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Two examples of vanishing and
squeezing in K,
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ABSTRACT. Controlled topology is one of the main tools for proving
the isomorphism conjecture concerning the algebraic K-theory of group
rings. In this article we dive into this machinery in two examples: when
the group is infinite cyclic and when it is the infinite dihedral group in
both cases with the family of finite subgroups. We prove a vanishing
theorem and show how to explicitly squeeze the generators of these
groups in K. For the infinite cyclic group, when taking coefficients in
a regular ring, we get a squeezing result for every element of K7; this
follows from the well-known result of Bass, Heller and Swan.
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1. Introduction

Let G be a group, F a family of subgroups of G, R a ring and K the
non-connective algebraic K-theory spectrum. The isomorphism conjecture
for (G, F, R,K) identifies the algebraic K-theory of the group ring RG with
an equivariant homology theory evaluated on ErG, the universal G-CW -
complex with isotropy in F. More precisely, the conjecture asserts that
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the following assembly map — induced by the projection of ExG to the
one-point space G/G — is an isomorphism [9]:

assemr : HY(ErG,K(R)) — HY(G/G,K(R)) = K.(RG) (1.1)

The left hand side of (1.1) provides homological tools which may facilitate
the computation of the K-groups.

For F = Veye, the family of virtually cyclic subgroups, the conjecture is
known as the Farrell-Jones conjecture [11],[4]. Although this conjecture is
still open, it is known to hold for a large class of groups, among which are
hyperbolic groups [6], CAT(0)-groups [5], solvable groups [16] and mapping
class groups [3]. One of the main methods of proof is based on controlled
topology, and its key ingredient is an obstruction category whose K-theory
coincides with the homotopy fiber of the assembly map.

For a free G-space X, the objects of the obstruction category O%(X) are
G-invariant families of finitely generated free R-modules { M, 4} (2. 1)ex x[1,00)
whose support is a locally finite subspace of X x [1,00). A morphism in
0% (X) is a G-invariant family of R-module homomorphisms satisfying the
continuous control condition at infinity. Associated to O%(X) there is a
Karoubi filtration

TYX) = 0%(X) - DY(X)

that induces a long exact sequence in K-theory:
o K1 (09(X)) = Ko (DY(X) S K (TE(X)) = KL (09(X) — . ..

The previous definitions can be generalized for non-necessarily free G-spaces.
Taking X = ErG, the assembly map (1.1) identifies with the connecting ho-
momorphism 9 of the above sequence. Hence, an element [a] € K.(7T¢(X))
belongs to the image of the assembly map if and only if this element vanishes
in K,(0%(X)).

If X admits a G-invariant metric d, there is a notion of size for mor-
phisms in O%(X). Given ¢ > 0, we say that ¢ € O%(X) is e-controlled
over X if d(x,y) < €, Y(x,t),(y,s) in the support of ¢. If ¢ is an e
controlled automorphism such that ¢! is also e-controlled, we call it an
e-automorphism. The general strategy for proving that the obstruction cat-
egory has trivial K is the following: first show that there exists an € > 0
such that e-automorphisms have trivial K-theory (vanishing result), and
then verify that every morphism has a representative in K-theory which is
an e-automorphism (squeezing result); see [2, Corollary 4.3], [1, Theorem
2.10], [6], [14, Theorems 3.6 and 3.7], [15, Theorem 37].

In this article we examine how the previous machinery works in two ex-
amples:

(i) the infinite cyclic group G = (t) and the family F consisting only of

the trivial subgroup;
(i) the infinite dihedral group G = Do, and the family F = Fin of finite
subgroups.
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In both cases, it is easily verified that R is a model for ExG. In the first
example, t acts by translation by 1. In the second one, we use the following
presentation of the infinite dihedral group:

Doo = (r,s| s> =1,rs = sr71). (1.2)

Then r acts by translation by 1 and s acts by symmetry with respect to
the origin. By the discussion above, in both examples, the assembly map in
degree 1 identifies with the morphism:

9 : Ko(DER)) — K1 (TE(R)). (1.3)

Adapting ideas of Pedersen [14] to these G-equivariant settings, we prove
the following vanishing result.

Theorem 1.4 (Theorem 4.17). Let G = (t) or G = Do. If o is a 55-
automorphism in O%(R), then a has trivial class in K.

