square with some extra conditions
required on morphisms of the square), which satisfy the following:
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(1) if the two inside squares in

w
xr M xt 0, x v |7
b b b e v
e o] K

zZ' — Z

are independent, then the outside square is also independent,
(i1) any square of the following forms are independent:

x x 1oy

fl if idxl iidy

g X— Y
ldx f

where f : X — Y is any morphism.

A bivariant theory B on a category ¥ with values in the category of graded
abelian groups is an assignment to each morphism X i> Y in the category ¥ a
graded abelian group (in most cases we ignore the grading ) B(X L Y’) which is
equipped with the following three basic operations. The i-th component of B(X i>
Y), i € Z, is denoted by B! (X EN Y).

(1) Product: For morphisms f : X — Y andg : Y — Z, the product

operation
o Bi(X LV)oB(Y S 2) Bt (X Y 2)
is defined.

(2) Pushforward: For morphisms f : X — Y andg : Y — Z with f
confined, the pushforward operation
foB(X 2 7)) S Bi(Y S 2)
is defined. )
X 2 X
(3) Pullback : For an independent square f’l lf

Y —— Y,
g
the pullback operation

7B Ly sBix Ly

is defined.
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These three operations are required to satisfy the following seven compatibility
axioms ([12, Part I, §2.2]):

(A7) Product is associative: for X i> y & 7 i> W with a € B(X i>
Y),BEBY % 2),yeB(Z 5 W),

(def)ey=ae(Jey)

(A2) Pushforward is functorial : for X iy 4 72 n W with f and g

confined and « € B(X hoge], W)

(g0 f)x(a) = g«(f+(a)).
(As) Pullback is functorial: given independent squares

hl g/

X" X' X
l 1% J p l f
Y” Y’ Y
h g

(goh)* = og".

(A12) Product and pushforward commute: for X Sy % 7 M wowith f
confined and o € B(X 2L 7), 8 e B(Z 2 W),

felao B) = fi(a)ep.
(A13) Product and pullback commute: given independent squares

, h//
X —

witha € B(X L V), 8 e B % 2),

h*(cce B) = 1" (a) @ h*(B).
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(As3) Pushforward and pullback commute: given independent squares

’ h//
X —

al |7

y My

v | E

Z’T>Z

with f confined and o € B(X ELR Z),
JL(R* (@) = h*(fu(a).
(A123) Projection formula: given an independent square with g confined and
aeB(X LY),seBy X% 2)

x -9 x

f’l lf

Y’ Y A
g h

anda € B(X L Y), 8 e BY' % 2),
9.(g"(a) o B) = a e g.(B).

We also assume that B has units: ‘

Units: B has units, i.e., there is an element 1x € B°(X My x ) such that
a e 1y = « for all morphisms W — X and all « € B(W — X), such that
1x e § = [ for all morphisms X — Y and all § € B(X — Y'), and such that
g*lxy =1x/ forallg: X' — X.

Commutativity: B is called commutative if whenever both

w9, X w Iy

f’l lf and g’l Jg

Y —— 7 X —— 7
g g

are independent squares with o € B(X ENy/ yand 8 € B(Y & Z2),

g'(@)ef=f(B)ea
Let B, B’ be two bivariant theories on a category ¥. A Grothendieck transforma-
tion from B to B, v : B — B’ is a collection of homomorphisms B(X — Y) —
B/(X — Y) for a morphism X — Y in the category ¥', which preserves the above
three basic operations:

(1) y(a op B) = y() o Y(B),
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2) v(feer) = fuy(e), and
3) v(g* ) = g™y(@).
A bivariant theory unifies both a covariant theory and a contravariant theory in the
following sense:
B.(X) := B(X — pt) becomes a covariant functor for confined morphisms
and '
B*(X) := B(X “ x ) becomes a contravariant functor for any morphisms.
A Grothendieck transformation v : B — B’ induces natural transformations -, :
B, — B, and v* : B* — B,
Definition 2.1. As to the grading, B;(X) = B~%(X — pt) and B/(X) :=
BI (X 4 X).
Definition 2.2. ([12, Part I, §2.6.2 Definition]) Let .¥ be a class of maps in 7,
which is closed under compositions and containing all identity maps. Suppose that

to each f : X — Y in .7 there is assigned an element 0(f) € B(X EN Y)
satisfying that

(i) O(go f)=0(f)eb(g)forall f: X -Y,g:Y - Z €. and

(ii) O(idy) = Ly forall X with 1y € B*(X) := B*(X " X) the unit.
Then 6(f) is called an orientation of f. (In [12, Part I, §2.6.2 Definition], it is
called a canonical orientation of f, but in this paper it shall be simply called an
orientation.)

Definition 2.3. Let . be another class of maps called “specialized maps” (e.g.,
smooth maps in algebraic geometry) in ¥, which is closed under composition,
closed under base change and containing all identity maps. Let B be a bivariant
theory. If .% has an orientation 6 for B and it satisfies that for an independent
square with f € .

x -9, x

f’l lf
Y —— Y
g

the following condition holds: 6(f’) = ¢*6(f), (which means that the orientation
6 is preserved by the pullback operation), then we call 8 a stable orientation and
say that . is stably B-oriented.

3. Oriented bivariant theory and a universal oriented bivariant theory

Levine—Morel’s algebraic cobordism is the universal one among the so-called
oriented Borel-Moore functors with products for algebraic schemes. Here “ori-
ented” means that the given Borel-Moore functor H, is equipped with the endo-
morphism ¢ (L) : H.(X) — H.(X) for a line bundle L over the scheme X.
Motivated by this “orientation” (which is different from the one given in Definition
2.2, but we still call this “orientation” using a different symbol so that the reader
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will not be confused with terminologies), in [29, §4] we introduce an orientation to
bivariant theories for any category, using the notion of fibered categories in abstract
category theory (e.g, see [25]) and such a bivariant theory equipped with such an
orientation (Chern class operator) is called an oriented bivariant theory.

Definition 3.1. ([29, Definition 4.2]) (an oriented bivariant theory) Let B be a
bivariant theory on a category 7.

(1) For a fiber-object L over X, the “operator” on B associated to L, denoted
by ¢(L), is defined to be an endomorphism

o(L):BX Ly)-BX LY)

which satisfies the following properties:

(O-1) identity: If L and L’ are two fiber-objects over X and isomorphic
(ie,if f : L — X and f’ : L' — X, then there exists an isomorphism
1: L — L'suchthat f = f’ o14), then we have

(L) =o(L):BX LY)>BX LYy

(O-2) commutativity: Let L and L’ be two fiber-objects over X, then
we have

S(L) o ¢(L') = ¢(L') o d(L) : B(X L v) 5 B(X L v).

(O-3) compatibility with product: For morphisms f : X — Y and
9g:Y > Z, aeB(X ER Y)and 8 € B(Y & Z), a fiber-object L over
X and a fiber-object M over Y, we have
P(L) (e B) =d(L)(c) o B, o(f*M)(cveB)=cep(M)(B).

(O-4) compatibility with pushforward: For a confined morphism f :
X — Y and a fiber-object M over Y we have

fe (@(f*M)(a)) = ¢(M)(frar).

(O-5) compatibility with pullback: For an independent square and a
fiber-object L over X

x -9 x

f’l lf

Y —— Y
g

we have
9" (@(L) (@) = o(g" L) (g"ev).
The above operator is called an “orientation” and a bivariant theory

equipped with such an orientation is called an oriented bivariant theory,
denoted by OB.
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(2) An oriented Grothendieck transformation between two oriented bivariant
theories is a Grothendieck transformation which preserves or is compati-
ble with the operator, i.e., for two oriented bivariant theories OB with an
orientation ¢ and OB’ with an orientation ¢’ the following diagram com-
mutes.

f

oB(x & y) 22,

0B(X L Y)

Theorem 3.2. ([29, Theorem 4.6]) (A universal oriented bivariant theory) Let
YV be a category with a class € of confined morphisms, a class of independent
squares, a class . of specialized morphisms and £ a fibered category over V.
We define

oM%(x L y)

to be the free abelian group generated by the set of isomorphism classes of cobor-
dism cycles over X

V25 XLy, Ly, -+, L]

suchthath € €, foh: W — Y € % and L; a fiber-object over V.

(1) The association @MEJ becomes an oriented bivariant theory if the four
operations are defined as follows:
(a) Orientation ®: For a morphism f : X — Y and a fiber-object L
over X, the operator

o(L): OMS(X L v) » oM4(x L Y)
is defined by
L)V L X Ly, Lo, L]) =V X;Li, Lo, , Ly, h*L).

and extended linearly.
(b) Product: For morphisms f : X — Y and g : Y — Z, the product
operation

o:OM% (X L vyo oM (Y & 2) — oM% (X 2L 2)
is defined as follows: The product is defined by
VXL, L)eW A Y, M,
= [V/ M )(7 k//*Ll, . ,k,/*LT, (f/ o h/)*Ml, . 7(]?/ o h/)*Ms]
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and extended bilinearly. Here we consider the following fiber squares

h/ fl

% X' w
Vv X Y Z.
h f g

(c) Pushforward: For morphisms f : X — Y andg :Y — Z with f
confined, the pushforward operation

£ OME(X L 2) 5 OoME (Y & 2)

is defined by

f(V S XLy L)) =V IS v L)

and extended linearly.
(d) Pullback: For an independent square

x 4. x

f’J{ lf

Y —— Y,

g
the pullback operation

g oMY (X L vy - omé (x' L v
is defined by

g* <[V i} X;Lla e )LT]) = [V/ ﬁ/—) )(l;g//*_[/l7 .. 79//*Lr]
and extended linearly, where we consider the following fiber squares:

v 9y

Y —— Y.
g

(2) Let OB be a class of oriented bivariant theories OB on the same cat-
egory V with a class € of confined morphisms, a class of independent
squares, a class . of specialized morphisms and a fibered category &
over V. Let ./ be stably QB-oriented for any oriented bivariant theory
OB € 0BT . Then, for each oriented bivariant theory OB € OB T with
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an orientation ¢, there exists a unique oriented Grothendieck transforma-
tion
YOB : @Méﬁ — OB

such that forany f : X — 'Y € . the homomorphism yop : @M? (X i>

Y) — OB(X EN Y') satisfies the normalization condition that

yoB([X 255 XLy, L)) = ¢(L1) o - 0 (L) (Bor(£))-

In this paper, we consider the category ¥ of complex algebraic varieties or
schemes and we consider proper morphisms for the class € of confined maps,
smooth morphisms for the class .7 of specialized morphisms, fiber squares for

independent squares, and line bundles for a fibered category . over ¥. So,

OM%, (X EN Y') shall be denote by OMPE P (X ERN Y'). For a smooth morphism

f:X—=Y,
0(f) == [X 9% x] e oM (X L5 )
is clearly a stable orientation. As mentioned in the introduction, we can consider

the above free abelian group OMZT P (X ERN Y’) modulo the additive relation (1.1),
i.e., the Grothendieck group of the monoid of the isomorphism classes of cobor-
dism bicycles of finite sets of line bundles, which is denoted by the same notation

omrrer(x Ly,

4. Cobordism bicycles of vector bundles

In this section, we consider extending the notion of algebraic cobordism of vec-
tor bundles due to Y.-P. Lee and R. Pandharipande [18] (cf. [22]) to correspon-
dences.

Definition 4.1. Let X < V = Y be a correspondence (sometimes called a span
or aroof) such thatp : V — X is a proper map and s : V' — Y be a smooth map,
and let F/ be a complex vector bundle. Then

(X EVESY,E)
is called a cobordism bicycle of a vector bundle.

Remark 4.2. The above correspondence X &£V 5 Y shall be called a proper-
smooth correspondence, abusing words. Mimicking naming used in [6], [20] and
[18], the above proper-smooth correspondence equipped with a vector bundle is
simply also named “cobordism bicycle of a vector bundle”.

S

Definition 4.3. Let (X £ V 5 YV;E)and (X & V/ LY E ) be two cobor-
dism bicycles of vector bundles of the same rank. If there exists an isomorphism
h: V = V' such that
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HXEVSy)zx &V LN Y') as correspondences, i.e., the
following diagrams commute:

2) E=h*E,
then they are called isomorphic and denoted by
XE2VayiE) =X £V Sy E).
The isomorphism class of a cobordism bicycle of a vector bundle (X Ly

Y; E) is denoted by [X & V 2 Y; E], which is still called a cobordism bicycle
of a vector bundle. For a fixed rank r for vector bundles, the set of isomorphism
classes of cobordism bicycles of vector bundles for a pair (X, Y') becomes a com-
mutative monoid by the disjoint sum:

X &V B Y B+ (X £V 2 Y By
= (X &2 v 01, 2 VR 4 By,

where E + Es is a vector bundle such that (Ey + E2)|y; = E1 and (Eq+ Es)|v, =

E5. This monoid is denoted by .#,(X,Y) and another grading of [X & V 2
Y'; E] is defined by the relative dimension of the smooth map s, denoted by dim s,
thus by double grading, [X &V 2 YV, E] € My, (X,Y) means that n = dim s
and r = rank E. The group completion of this monoid, i.e., the Grothendieck
group, is denoted by .#,, (X, Y)". We use this notation, mimicking [20].

Remark 4.4. For a fixed rank r, 4, (X, V)" = @ #,,(X,Y)" is a graded
abelian group.

Remark 4.5. When Y = pt a point, .4, (X, pt)" is nothing but ., ,(X)*
considered in Lee—Pandharipande [18]. In this sense, when X = pt a point,
%n7r(pt, Y)™ is a new object to be investigated.

Definition 4.6 (product of cobordism bicycles). For three varieties X, Y, Z, we
define the following two kinds of product eg and eg:

(1) (by the Whitney sum )
g '//m,r(Xa Y)+ ® .//mk(Y, Z)+ — %m—l—n,r—i—k(Xa Z)+;
X EV SY Eleg [V W L 2, F)
=[(XEVEY)o(Y EW S 2):;§E a5 F),
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(2) (by the tensor product ®)
® - %m,r(Xa Y)+ ® %n,k(yy Z)+ - '//m—i-n,rk(Xa Z)+;

X EZV SY Eleg [V W L 2, F)
=[(XEVEY)o(Y EW S 2):§E®FF).
Here we consider the following commutative diagram
GE®SEF or ("FEQRSF

|

VXyW

Lemma 4.7. The products eg, and e, are both bilinear.

Remark 4.8. .#, (X, X)" is a double graded commutative ring with respect to
both products e4 and eg.

Remark 4.9. We consider the above product eg for Y = Z = pt a point. Since
My (X, pt)T = My (X)) and A, . (pt, pt)T = My, (pt)T, we have

o M (X)T @ My (p)T — M (X))
(X &V 5 pt; E] og [pt << W L pt; F
= [(X &V S pt)o (pt <= W = pt); (pr1)*E @ (pra) " F,
which is rewritten as follows, by using the notations used in [18]:

V25 X Eleg [W;F] = [V x W 2L X (pr1)*E @ (pra)* F.

(pr1)*E @ (pro)*F

l

VxW

/ \
XV \/ \pt
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In [18, §0.8] they define the following map (which turns out to be isomorphic
[18, Theorem 3])

X Wi X) B, (pt) Wi (PL) = Wi (X)
of w,(pt)-modules by

w (¥ b x)e B, o Ve @ L))

mEA

= [V x P L% X, 67O & @D pia L.
meA

In fact, this map is nothing but our product e, at least at the level of .Z, .:
o : Mio(X,pt) @ M r(pt,pt) = Mir(X,pt).

Note that A, o(X, pt) = Mso(X), Ms,(pt,pt) = My r(pt) and A, (X, pt) =
M r(X). Using our notation, we have

o v LX) =[x Ly 5 p,
o PO N @@, .y Lin) = [pt P = pt; 0N & @, L,
o [V x P L X 67N o @,y phaLm] = [X <20 Y x PN
pt; "N & P,y PiaLim)-
Our product eg gives us

X LY % ptlealpt « B = pt; 67V & D L)
meEA

= X Ly P pt; 07N @ @D pi L.
me

Indeed, for this product, we consider the following diagram:

P (07N & D, cn Lim)

LT

Y x PA "N o@D, cr Lim

Y/ \Plk
X/ \m/ \pt
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Note that pj, (67" & @,,e5 Lm) = 07N © @00 Pja L since 67
is a trivial bundle. Therefore, we can see that

vx ([Y 5L xje P o™ e P Lm])
meA
= (X LY 2 pt] s [pt « P* = pt; 67V 0 B L.
meX

Remark 4.10. Let [X &£V 5 Y, E| € My,,-(X,Y)3, and let

) X & V)= X 2V V) etpo(X, V)L
@) [ViE] = [V & v Y% v Bl e 4,V V)L,

idy

Q) [VIY]:=[VELV BY] € oV, V)L
Then we have [X Ly Y E]=[X v V]ieg [V;E]eg [V =N Y].

Now, we define pushforward and pullback of cobordism bicycles of vector bun-
dles:

Definition 4.11. (1) (Pushforward)
(a) Forapropermap f : X — X', the (proper) pushforward acting on the
first factor X &V, in a usual way denoted by f, : My (X, Y)T —
Mo (X', YT, is defined by

FAX LV SYE) =X L2V 5y, E)

(b) For a smooth map g : Y — Y, the (smooth) pushforward acting
on the second factor V. = Y, in an unusual way denoted by «g :
M o( X, YY)V = Mrytdimgr (X, Y')T, is defined by

(XEVEY,E).g=X &V LY E].
Here we emphasize that . g is written on the right side of ([X Ev i
Y'; E)) not on the left side.* (Note that m = dim s and dim(g o s) =
dims +dimg =m + dimg.)
(2) (Pullback)

(a) For a smooth map f : X' — X, the (smooth) pullback acting on the
first factor X &V, in a usual way denoted by f* : My, (X, Y)T —
Mo +dim (X', Y)T is defined by

FIXEVESYE) =X & X xx V2L v (1R

4For pushforward the notation . g and writing it on the right side and for pullback the notation *g
and writing it on the right side were suggested by the referee, whom we appreciate for suggesting
such an interesting notation.
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Here we consider the following commutative diagram:

(f)E——=F

L

X’ xXV—>V

N

(Note that the left diamond is a fiber square, thus ' : X'xxV — V'is
smooth and p’ : X’ x x V' — X' is proper. Note that dim f' = dim f
and dim(s o f') = dim s + dim f' = m + dim f.)