As an application, we get a sufficient condition for an element of K;(7%(R))
to be in the image of 0.

Corollary 1.5. Let G = (t) or G = Dy. If o is a %—automorphism in
TE(R), then [a] € K1(T%(R)) is in the image of the assembly map (1.3).

This illustrates the idea that small automorphisms in K;(7¢(R)) should
belong to the image of 0.

Let us now take a closer look at the image of (1.3); we will focus on
example (i).

A well-known theorem of Bass-Heller-Swan computes, for any ring R, the
algebraic K-theory of the Laurent polynomial ring R[t,¢+~!] in terms of the
K-theory of R. The group Ky(R) @ K;(R) is always a direct summand of
K1(R[t,t71]), and its inclusion is given by the following formula (see [7]):

[M] & ([M'],7) Y [R[t,t 7| ®r M,t®id] + [R[t,t '] ®@r M',id ®7] .

It can be shown that ¢ and the assembly map (1.3) fit into a commutative
square as follows:

K (DY (R)) —2— K1 (T (R)) (1.6)

.| u)=

Ko(R) ® Ky(R) —— K1 (R[t™L,1]).

Notice that 0 takes into account the geometry of R while v is purely alge-
braic. The isomorphism U is, moreover, induced by the functor that forgets
geometry. Thus, we can regard the Bass-Heller-Swan morphism ) as the
algebraic shadow of the assembly map.

It is clear from the formula above that ¢ belongs to the image of .
However, the obvious representation of ¢ as an automorphism in 7 (R) is
not small — indeed, it has size 1. This phenomenon was already mentioned
in [1, Remark 2.14]. In our context we prove a squeezing result for ¢.
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Proposition 1.7 (Proposition 5.3). Let n € N. Then there exists a %—
automorphism & in T (R) such that U([€]) = [t] in Ki(R[t,t~1]).

If we further assume that R is regular, the latter result and the proof of [7,
Theorem 2] imply the following.

Proposition 1.8 (Proposition 5.4). Let R be a regular ring and let € > 0.
For every x € Ki(R[t,t™']) there exists an e-automorphism & in T O (R)
such that U([¢]) = x.

In example (ii), it can be shown that both r and s belong to the im-
age of the assembly map, and one may try to represent these elements by
g-automorphisms, for small € > 0. In the case of r, the proof of Propo-
sition 1.7 carries on verbatim to show that, for every n € N, there is an
1_automorphism ¢ in 77> (R) such that U([¢]) = [r]. In the case of s, it is
possible to find a 0-automorphism representing this element (Remark. 4.2).

The rest of the paper is organized as follows. In section 2 we mainly fix
notation and recall from [4] the basic definitions and results from controlled
topology. In section 3 we study algebraically the assembly maps in the
two examples mentioned above. In the case of example (i), we use Mayer-
Vietoris to identify the domain of the assembly map (1.3) with Kyo(R) ®
K1(R). In the case of example (ii), we use the equivariant Atiyah-Hirzebruch
spectral sequence and [8, Corollary 3.27] to show that the assembly map is
an isomorphism for regular R. Section 4 contains the proof of Theorem 1.4.
In section 5 we discuss the notion of size in terms of matrices and we prove
Proposition 1.7.

Acknowledgements. The authors wish to thank the organizers of the work-
shop Matemdticas en el Cono Sur, where this project was initiated, Holger
Reich for his helpful comments and the referee for making valuable remarks.
The last three authors also thank Eugenia Ellis for her hospitality and sup-
port during their visits to the IMERL-UdelaR, in Montevideo.

2. General setting

2.1. Geometric modules. Let R be a unital ring and X a space. The
additive category C(X) = C(X; R) of geometric R-modules over X is defined
as follows. An object is a collection A = (A;),ex of finitely generated free
R-modules whose support supp(A) = {x € X : A, # 0} is locally finite in
X. Recall that a subset S C X is locally finite if each point of X has an
open neighborhood whose intersection with S is a finite set. A morphism
0 : A= (Ap)zex = B = (By)yex consists of a collection of morphisms of
R-modules ¢} : A, — B, such that the set {z : ¢¥ # 0} is finite for every
y € X and the set {y: o4 # 0} is finite for every x € X. The support of ¢
is the set
supp(p) = {(z,y) € X x X : ¢ # 0}.
Composition is given by matrix multiplication.
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Let G be a group which acts on X. Then there is an induced action on
C(X) given by (¢g*A), = Ay and (g* )% = ¢§%. A geometric R-module
(Az)zex is called G-invariant if g*A = A. A morphism ¢ between G-
invariant geometric R-modules is called G-invariant if g*¢p = . The cat-
egory of G-invariant geometric R-modules and G-invariant morphisms is
denoted C%(X). Tt is an additive subcategory of C(X).