(b) Forapropermap g : Y’ — Y, the (proper) pullback acting on the sec-
ond factor V=5 Y, in an unusual way denoted by *g : M (X, V)T —
Mo (X, Y')T, is defined by

S/

(X 2V SYE) =X &L Vxy Y v (g)E]
Here, we consider the following commutative diagram:

E<~——()E

|,

V<L VxyY

AN

-
g

Yl

(Note that the right diamond is a fiber square, thus s’ : V xy Y’ — Y’
is smooth and ¢’ : V' xy Y’ — V is proper, and dim s = dim s'.)

Remark 4.12. (1) We emphasize that as to pushforward, proper pushforward
is concerned with the first factor and smooth pushforward is concerned
with the second factor, but as to pullback, the involving factors are ex-
changed.

(2) We remark that when we deal with a smooth map f or g, both in push-
forward and pullback, the first grading is added by the relative dimension
dim f or dim g, but that when we deal with proper maps, the first grad-
ing is not changed. In both pushforward and pullback, the second grading
(referring to the dimension of vector bundle) is not changed.

Proposition 4.13. The above three operations of product (eg and eg), pushfor-
ward and pullback satisfy the following properties.
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(A7) Product is associative: For three varieties X,Y, Z, W we have
(og ) og v = v og (B eg ) € Mrpinitrihie(X, W)T,
( oy ) oy v = ey (B ey ) € Mpinitrke(X, W),
where &« € Mo (X, Y)", B € My (Y, Z)" and B € My (Z,W)T,
(A3) Pushforward is functorial :
(a) For two proper maps f1 : X — X', fo : X' — X", we have
(f2o fi)x = (f2)xo (f1)s
where (f1)s : Mo (X, Y)" = My (X', Y)" and
(fZ)* : %m,r(Xla Y)+ - '//mm(X”a Y)+
(b) For two smoothmaps g1 : Y —Y' g0 : Y' — Y" we have
«(g2091) = «(g1) 0x(92)  ie, au(gaog1) = (u(91)) «(92)
where (1) : Mpmr(X,Y) = Mptdim g (X, Y') and
*(92) : '/lm-i—dimgl,r (X> Y/) — %m-l—dimgl—&—dimgg,r(Xa Y”)-
(As)’ Proper pushforward and smooth pushforward commute: For a proper
map [ : X — X' and a smooth map g : Y — Y’ we have

«g O fx = feo xg, Le, (fatt) vg= f*(oz*g)5 for a € ///mﬂa(X,Y)Jr

i.e, the following diagram commutes:

M (X, V) L (X Y)T

il l*g

'//m+dim g,r (X, Y/)Jr f—> %m+dim g,r (Xl, Y/)Jr .

(A3) Pullback is functorial:
(a) For two smoothmaps f1: X — X', fo: X' — X" we have

(fao f1)" = (f1)" o (f2)"
where (f2)* : My (X", YT = Mptdim (X', Y)T and
(f1)* 2 Moptdim for (X', Y)T = Mptdim fordim fr0(X, V)
(b) For two propermaps g1 : Y — Y’ g2 : Y — Y" we have
“(g2091) = "(g92) 07 (g1) e, a”(g2og1) = (@"(g2)) *(91)
where *(q1) : My (X, Y')V" = My, (X,Y)T and
*(92) : %m,T(X7 Y”)+ — %m,r(X, Y/)+’
(A3)’ Proper pullback and smooth pullback commute: For a smooth map
g: X' — X and a propermap f : Y' —'Y we have

giotf="fog" ie, g*(a*f)=(g"a)*f for a € %m7r(X,Y)+

SThe referee remarked that introducing the above unusual notation turns, e.g., the condition (Az)’
into a “bimodule-like” condition ((rm)s = r(ms) for an R-S-bimodule M with two rings R, S;
r € R,s € M,m € M), which makes the proofs in the paper easier to follow.
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i.e, the following diagram commutes:

M (X —Ls M (XY

g*l lg*

%m+dimg,r(X/7 Y)Jr *—f> %erdimg,r(X/y Y/)+~

(A12) Product and pushforward commute: Let o« € 4, ,(X,Y)" and 3 €
My (Y, Z)T.
(a) For a proper morphism f : X — X/,

f*(Oé 5 6) = (f*Oé) .@B (E %m+n,T+k(Xlaz)+))

filaeg B) = (fia)eg B (€ %m+n,rk(X/7Z)+)v

i.e., (for the sake of clarity), the following diagrams commute:
M (X, YV © oo (Y, 2)F =" Minn(X, 2)F
f*Xid‘/ﬂn,k(Y’Z)Jrl lf*

t//m,r(X/7 Y)+ ® %n,k:()/a Z)+ T t//m—i-n,r—‘rk(X/a Z)+

Moo (X, V)T @ My (Y, Z)Y —2 Mnn(X, Z)T

f*xid‘/”mk(y,zﬁl lf*

My (X', YT @ My (Y, Z)F .—®> My oe( X', Z)7T.
(b) For a smooth morphism g : Z — 7/,

(a (e 5) xJ = 0 0g ﬁ*g (E %m—l-n—l—dimg,r—i-k(Xa Z/)Jr)a
(a °x B)g=aegy g (€ <///m+n+dimg,Tk(X> Z/)+)>

i.e., as to the product eg (the case of eg is omitted), the following
diagram commutes:

M (X, V)T @ My (Y, Z) s Mpngin(X, 2)
iy (X7 @ *gl l*g
'//m,r (X, Y)+ ® '//n—i—dim g,k(K Z/)+ T %m—l—n—l—dimg,r—i-k(X) Z/)+-
(A13) Product and pullback commute: Let o € My, (X, Y)" and

ﬁ € '//mk(K Z)+
(a) For a smooth morphism f : X' — X,

flaeg B)=(fa)eg B (€ f//lm+n+dimf,r+k(X/7 Z)+),
faeg B)=(ffa)es B (€ Mminidimse(X',2)7),
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i.e., as to the product eg, the following diagram commutes:

%m,r (X’ Y)Jr ® '//n,k(yv Z)+ .—®> %m+n,r+k <X7 Z)+
f* Xid/ﬂn,k(y’z)+l lf*

%erdim fr (le Y)+ & %n,k (Y7 Z)Jr T %ernerim,rJrk (X/, Z)+

(b) For a proper morphism g : 7' — Z,

(ceg B)'g=cegy g (€ f///ern,rJrk(Xa Z/)+)7
(e B) g=caegy By (€ Mpinsk(X,2)),

i.e., as to the product eg, the following diagram commutes:
M (XN @ oYV, 2V 2 Minrin( X, Z)T
1 (x,7)+ ® *gl l*g
%m,r(Xa Y)+ X %n,k(}/a Z,)+ —_— %m—l-n,’r—i-k(Xa Z/)+-
g
(As3) Pushforward and pullback commute: For o € My, -(X,Y )

(a) (proper pushforward and proper pullback commute) For proper mor-
phisms f: X — X' and g :Y' — Y and for a € M, (X, Y)T

(fsa)"g = fila®g) (€ ///m,r(X,7 Y/)+)7
i.e., the following diagram commutes:

M e (X YV —Ls (X V)

*gl l*g

My, (X, YT f—> M (X', YT

(b) (smooth pushforward and smooth pullback commute) For smooth mor-
phisms f: X' — X and g : Y — Y and for a € M, (X, V)T

f*(Oé *g) = (f*()é) 4 (6 %m—l—dimf—i—dimg,r(X/aY,)Jr)a
i.e., the following diagram commutes:

%m,r (X’ Y)+ —LSL_) Mm+dimg,r(X7 Y/)+

f*l lf*

Mm+dim for (le Y)+ —g> %m—o—dim f+dim g,r (X/7 Y,)+-
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(¢) (proper pushforward and smooth pullback “commute” in the follow-
ing sense) For the following fiber square

X Ly x
I
X' T) X
with f proper and g smooth, we have
g fe= 17"
i.e., the following diagram commutes:

Mo (XYY L (X, Y)T

§*l lg*
Mm+dim g,r (X7 Y)+ ﬁ '//m—s—dim qg,r (X”a Y)+ .
f*
(Note that dim g = dim g.)
(d) (smooth pushforward and proper pullback “commute” in the follow-
ing sense) For the following fiber square

v Loy

7| s
Y’ T) Y

with f proper and g smooth, for &« € Mo, »(X,Y")T we have

(awg)™f = (a"f) g,
i.e., the following diagram commutes:

«%m,r (X7 Y//>+ *—g> %m+dim g,r (X, Y)Jr

Mm,T<X7?)+ — %m-s-dimg,r(Xa Y/)Jr-
*9

(Note that dim g = dim g.)
(A123) “Projection formula”:
(a) For a smooth morphism g : Y — Y' and o € My, (X,Y)" and
B e Myi(Y', 2),

(Oé *9) s 6 =Gt eg g*/B (G %m+n+dimg,r+k(X; Z)+)7
(Oé *g) *°x B=a *x g*ﬁ (E %m—i—n—i—dimg,rk(Xa Z)+),
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i.e., as to the product eg, the following diagram commutes:
i (x, 3y X9
%m,r(Xa Y)+ & <%n,k(Y/a Z)+ %m,r(Xa Y)+ & <%n+dim g,k(K Z)+
*g®id%n,k(y/’z)+ \L loe;

%m+dim g,r(X7 Y/)Jr ® %n,k(yla Z)Jr %m+n+dim g,r+k (X7 Z)Jr

°®

(b) Forapropermapg:Y' =Y, € My, (X,Y) and 3 € M (Y', Z)7,

(Oé *g) hda) B = eog g*ﬁ (G %m—&-n,r—l—k(X» Z)+),
(a *g) oz ﬂ =Qey g*ﬁ (E %m—H’L,T'k(Xv Z)+)7

i.e., as to the product eg, the following diagram commutes:
+ )y S X + +
%m,r (X7 Y) ® %n,k; (Y ) Z) %m,r (X, Y) b2y %n,k (Y, Z)
*g®id-/ﬂn,k<ylvz)+ i l.@

%mﬂ"(Xv Y/)+ ® '//mk(yla Z)+ '//m—l—n,r-‘rk(Xa Z)+'

h)

Proof. It is straightforward. For the sake of readers’ convenience, we give proofs
to (c) and (d) of Asg and the “projection formula” with respect to the product eg;.

) Let [X' &£V 5 Y;E] € My, (X', Y)T and consider the following com-
mutative diagrams:

NG
2N
X”y XX’/ \Y

N
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FEXEVESYE) = A(IXE X xxo V2L v, (d)E]
=[x FL N N (¢) B
= (X L2V 5 7, B)
=g (f((X' <V S Y3 E])
=g (X' &V 3Y;E).

Hence, we have that g* f, = ]7*5*

dLet [ X £V S Y"E] € Mp,(X,Y")" and consider the following
commutative diagrams:

(f)E
iy
V Xy

i/\
\/\
\/

(X £V SY", ElL.g)f= [Xevﬁy E*f

4

gos’

[X % V Xy Y — Y/; (f/)*E]
= [X L V xyun }7 S—) ?; (f/)*E]*a
= (X &V S Y B ).

Hence, we have that (a.g) *f = (o™ f) «g.
(Argg): Leta=[X LV SV E, =Y &wW L 7, F].

(a) For the first projection formula, we consider the following commutative dia-
gram.
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(q//)*E @ (gl o SI)*F

|

/V””“\wg F
\

Since ar,g = [X &V L2 Y7, E], we have

N

\%

Z

Qvg o f = [X poq’ V xyr W to(g’os’) Z: (q”)*E ® (g/ o 8/)*F]
— (X LLV sy (V) xy W) B2 20 () B () () F)]
S X EVEY Eeg [V LY xy WL 7, (g)F)
=aeggp.

(b) For the second projection formula, we consider the following commutative
diagram:

(@) () ES(s")F

|

(¢)E (VxyY') xy W F
E V xy Y’ w
| N

|7 T
7\/

Then, since a*g = [X PCIR VNIV Y’; (¢')* E], we have

tos’’

a*geq B = [X<”°9—q(v Xy Y xy W 255 Z:(¢) (¢')*E @ (s")*F)]
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=[X (—po(g °d) V xy W —>t08// Zi(d o) E® (s")F)
XLV S Een Y 2w L 72 F

= aeg g.f3.

[l
Remark 4.14. 1y = [X <2 X X% X € #,0(X, X)* satisfies that 1 eg
a = « for any element @ € My, ,(X,Y)" and 3 e 1x = 3 for any element
B € My r(Y,X)T. As to the product g, let 1 x = [X Jx x Hdx, X;O0x] €
Moo(X, X)T (where Ox is the trivial line bundle) satisfies that 1 x ez @ = «
for any element @ € 4, (X,Y)" and 3 g Ilx = [ for any element § €
M (Y, X) T

Remark 4.15. .#,,,(X,Y)" with the product eg considered shall be denoted
by M (X, Y)ag and Ay, »(X,Y)" with the product eg shall be denoted by
My (X,Y)E.

Remark 4.16. In a way similar to that of constructing OMPE %P (X ERN Y') generated
by the isomorphism classes [V b x ; Ly, , L] such that h is proper and f o h
is smooth and L;’s are line bundles over V', we can replace [V b x s Ly, -+, Ly

by the isomorphism classes [V n x ; E] with line bundles { L1, - - - , L, } being re-
placed by one vector bundle E. Then in [4] (cf.[2, 3]) T. Annala and the author have
generalized Lee—Pandharipande’s algebraic cobordism w, .(X) of vector bundles
[18](also see [21]) to a bivariant-theoretic analogue Q**(X — Y) in a way sim-
ilar to that of Annala’s construction of the bivariant derived algebraic cobordism
(X —=Y).

5. Cobordism bicycles of finite tuples of line bundles

Here we consider a “bi-variant” analogue of Levine—Morel’s construction of
algebraic cobordism . (X) [20] via cobordism bicycles of finite tuples of line
bundles.

In [20], Levine and Morel consider what they call a cobordism cycle

M2 XLy, L],

which is the isomorphism class of (M 2 XLy, L,) where M is smooth and

irreducible, p : M — X is proper and L;’s are line bundles over M. (M EN

X;Ly,---L;)and (M' & X; L, L) are called isomorphic if there exists an
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isomorphism h : M — M’ such that (1) the following diagram commutes

M

S
A

M/
and (2) there exists a bijection o : {1,2,--- ,7} = {1,2,--- ,r} such that L; =
h* Lg(i).
So, here we consider a “bicycle” version of this cobordism cycle. Namely we

consider the isomorphism class of a cobordism bicycle of a finite tuple of line
bundles, instead of one vector bundle.

h X

/

Definition 5.1. (X £V 5 Y:Ly,--- ,L,) and (X Ly s, YLy, L)
are called isomorphic if the following conditions hold:

/

(1) There exists an isomorphism i : V 2 V' such (X £V 5 V) = (x &

V! i) Y’) as correspondences (as in (1) of Definition 4.3),
(2) There exists a bijection o : {1,2,--- ,r} = {1,2,--- ,r} such that L; =
h*LU(i).

The isomorphism class of (X EVvSy.L,--- , L) is called simply a cobor-
dism bicycle (instead of a cobordism bicycle of line bundles) and denoted by

X &V SyY,Ly,-- L)
It is clear that when Y = pt is a point the cobordism bicycle [X v
pt; Ly, -+, L] is the same as the cobordism cycle [V 5 XLy, , Ly).

Definition 5.2. We define

ZYX,Y)
to be the free abelian group generated by the set of isomorphism classes of cobor-
dism bicycle

X &V SY,L, Ly, -, Ly,
such that —i+7r = dim s = dim V' —dim Y, modulo the following additive relation
X &S Y,Ly,- L]+ [ XE WYL, L]
=X &Py, 2Py oL, LU Ll

Remark 5.3. Such a grading is due to the requirement that for Y = pt we want
to have 2°(X,pt) = 2_;(X). Here we note that V is smooth, since s : V —
pt is smooth. According to the definition ([20, Definition 2.1.6]) of grading of
Levine-Morel’s algebraic pre-cobordism 25 (X ), the degree (or dimension) of the

cobordism cycle [V L XLy, yLy) € Zo(X)isdimV —r, ie.
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V5 XL, L] € ZiX) < —i=dimV —r, namely, —i +r =
dim V.

The following definitions are similar to those in the case of cobordism bicycles
of vector bundles, but we write them down for the sake of convenience.

Definition 5.4. (1) (Product of cobordism bicycles) We define the product of
cobordism bicycles as follows:

o ZUX,Y)® ZY,Z) - X (X,Z)

(X &V 28 Y Ly, Ly, L) o [Y & Vo 2 Z, My, My, -, My
=XV B Y)o (Y E Ve 2 2)p55 Ly, -+ o Ly 817 My, - - - 517 My).

Vi xy Vo

N
/\/\

(2) (Proper pushforward and smooth pushforward of cobordlsm bicycles)
(a) Forapropermap f : X — X !, the (proper) pushforward (with respect
to the first factor) f, : Z*(X,Y) — Z*(X',Y) is defined by

FOXEV S Y L Loy L) = [X' 2V 5 Y Ly, Lo, -, L.