2.2. Restriction to subspaces. Let A be a geometric R-module on X
and let Y C X be a subspace. We will write Aly for the geometric module
over X defined by

| Ay ifzeY,
(Aly), = { 0 otherwise.

Notice that Aly is a submodule of A.
Remark 2.1. If Y = U,Y; is a disjoint union, then Aly = &;Aly;.

Let A and B be geometric modules over X, let Y, Z C X be subspaces,
and let o : A — B be a morphism. The decompositions A = Aly & Alye
and B = B|z @ B|zc induce a matrix representation

([ alf k.
a\yc 0‘|}Zfz

where oY : Aly — Blw, V € {Y,Y¢}, W € {Z,Z¢}. This gives a well
defined function:
7% - Home(x)(A, B) — Home(x)(Aly, Blz)
The following properties are easily verified:
(1) If o, B: A — B, then (a + B)|% = o|Z + BIZ.
(2) Y =Y1U---UY,, and Z = Z1U- - -UZ, are disjoint unions, then the

decompositions Aly = Aly; ®---@Aly,, and Blz = Bz, ®---®B|z,
induce the matrix representation:

alyy ol

af =| :

afy - al
B3)Ifa:A—B,:B—Cand X = X;U---UX, is a disjoint union,

then:
Boa)ly =) Bl% caly’

i=1
Remark 2.2. The above definitions make sense in the equivariant setting. If
X is a G-space, Y C X is a G-invariant subspace and A is a G-invariant
geometric module, then Aly is G-invariant as well. If o is a G-invariant
morphism and Y, Z C X are G-invariant subspaces, then a|5Z, is G-invariant
as well.
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Definition 2.3. Let v : A — B be a morphism of geometric modules and
let Y C X be a subspace. We say that v is zero on Y if the decompositions
A= Aly @ Alyec and B = B|y @ Bl|y- induce a matrix representation:

-

Definition 2.4. Let A be a geometric module on X, let v: A — A be an
endomorphism and let Y C X be a subspace. We say that ~ is the identity
on Y if the decomposition A = Ay @ Aly. induces a matrix representation:

_(id 0
7_0*

Remark 2.5. Tt is easily verified that if 7 is the identity on Y (respectively,
zeroon Y) and Z C Y, then ~ is the identity on Z (resp. zero on Z).

Remark 2.6. Let « : A — B and § : B — C be morphisms of geometric
modules on X and let Y, Z C X be subspaces. If « is the identity on Y,
then (8o )| = B|Z. Indeed,

(Boa)lf =BlI¥ oaly + BlFoaly
= B¢ oid + B|E. 00 = BI%.

In the same vein, if 3 is the identity on Z, then (Boa)|Z = a|Z. Also, if « is
zero on Y or 3 is zero on Z then (Bo«)|Z = 0. We will use these properties
in Section 4 without further mention.

2.3. Control conditions. Let X be a G-space and equip X x [1, 00) with
the diagonal action, where G acts trivially on [1,00). We need to impose
some support conditions on objects and morphisms of C%(X) and C%(X x
[1,00)).
Object support condition: Let Séc be the set of G-compact subsets of X;
i.e. the set of all subsets of the form GK, with K C X compact.
Morphism support condition: Let G, be the stabilizer subgroup of x € X,
and write £3,,. for the collection of all subsets E C (X x [1,00)) x (X x [1,00))
satisfying:
(1) For every x € X and for every G -invariant open neighborhood U of
(x,00) in X x [1, 00|, there exists a Gy-invariant open neighborhood
V C U of (x,00) in X X [1,00] such that

(X x [1,00] =U) x V)N E = 0
(2) the projection (X x [1,00))*2 — [1,00)*? sends E into a subset of
the form {(¢,t') € [1,00) X [1,00) : |t — /| < §} for some § < oo;
(3) E is symmetric and invariant under the diagonal G-action.