(b) For a smooth map g : ¥ — Y, the (smooth) pushforward (with
respect to the second factor) .g : Z%(X,Y) — ZHdma(X V") is
defined by

gOS

(XEVSY; L1, Ly, L)) g =X EVELY Ly, Ly, -, L)
(3) (Smooth pullback and proper pullback of cobordism bicycles)
(a) For a smooth map f : X' = X, the (smoqth) pullback (with respect
to the first factor) f* : Z(X,Y) — Z+tdmf (X’ V) is defined by
FXEV SYiLy Ly, L)

= X & X xx VL Y () L () Ly () L),

Here we consider the following commutative diagram:
/ f!
X' X X V—V
P’ s
P
Y
f

X' X
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(b) For a proper map g : Y’ — Y, the (proper) pullback (with respect to
the second factor) *g : Z*(X,Y) — Z*(X,Y") is defined by
(X EVESY;L, Ly, , L)) *g
= X EL Yy Y Y () Ly, () Lo (0) L.

Here we consider the following commutative diagram:

V<L VxyY

AN

g

Yl

Remark 5.5. As in the case of cobordism bicycles of vector bundles, the involve-
ment of factors are exchanged in pushforward and pullback for proper morphisms
and smooth morphisms, and also, in both pushforward and pullback, as long as
smooth morphisms are involved, the grading is added by the relative dimension of
the smooth morphism.

Remark 5.6. In the case of cobordism bicycles of vector bundles, we have two
kind of products by Whitney sum and tensor product. However, in the present
case of cobordism bicycles, the product is a kind of “Whitney sum”, or a “mock”
Whitney sum, i.e., the sum of two finite sets of line bundles.

Clearly we have the following proposition, as in the case of cobordism bicycles
of vector bundles in §4.
Proposition 5.7. The above three operations satisfy the following properties.
(A1) Productis associative: For three varieties X,Y,Z, W and o € Z (X,Y),
Be Zi(Y,Z),ye€ Z*Z,W), we have
(cep)ey=ae(Bey) (€ ZHHE(X,W))

(As) Pushforward is functorial :
(a) For two proper maps f1: X — X', fo : X! — X" and
(fi)s: ZHX,Y) = Z4X",Y),
(fo)s : ZH(X"Y) = ZYX",Y), we have

(f20 f1)« = (f2)x o (f1)

(b) Fortwo smoothmaps g1 : Y —Y', g2 : Y' = Y" and

g1) s Z1(XY) — ZHdma(X,Y),

*<92) . Zierimgl (X, Y’) N Qpi+dimgl+dimgg (X, Y”), we have
+(92001) = «(91) 0 «(92), ie, ax(g2 0 g1) = (@(g1)) «(g2)-

(As)’ Proper pushforward and smooth pushforward commute: For a proper
map f: X — X' and a smooth map g : Y — Y’ we have

«g O fx = fx0 xg, Le, (fsa) g = fi(axg), simply denoted by f.cv g,
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i.e, the following diagram commutes:
7i(X,Y) I  #ix.Y)

*gl l*g

Dagoi-f—dimg()(7 Y/) a@ei-&-dimg(X/? Y’).

*

(A3) Pullback is functorial:
(a) For two smooth maps f1 : X — X', fo : X' — X" and
(fl)* . ‘sz'—&-dlm fo (X/, Y) ‘_> gz—l—dlm fo+dim f1 (X, Y),
(f2)*: ZUX")Y) — ZHdimf2 (X! V), we have
(fao f1)" = (f1)" o (f2)"
(b) For two proper maps g1 : Y — Y, go : Y' = Y" and
(1) : ZN(X,Y) = Z2(X,Y),
*(g2) : Z"(X,Y") = Z(X,Y’), we have
“(g2091) ="(92) 0 "(91), ie, a™(g2 0 g1) = (@™ (g2)) +(91)-
(As)’ Proper pullback and smooth pullback commute: For a smooth map
g: X' — X and a propermap f : Y' — Y we have
grotf="fog" ie, g*"(a”f) = (9°a)" [, simply denoted by g*c." f,
i.e, the following diagram commutes: i.e, the following diagram commutes:

7i(x,Y) —L1s @ Zixy)

g*l lg*

gi+dimg(X/7y) > ; Qei—l—dimg(leyl)'

(A12) Product and pushforward commute: For o € Z(X,Y) and § €
ZUY, 7).
(a) For a proper morphism f : X — X/,
flaep)=(fra)e B (e (X', 2)),

i.e., (for the sake of clarity we write down) the following diagram

commutes:
ZUX,Y)® XY, Z) —— 27X, 2Z)
f*®idfzj(y,2)l lf*

ZUX'Y)R XY, Z) —— ZH(X' Z).
(b) For a smooth morphism g : Z — 7/,
(aeB)ug=aef.g (€ 277X 7)),
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i.e., the following diagram commutes:
(X, Y)2 ZIY,Z) —— @ ZH(X,2Z)

idggi(x7y)®*gl J(*g

ZYX,Y)® Zitdmyy 7y —— gititdimg(x 77),

(A13) Product and pullback commute: Foro € Z°(X,Y)and 8 € ZI(Y, Z).
(a) For a smooth morphism f : X' — X,

FrlasB)=(fa)eB (e ZHHmi(x' 7)),
i.e., the following diagram commutes:
(X, Y)o ZIY,Z) —— FHI(X,Z)
f*®idij(y,z)l lf*
i (X1 V)@ Zi(Y, Z) — rititdinf (X7 7y,
(b) For a proper morphism g : Z' — Z,
(veB)*g=aeB*y (e 2"(X,2"),
i.e., the following diagram commutes:
ZU(X,Y)2 ZIY,Z) —— Z(X,Z)
idgei(x y)® *gl J{*g
ZYX,Y)® ZIY,Z") —0 ZHI(X, 7).
(As3) Pushforward and pullback commute: For o € & i(X YY)

(a) (proper pushforward and proper pullback commute) For proper mor-
phisms f: X - X' andg:Y' —Y,

(fe)*g = fula*g) (€ Z7(X',Y")), simply denoted by f.a*g,
i.e., the following diagram commutes:

Zi(X,Y) LI #X,Y)

*gl l*g
ﬁpi(X,Y’) f—> Qpi(X’,Y’).

(b) (smooth pushforward and smooth pullback commute)For smooth mor-
phisms f : X' - Xandg:Y — Y/,

FHawg) = (ff) g (e Z7TAmIHIMI(XI V), simply denoted by f*a .g,
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i.e., the following diagram commutes:

i (X, Y) *—g> D%Pi—&-dimg()(7 Y/)

f*l lf*

D@Pi—l—dim f(X/, Y) ; D@Pi—l—dim f—‘,—dimg()(/7 Y/)
g

(c) (proper pushforward and smooth pullback “commute” in the follow-
ing sense) For the following fiber square

X Ly x
I
X' T) X
with f proper and g smooth, we have
g fe= 17"
i.e., the following diagram commutes:

F(Xx\Y) I #ixy)

g* l lg*
gi—&—dimg(i’ Y) — Qpi—i-dimg(X//’ Y).
f
(Note that dim g = dim g.)
(d) (smooth pushforward and proper pullback “commute” in the follow-
ing sense) For the following fiber square

vy Loy

R
Y’ ——f——) Y
with f proper and g smooth, we have

(axg)"f = (a"f) g,
i.e., the following diagram commutes:

ot (X, Y”) *_9> gyitdim (X, Y)

7] [
Z(X,Y) — Zitdimg(x y7),
9
(Note that dim g = dim g.)
(A123) “Projection formula”:
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(a) For a smooth morphism g : Y — Y'and a € Z4(X,Y) and 3 €
FIY', Z),

(ag)eB=aeg"f (€ 2HIMI(X, 7)),
i.e., the following diagram commutes:

d i x vy ©9"
— =

ZU(X, V)P ZI(Y', Z) ZH(X,Y)® Zitdmy(y, 7)

*g®id§:’j(Y,Z)J/ J{'

FiHdimg( X YN ZI(Y',Z) —— Firitdimg(x 7).

(b) Forapropermap g:Y' =Y, a € ZYX,Y)and B € Z7(Y', 2),
(a*g)eB=aeg.B (€ (X, 2Z)),
the following diagram commutes:

idgei(x,y) @9

ZUX,Y)@ ZI(Y', 2) ZUX,)Y)® ZI(Y, Z)

*9®idw<w,2>l l'

(X YNeZI(Y',Z2) —— ZH(X, 7).

Remark 5.8. 1y = [X <2 X 9%, X] € 29(X, X) satisfies that L y e =
for any element « € Z*(X,Y) and S e 1 x = 3 for any element 5 € Z*(Y, X).
The following fact is emphasized for a later use.

Lemma 5.9. (Pushforward-Product Property for Units (abbr. PPPU)) For the
following fiber square

VXyW

Vv w
\ /
Y
with s : V — Y smoothand p : W — Y proper, we have

(]1\/ *S) ey = (ﬁ*]lVwa> «5 = ﬁ*(ﬂVXyW *g) € QF(‘/’ W)
Here we have the homomorphisms

w52 25V V) = Z5VY), pe: Z5(W,W) = Z5(Y, W)
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and the following commutative diagram

QP*VXYWVX}/W
LV, V xy W)

‘QF*

In the same way as in Levine—Morel’s algebraic cobordism, we define Chern
operators as follows:

PV xy W, W)

Definition 5.10. For a line bundle L over X or a line bundle M over Y, we first
define the following Chern classes:

idx idx

a(l):=[X &£ X 25 X0 e 7YX, X),

ldy ldy

a(M): =Y <Y 25 Y, M) € ZY(Y,Y).
Then the “Chern class operators”
ci(L)e: ZU(X,Y) = ZH(X,)Y), eci(M): ZYX,Y)— ZT(X,Y)
are respectively defined by
aL)e(X £V S Y L1, Ly, L)) =X &V SY; Ly, Ly, , L, p"L],
(X &V SY L, Ly, L))ecy(M) = [X &£V 5 YLy, Ly, , Ly, s*M].

Lemma 5.11. The above Chern class operators satisfy the following properties.

(1) (identity): If L and L' are line bundles over X and isomorphic and if M
and M’ are line bundles over Y and isomorphic, then we have

ci(L)e =ci (L))o : ZH(X,Y) —» ZT(X,Y),
eci(M)=ec)(M): ZY(X,Y) - ZHX,Y).

(2) (commutativity): If L and L' are line bundles over X and if M and M’ are
line bundles over 'Y, then we have

ci(L)eci(L)e=ci(L')eci(L)e: Z(X,Y) » ZH2(X,Y),

oci(M)eoci(M)=eci(M)eci(M): Z{(X,Y) = ZT2(X,Y).

(3) (compatibility with product) Let L be a line bundle over X and N be a line
bundle over Z. For « € Z'(X,Y ) and B € Z(Y, Z), we have

(L) s (asp) = (ai(L)ea) s,
(e pB)eci(N)=ae (Bocl(N)>.
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(4) (compatibility with pushforward = “projection formula”) (which is “simi-
lar” to [11, Theorem 3.2, (c) (Projection formula)]): For a proper map f :
X — X' and a line bundle L over X' and for a smoothmap g : Y — Y’
and a line bundle M over Y' we have that for o € Z*(X,Y)

f*(cl(f*L) b a)) =ci1(L) o fia, (Oé b Cl(g*M)) «g =axgeci(M).
(5) (compatibility with pullback =“pullback formula” )(which is “similar” to
[11, Theorem 3.2, (d) (Pull-back)]): For a smoothmap f : X' — X and a

line bundle L over X and for a proper map g : Y’ =Y and a line bundle
M over Y we have that for o € Z*(X,Y)

f*(cl(L) ° a) =c1(f*L) e f*a, (a ° cl(M)) g=a%geci(¢g"M).
Proof. We show only (4) and (5). First we observe that as to (4)

feer(ffL) = ei(L)f,  a(g™M) g = g cr(M), (5.12)
and as to (5)

a(f*L).f = ffa(l), alg"M).g=c(M)"g. (5.13)
Indeed, the first one of (5.12) can be seen as follows:

feer(F°L) = fu([X €25 X 25 X5 £°I)
=[x L x 14X x

— (X X x MX x p1f o (by the definition of * f)
= Cl(L) *f

Similarly, we can see the other three equalities which are left to the reader. As to
(4), we show the first one:

fe(ar(f*L)ea)) = fucr(f*L) e (by A1z (a))
=c(L)*fea (by(5.12)
=ci(L) e foa. (by Ajos (Projection formula) (a) )
As to (5), we show the second one:
(a . cl(M)) g=aeci(M)*g (by A13(b))
=aeci(g"M).g (by(5.13)
=a*geci(¢*M). (by Aja3 (Projection formula) (b))
O

As to the compatibility with pullback, we observe the following fact concerning
the unit:

Lemma 5.14 (Pullback Property for Unit (abbr. PPU)). For a smooth map f :
X' — X and a line bundle L over X and for a proper map g : Y’ — Y and a line
bundle M overY we have that for 1x € (X, X) and 1y € Z*(Y,Y)

al(f*L) e (f1x) = (f"Lx)eci(L) € MY, X),
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(Ly *g) @ c1(g"M) = c1(M) o (ly *g) € ZH (YY),

Proof. We prove only the first equality, i.e., the case of smooth maps, since the

second equality can be proved in the same way. Since 1l x = [X Jx y Mx, y s
it follows from the definition of the smooth pullback f*1l x (see Definition 5.4)

that we have f*1x = [X' A 'GER X]:
x o x
1dy idx
X' ——~X X

Hence, we have
id x/ id x/
(flix)ea (L) =[X <X X' L XJeoy(L) =[x 2 X' L Xy L),
On the other hand, since f*L is a line bundle over X', clearly we have
id s
c(f L) e (fflix) = er(f*L) o [X' X" X' L X]

id yr
— X' &L XL X (idw) £ L

—x X xr Lo,
Thus, we obtain ¢y (f*L) e (f*llx) = (f*llx) e c1(L). O

If we let f : X’ — X be the identity idy : X — X, we get the following:

Corollary 5.15 (Commutativity of the unit and Chern class). Let L be a line bundle
over X. Then we have

Cl(L) [ ﬂX = ﬂX ocl(L).

Remark 5.16. The following observations plays key roles later. Let Ly, Lo, - - - L,
be line bundles over V. Then it follows from Lemma 5.11 (3) that

ci(Ly)e| ci(La)e| ---o(ci(Ly)ea) - = (c1(L1)eci(La)e---c1(L,) ) e,
(ctam{e(teome) ) ) = )

which is simply denoted by ¢1(L1) e ¢1(L2) ® - - - c1(L,) ® . Then it follows from
the definitions that we have

idy idy

[V —V —= V;Ll,LQ,”- ,Lr] == Cl(Ll) .Cl(LQ) ®--- .Cl(Lr) L] ]lV,

[V vy v, ViLi,Lo, -, L] =1y eci(L1)eci(Ly)e---eci(L,).
In fact, it follows from Corollary 5.15 that 1Ly, can be placed at any place;
V& v S VL Ly, L)
=ci(Li)e---eci(Lj)ellyeci(Ljii)e---eci(Ly).
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Hence, we have

XLV 5YiL, Lo, L] = pe(cr(Ln) e ca(La) o wer(Ly) o Ty ) s,

X &V S YLy, Lo, , L] :p*(ﬂv oci(Ly)e(La)e---o Cl(Lr)> .5,
and in general,
X &V 3SY,L, Ly, L] (5.17)
ZP*<01(L1) ~eci(Lj)ellyeci(Ljt1)e "'.Cl(Lr)> +5.

Definition 5.18 (Bi-variant theory). An association .2 assigning to a pair (X,Y")
a graded abelian group #*(X,Y) is called a bi-variant theory provided that
(1) it is equipped with the following three operations
(1) (Product) e: % (X,Y)x BI(Y,Z) — BHI(X,Z)
(2) (Pushforward)
(a) Forapropermap f : X — X', f.: BY(X,Y) = B'(X',Y).
(b) Forasmoothmap g:Y —Y', .g: B(X,Y) = Z+dm(X v").
(3) (Pullback)
(a) For asmoothmap f: X' — X, f*: #(X,Y) — Z+dmf (X' v).
(b) Forapropermapg:Y' —Y,*g: B(X,Y) = B(X,Y").
(2) the three operations satisfy the following nine properties as in Proposition 5.7:

(A7) Product is associative.

(As) Pushforward is functorial. ((a), (b))

(A2)’ Proper pushforward and smooth pushforward commute.
(A3) Pullback is functorial. ((a), (b))

(A3)’ Proper pullback and smooth pullback commute.

(A12) Product and pushforward commute. ((a), (b))

(A13) Product and pullback commute. ((a), (b))

(Aa3) Pushforward and pullback commute. ((a), (b), (¢), (d))

(A123) Projection formula. ((a), (b))

(3) % has units, i.e., there is an element 1x € %°(X, X) such that 1x e a = « for
any element o« € #(X,Y) and 5 e 1x = 3 for any element 5 € B(Y, X).

(4) % satisfies PPPU and PPU.

(5) A is equipped with the Chern class operators satisfying the properties in Lemma
5.11.

Definition 5.19. Let &, %’ be two bi-variant theories on a category ¥'. A Grothen-
dieck transformation from % to #', v : B — A’ is a collection of homomor-
phisms B(X,Y) — #'(X,Y) for a pair (X,Y) in the category ¥, which pre-
serves the above three basic operations and the Chern class operator:

1) v(aez 5) v(cr) o v(B),

() V(fea) = fuy(a) and y(a +g) = v(@) g,

3) (g ) = g 'y( )and y(a*f) = v(a) * f,

@) y(ci(L) ea) = c1(L) ez () and y(cv @ c1 (M) = v(a) @ c1(M).
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Theorem 5.20. The above Z*(—, —) is the universal one among bi-variant theo-
ries in the following sense. Given any bi-variant theory 9*(—, —), there exists a
unique Grothendieck transformation

Yo L(—,—) = B (=)
such that vz(1ly) = 1y € B(V,V) for any variety V.

Proof. Let & be a bi-variant theory. From now on we just simply write v for v
and e for ez unless some possible confusion with those for the theory 2°*. Then,
using the observation (5.17) made in Remark 5.16, we define

v ZYX,Y) = B(X,Y)

by, for[X &V 5 YLy, , L] € ZU(X,Y),

WX EVSYiLy,- L)) (5.21)
(p <c1 Li)e---eci(Lj)olly eci(Ljy1)e---o cl(Lr)> *S>
= D <C1 -ecy(Lj)e 1V°01(Lj+1)°“'°C1(Lr)) %S.