The collection Egcc is called the equivariant continuous control condition.
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For a G-space Y, CY(Y;£,S) will denote the subcategory of C%(Y) with
objects supported in S and morphisms supported in £. In case there is no
support condition for morphisms we will omit it from the notation and write

cé(Y;S).

Lemma 2.7. (c.f. [4, Lemma 2.10]) If X is a free G-space, then C%(X;SX.)
is equivalent to the category Sra of finitely generated free RG-modules.

Given a free G-space X, we will write
U:CYX;88.) = CY(X; 88, R) — C(pt, RG) = Fra

for the functor that induces the equivalence of the previous Lemma:

UA) = P 4.

zeX

U(p: A— B) = @ @Z:@Ax—)@By

(z,y)€Esupp(y) X yex

Note that, if we fix a basis for every finitely generated free R-module,
U(p) is a matrix indexed by supp(y) such that each entry is a finite matrix
[p%] with coefficients in R. Using the G-invariance property of objects and
morphisms in C%(X;Sg.), we will interpret U(y) as a finite matrix with
coefficients in RG. For S, a complete set of representatives of G\ X, we will
abuse notation and write

U(‘P)(s,t) = Zg[(pgs]’ V(S, t) € (S X S) N Supp(g@).
geG

The locally finite and G-compact conditions for the support of objects in
CY(X;83.) guarantees that |(S x S) Nsupp(y)| < oco.

2.4. Resolutions. The construction in the previous lemma allows us to
identify a finitely generated free RG-module with a geometric R-module
over a free G-space X. Following [4], this restriction is avoided introducing
resolutions.

Definition 2.8. (c.f. [4, Section 3]) Given a G-space X, a resolution of X
is a free G-space X together with a continuous G-map p : X — X satisfying
the following conditions:

e the action of G on X is properly discontinuous and the orbit space
G\ X is Hausdorff (this is always the case if X is a G-CW-complex);

e for every G-compact set GK C X there exists a G-compact set
GK C X such that p(GK) = GK.

Remark 2.9. The projection X x G — X is always a resolution of X called
the standard resolution.

Let p: X — X be aresolution of a G-space X, and let 7 : X x[1,00) — X
be the projection. We will abuse notation and set
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(px id) " (&) = {((p x1)*) N (E) : E € Fec }
7 ISE) = {w‘l(S) .Se sgc} .

We define the following additive subcategories of C%(X) and CY(X x
[1,00)):

e T¢(X) = CY(X; S3.), the category of G-invariant geometric R-
modules over X whose support is contained in a G-compact subset
of X.

o 0Y(X) =CY%X x [1,00);(p x id)"H(EX..), 7 H(SE)), the category
whose objects are G-invariant geometric R-modules over X X [1, 00)
with support contained in some S € 7! (Sé(c), and whose morphisms
are the G-invariant R-module morphisms with support contained in
some E € (p x id)"1(EX,).

e DE(X) = O%(X)>®, the category of germs at infinity. It has the
same objects as O%(X), but morphisms are identified if their differ-
ence can be factored over an object whose support is contained in
X x [1,7] for some 7 € [1, 00).

When considering the standard resolution G x X — X we write 7¢(X) =
TE(G x X), 0%(X) = O%(G x X) and DY (X) = DY(G x X).

Theorem 2.10. (c.f. [4, Proposition 3.5]). Let X be a G-space and let
p: X — X and p : X' = X be two resolutions of X. Then the germ
categories D(X) and DG(Y/) are equivalent.

Lemma 2.11. Let X andY be G-spaces and suppose the action on X is free.
Write Y™ for the space Y with trivial G-action. Then Y x X is isomorphic
to Y™ x X as a G-space.

Proof. Let p: X — G\X be the projection from X to the orbit space and
s: G\X — X be a section. If x € X, write h; for the unique element of
G that verifies © = hys(p(x)). Define p : Y x X — Y7 x X by ¢(y,z) =
(hyly,x). It is easy to see that ¢ is an isomorphism of G-spaces. ([

Lemma 2.12. Let X be G-space such that there exists a subgroup K < G
which acts freely on X with the restricted action from G. Then G/K x X
(with diagonal action) is a free G-space.