We show that this transformation satisfies the above four properties:

(D) y(a e B) = () e y(B):
Let

a=[X&VEY. L, L]e Z(X,Y),
B=[Y &V 2 Z,M,,--- M) € Z9(Y, 2).
Then, by the definition, we have
(X &V S YLy, Ly, - L] o [Y &2 Vo 2 Z; My, My, - -+, My
= [(X &N 5 Y)o (Y Vo2 Z)i52" Ly, -+, 2" L, 517 My, - -+ 517 My

=[X —— pLop —— Vixy Vs 2298, 7. 02" La, -+ ,pa Ly, 51" My, - - - 517 My).

Vi xy Vo

N
/\/\

Hence, we have
(e B)
= (X —— pLop: ST ey Vy 29, 7 02" L, ,p2" Ly, 51" My, - - 517 My))
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~ ~ % ~ %
= ’Y((Pl Op2)*(01(p2 Li)e---ci(p2"Ly) ® Ly, xyvsy

A(5M) e (50 (52050

5.1 N . .
(321 (p1 0 P2)« <61(p2 Li)e---ci(p2"Ly) ® 1y, xy vy

eci(51"My)---e C1(S~1*Mk)> «(s2051)

A _ . -
= (p1)*(p2)*(61(p2 Li)e---ci(p2"Ly) @ 1y, xy v

o c1(S1 M)+ 0 e (517 M) ) w(51)- (52)

Ag) - ~ ~ x
(:2) (P1)+ <(P2)*(01(p2 Li)e---ci(p2"Ly)e vixy v,

e cr(5M) - 0 ca(5 ML) *(51)>*(82)-

Then, by applying the property (4) of Lemma 5.11 successively with respect to line
bundles Ly, --- , L, and My, --- , M}, we get

(72)- (c1(2" L) @ -+ 1P Lr) @ Wiy vz @ (517 M) -+ 0 ca (517 M) ) < (51)
= Cl(Ll) ® .- Cl(LT) [ ] (@)*1V1XyV2 *(5~1) [ Cl(Ml) c- @ Cl(Mk).
Here it follows from Lemma 5.9 (PPPU) that we have

(P2)x1vixy 1o +(51) = vy +(s1) ® (P2)s 115

Hence, the above equalities continue as follows:

= (p1)-(e1(L0) - e1(Ly) @ Ly <(51) @ (p2)sLvg @ 1 (M) -+ ea(M) ) o(s2)
N (CONCIAIVSTNEY

© (p2)ilvs o (M) - e1(My)) ) u(s2)
(A12)(a) <(p1)* (cl(Ll) er(Ly) o 1y *(81))
o ((m)e10s 0 ea(0) - a(M)) ) (o)
2 1) (er(Lo) - er(Lr) @ g o(s1))
o ((p2)lvs o 1 (M0) -1 (M) u(52)

= ((p1)*(01(L1) ei(Ly) o 1vy) *(51))

o ((pQ)*(lvg e cy(My)---c1(My)) *(82)>
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=X &V S YLy, L)) ey([Y & Vo 22 Z My, -+ M)

=(a) e y().
Hence, we have y(a o 3) = y(«) @ v(5).

2) v(fra) = fuy(a) and y(a . f) = Y(@) « f:
Leta=[X &V SY L, Ly, , L] € Z{(X,Y).
(i) v(f«a) = fay(a): Let f : X — X' be a proper map. Then we have

Y(fe) = WX L2V S YLy, L)
= ((Fopr(a@)eall)ev).s)

(Sil) (f op)*(q(Ll) °. "Cl(Lr) ° 1V> %S

As)(a
(A2 )f*p* (Cl(Ll) o --ci(L,)e 1v> «S

A I

(é)ﬁ<mGﬂLO°~fﬂbdtw)w>
=fA(X EV S YLy Ly, -+, L))
= fuv(a).

(i) y(asf) =v(a) «f: Let f : Y — Y’ be a smooth map. Then we have

Hauf) =1(1X &V ES YLy, Ly, L))
= (pe(cr(Lr) o ea(Lr) o v ) u(F o 9)

G2 ., (61(L1) o-c(ly)e 1‘/) (fos)

A2)(b
( 2( )p* (Cl(Ll) o --ci(L,)e 1v> «Sxf

A ’
(:2) ( *(Cl(Ll) [ O -Cl(Lr) (] lv) *S> *f
=y((X &£V S YL, Lo, Ly]) o f
= y(a) f.
B)(fra) = f*y(e) and (@™ f) = y(e) " f:
Leta=[X &V SY L, Ly, , L] € Z{(X,Y).
A v(f*a) = f*v(a): Let f : X' — X be a smooth map and consider the
following diagram:

X' xx VsV
pl S
p
%
7

X' X
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A(770) = (X & X xx VLS V(P L, () Ly () L))
(@) (v s (L) s (7L ) 50 )
(5.21)

)
=" ()« <1X’><XV oy ((f/)*L1> Y X <<f/)*Lr>) «(sof)
2 ). (L e (D) e (L) ) o)

= ((P/)* <1X’><XV e ((f/)*L1> ey <(f/)*Lr>> *(f/)> %S

By applying the property (4) of Lemma 5.11 successively with respect to line bun-

dles L1, Lo, - - -, L,, the above equalities continue as follows:
- <(P')* <1X’XXV «(f)eci(Lr) - 01(L’"))> -
(A12)(a)

- ((p')*l)(’va (f)eci(L1)---o Cl(Lr)> #5-
Here we note that

(p/)*lX/XXV *(f,) =1x/+f opily (by Lemma 5.9 (PPPU))

Thus the above equalities continue as follows:
— (1w o fpdveci(Ln) - eei(Lr)) s

= <f*p*lv oci(Ly)---o cl(LT)> «5 (since 1y is the unit)

(A13)(a)

2) (f*(p*lv oci(Ly) - .cl(L,,))) .

Aa3)(b

( 2;)( ) f*(p*].v.Cl(Ll)"'.cl(Lr)) *S

A a) Ly

0 e i)
(A23)(b)

20 (pe (v e (L) - e er(Lr) u5)
=YX EVSY,L, Ly, , L))
= f*v(a).

Here we note that in fact we can show the above “indirectly”, using Lemma 5.14
(PPU) and Lemma 5.11 (5) as well:

= (rpaveam)ec(ly) e ec(ly)) .

(AQ;)(C) ((p/)*(f/)*l\/ ° Cl(Ll) ° 01(L2) o---0 CI(LT)> S
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2. () 1y e anL)ser(La) o+ o ea(Ly) ) s

= (p)- (Cl((f')*Ll) o (f) lveci(La)e---e Cl(Lr)> +8
- (by applying (PPU) for L)
= @) (e (F) L) e er(F) L) o (F) Ly wer(Lg) oo cr(Ly)) s
(by applying (PPU) for Lo)
= () (VL) e erl(FV L) oo () L) 0 (1)1 ) s
(by applying (PPU) for the rest)
= ). () L) wer((f) La) o o () (er(Ly) 0 1v) ) s
(by applying Lemma 5.11 (5) for L,)

= @) () (L) o ser(Ly) o 1v))) s
(by applying Lemma 5.11 (5) successively)

(A2)

() () o ea(ly) o1v)) ) s

(A22(c) (f*p* (Cl(Ll) ®--- @ Cl(Lr) ° lv)) xS

(AQ;)(I)) f* (p* (Cl(Ll) ®o---0 Cl(Lr) ° 1\/)*3)

= f*’y([X <£ V i) Y;LI;LZa e ’LT])
= "y(a).

(i) y(a*f) =v(a)*f: Let f : Y/ — Y be a proper map. The proof is similar
to the above. For the sake of the reader’s convenience, we write down the proof.
Let f : Y’ — Y be a proper map and consider the following diagram:

V<l vxyy

AN

s/
Y/
f

Y@*f) = (X EL X %y VSV () Ly, (f) Loy, (F) L)

— (po ). <c1((f’)*L1) ... Cl((f’)*b) . 1vaw>> L(s)

@) (), (01<(f/)*L1> .. ..cl((f’)*LT> . 1VXYY/)> «(8).
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By applying the property (4) of Lemma 5.11 successively with respect to line bun-
dles L1, Lo, - -- , L, the above equalities continue as follows:

= P« (Cl(Ll) o --ci(L,)e (f/)*l‘/XyY/) ()

(A:12) Ds (Cl(L1> ®--- Cl(Lr) ° (f/)*l\/ny’ *(3/)>'

Here it follows from Lemma 5.9 (PPPU)) that we have
(f/)*1V><yY’ =1y .se filyr.
Thus, the above equalities continue as follows:
= (L) e ar(Lr) o (1vuse fily))

A123)(b *
( 2:5)()p*(q(Ll)0"'01(Lr)'(1V*5 f°1Y'))

= Dy (cl(Ll) o --ci(Ly)ely s *f) (since 1y~ is the unit)

= D« (61<L1)o...cl(Lr)OlV*S)*f>

=7(a)"f.
As done for another proof of (i) using using Lemma 5.14 (PPU) and Lemma 5.11
(5), we can show the above in a similar way. For the sake of the reader we write
down the proof.

= D« (Cl(Ll) ®---0 CI(LT—I) [} Cl(LT) ° 1V *S*f)

U@ (Cl(Ll) o -eci(Ly_1)eci(Ly)ely™(s) *(f,)>

(12), D (CI(LI) o---0 CI(LT—I) o Cl(LT) oly *(S/)> *(f/)

=pe(a(l) oo er(Li) o 1v () eer ()" L)) ()
(by applying (PPU) for L)
= p(cr(L) oo 1y () e er(s) Lomr) e cal(s)"Ly) ) o)
(by applying (PPU) for L,_1)

= (L () e e1((s) Li) o~ o er((s)Lr) ) o)

~~

(by applying (PPU) for the rest)

=p.((tveer(L) () o0 ca((8)° L)) ul)
(by applying Lemma 5.11 (5) for L)
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=p.((lveer(Ly) o+ wer(Ly) () ()
(by applying Lemma 5.11 (5) successively)

2 (v ser(r) oo erlL) () (1)
= p*<(1VOCl(L1) ‘Cl( )) xS f)
p«(ly ®ci(Ly) @ --c1(Ly)) *5) f

) ’Y( 1( ) e a) = ci(L) e y(a) and (e c1(M)) = ~(a) e c1(M): Leta =
X Ev 3y, Ll,Lg,---,LT]E.,@”(X,Y).
(i) v(e1(L) @) = ¢1(L) @ y(«): Let L be a line bundle over X. Then we have

v(er(L)ea) =~v([X &V 5 YLy, -, Ly, p"L])
:p*(cl(Ll) o---ci(Ly)eci(p*L)e 1V) +8

(Lemma 5.11 (2)) De (cl(p*L) eci(Li)e---ci(L,)e 1v> S
— (p* <c1(p*L) eci(Li)e---ci(Ly)e 1V>) *S
(Lemma 5.1 (4)) <c1(L) .p. <C1(L1) o---ci(Ly)e 1v)> «5

=ci(L)e <p* (cl(Ll) o --ci(L,)e 1V>> S

= c1(L) e y(e).

(ii) y(cv @ c1(M)) = () @ ¢y (M): Let M be a line bundle over Y. Then we
have

Yo (M) =~r([X &V S Y Ly, Ly, -, Ly, s*M])
= p, (cl(Ll) eci(Ly)elye cl(s*M)) .5 (see Rmeark 5.16)

(A2)’

= p*((cl(Ll) ccoci(Ly)ely e cl(s*M)) *s>

(Lemng.ll 4) Dy <(Cl (L1> Y X (LT) ° 1V> xS ® CI(M)>

(A12) ( *(01(L1)'-'001(Lr) ° 1\/) *S) oci(M)

= vy(a) @ c1(M).
(5) The uniqueness of the Grothendieck transformation v : 2 — 2 follows from
the compatibility of pushforward and the Chern class operator and the require-
ment that the unit is mapped to the unit. Indeed, let ' : & — % be a such a
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Grothendieck transformation. Then we have

Y() =+ (X &V SY, L, Ly, -, L))

Y (p* ci(Ly)e---ci(Ly)e ]1v> *8>

= p. (cl e1(Lr) o' (1y)) s
—p.(e1(L <LT)-1V>) .5
= vz().

O

Remark 5.22. The “forget” map defined in (1.2) gives rise to the following canon-
ical homomorphism

froMPoX L Y) o 2(X,Y)

defined by
(VEY: L, L) =X &V %y L. Ll

Then it follows from the definitions that the following diagrams are commutative:
(1) As to the product e:

f gof

oMrrr(x L y)e oMy 4 z) —2— oMerr(x L4 7)
o | f
ZU(X,Y)® ZI(Y, 2Z) — (X, 2Z).

(2) As to the pushforward:

gof I+ g
OMProP(X —— Z) ——— OMEP(Y = Z)

i| i

X2 —— 22

(3) As to the Chern class operator:

‘P(L) f

omrrr(x Lyy 28 omererx Ly

i| i

ZXY) s XY,
c1 .

As to the pullback we cannot expect a canonical commutative diagram. Indeed we
consider the following fiber square
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vy

]

x -4 x

f’l lf

Y —— V.
g

Then we have the following diagram, which does not necessarily commute:

OMETP( X —> Y) 9. @MWOP(X’ Y’) (5.23)
| |
Z*(X,Y) (XY
(g)*o(*g

Fog ) (V2 X;Ly,---, L)

—f(v' B x X L (o) )
[X/ ' AN f'oh Y/ ( )*Ll,“' ,(g")*Lr})-

(@) (") o)V ™ X; Ly, L))

= (@) o)X LV IELyYiL, - L))
— ()X LV YL, L]
_ [X/ hog V/ V/ fth/OQN Y/; (9'7/)*('9//)*1—/17_” 7(5},)*(9//)*1‘”])'

Here we consider the following fiber square:

'
Vixy V- v/

;ﬁl J/g//

\% — V.
g//

Thus, in general, we have that f o g* # ((g’ )¥o (* g)) o f in the above diagram
(5.23).

For the sake of convenience, we list the properties for Z*(X,Y) with Y fixed
and 27*(X,Y’) with X fixed. Note that to emphasize the target Y or the source X
being fixed we denote them in bold, Y and X, respectively.

Proposition 5.24. (1) Z2*(X,Y):
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(a) (Proper pushforward is covariantly functqrial ): For two proper maps
fi: X — X/,fg X — X, (fl)* Z(XY) = (XY, we
have (f2) : ZY (X', Y) = (X", Y) and

(f20 fi)s = (f2)x 0 (f1)s

(b) (Smooth pullback is contravariantly functorial): For two smooth maps
fi: X = X' fo: X' — X", we have (f1)* : ZHdmf2(X' Y) —
Qpi+dim fa+dim f1 (X, Y), (f2)* . ffi(X”, Y) N o@pierimfg (X/, Y)
and

(fao f1)" = (f1)" o (f2)".
(c) For a line bundle L over X we have the Chern operator:
ci(Lye: ZY(X,Y) = Z(X,Y).
Moreover, if L and L' are isomorphic, then c1(L)e = c1(L') e .
(d) (Proper pushforward and smooth pullback commute)

X s x
I
X’ T) X
with f proper and g smooth, we have
g fe = F7,
i.e., the following diagram commutes:

7i(xY) -  Zi(XY)

‘| I
ffﬂrdimg()?, Y) NN Qeierimg(X//’ Y)
I
(Note that dim g = dim g.)
(e) (compatibility with proper pushforward (“projection formula”)): For
apropermap f: X — X " and a line bundle L over X', we have that
forae Z'(X,Y)

(e Ly ea) =a(L) e fa.

(£) (compatibility with smooth pullback (“pullback formula”)): For a
smooth map [ : X' — X and a line bundle L over X, we have
that fora € Z*(X,Y)

(e ea) =alf L) e fa.

() (commutativity): If L and L' are line bundles over X, then we have
ci(L)eci(L')e =c¢ (L) eci(L)e: ZH(X,Y) = ZT2(X,Y),
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2) Z*(X,Y):

(a) (Smooth pushforward is covariantly functorial): For two smooth maps
g1:Y =Y g2 Y =Y, we have
g1) : Z'(XY) —» 2+ Ima(X, YY),

*<92) . ﬁpﬂ»dim g1 (){7 Y/) — Qﬁi+dimgl+dim g2 ()(7 Yl/) and
«(92091) = «(91) © «(92)-

(b) (Proper pullback is contravariantly functorial): For two proper maps
g :Y =Y g Y = Y"and *(q1) : Z'(X,Y') — Z*(X,Y)
and*(g2) : (X, Y") - ZY(X,Y")

“(g92091) ="(g2) o *(g1)-

(c) For a line bundle M over Y we have the Chern operator:

oci(M): ZY(X,Y) - ZTHX,Y).
Moreover, if M and M' are isomorphic, then eci (M) = ec1(L’).

(d) (Smooth pushforward and proper pullback commute)

v Loy

I

Y’ T} Y
with f proper and g smooth, we have

“fug=3"F,
i.e., the following diagram commutes:

QM(X, Y//) *—g> g}}ﬁi—&-dim(){7 Y)

7] [
Fi(X,Y) — gitdimg(x y7),
*g
(Note that dim g = dim g.)
(e) (compatibility with smooth pushforward (“projection formula™)): For
a smoothmap g :' Y — Y’ and a line bundle M over Y’ we have that
forae Z'(X,Y)

(aocl(g*M)> «g=a.geci(M).

(®) (compatibility with proper pullback ( “pullback formula”)): For a proper
map g : Y’ — Y and a line bundle M over Y we have that for
aece Z'X)Y)

(aeci(d)) g =a’geci(yg M),
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(2) (commutativity): If M and M’ are line bundles over Y, then we have

oci(M)eci (M) =eci(M)eci(M): Z/(X,Y) = Z72X,Y),
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