Proof. Suppose g(hK,z) = (hK,z). Then ghK = hK and there exists
k € K with g = hkh™!. Then hkh~ 'z = z and k(h~'z) = h~'2. But since
the action of K over X is free, this implies that ¥ = 1 and then g = 1.
This concludes that G/K x X is free. O

Lemma 2.13. Let X be a G-space and Y a discrete space with trivial G-
action. Then CE(Y x X;SgCXX) is equivalent to CC(X; Sé(c).
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Proof. Let A be an object of CY(Y x X;SgCXX), then supp(A) is locally
finite and contained in a G-compact subset of ¥ x X. Hence, there exist
Y1, Y2, ---,Yn € Y and G-compact subsets Fi, Fo,...,F, of X such that
supp(A) C Ui 1{vi} x F;. This allows us to define the functor

F:COY x X;857%) = ¢%(X; 8%.) by

A)e = @ Ay,

yey
. T2 __ y2,x2
F(SO : A - B)-'El - @ y1 3:1 @ A y17rl _> @ B ’y2,fﬂ2
y1,42€Y y1€Y y2€Y
Clearly, F' induces an equivalence of categories. O

Remark 2.14. Note that in the previous lemma, we haven’t specified any
control conditions on the morphisms. In order to have an isomorphism

COX x [1,00); e, ™ HSE)) 2 CE(Y x X x [L,00);E, 7 1(SEY)),

the control condition £ isn’t given by Eg ;X . The control condition £ has
to control how morphisms behave between the points of Y. As such, if
p:Y x X — X is the canonical projection, the control condition is given by

€= (pxid) ' (E.)-

Corollary 2.15. If X is a free G-space we have the following equivalences
of categories:

T (X) = TG( ) = CY(X, S5);
0%(X) 2 09(X) := CHX x [1,00), Efeer ™ (Sie));
DY(X) = DY(X) == 09(X)™

where : X X [1,00) — X is the projection.

Proof. Take Y = G in Lemmas 2.11 and 2.13. O

Definition 2.16. Let X be a G-space equipped with a G-invariant metric
dg. Let p: X — X be a resolution and ¢ a morphism in 7¢(X). We define
the size of ¢ as the supremum of the distances between the components of
¢ when projected to X:

size(p) = sup{da(p(Z),p(¥)) : (Z,7) € supp ¢}

We also extend this size to morphisms in O%(X). In this case we define
the horizontal size of ¢ by measuring the distance in X:

hsize(y) := sup{da(p(Z),p(9)) : (Z,t,9,5) € supp(p)}

If we view 7¢(X) as a subcategory of O%(X) then we have that size(p) =
hsize(yp).
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Also, since p € O%(X), it satisfies the control condition at oo, hence,
there exists F € Eé(cc such that

supp(p) C {(z,1,7,5) € (X x [1,00))* : (p(Z),t,p(7),5) € E} .

By the second condition in the definition of Eéfcc, there exists § > 0 such
that

V(z,t,9,s) € supp(p), [t — s| < 6. (2.17)
We can then define the vertical size of ¢ by
vsize(p) = inf {0 > 0 : 0 satisfies (2.17)}.

2.5. Assembly map. In [9], Davis and Liick associate to every G-C'W-
complex a spectrum H(X,K(R)) whose homotopy groups define a G-
equivariant homology theory with the following property:

HE(G/H,K(R)) =2 K,(RH),  VH subgroup of G.

Let F be a family of subgroups of G, i.e. a nonempty collection of sub-
groups closed under conjugation and subgroups. The classifying space ErG
is the universal G-space for actions with isotropy in F. This is a G-CW-
complex characterized up to G-homotopy equivalence by the property that,
for any subgroup H of G, the H-fixed point space ErG™ is empty if H ¢ F,
and contractible if H € F. Note that when F is just the trivial subgroup,
the space ErG is the usual classifying space EG.

The assembly map is the map induced by the projection to the one point
space ExrG — G/G = pt:

assemr : HY(ErG,K(R)) — HY(G/G,K(R)) = K(RGQ). (2.18)

For F = Veyc the family of virtually cyclic subgroups, the Farrell-Jones
conjecture asserts that the assembly map

assemMyeye, © HE (Fye,G, K(R)) — HE (pt, K(R)) = K.(RG)  (2.19)

is an isomorphism.

The assembly map can also be interpreted through means of controlled
topology, as we proceed to explain. Using the map induced by the inclusion
{1} C [1,00) and the quotient map, we obtain the germs at infinity sequence

T¢(X) - 0%X) —» DY(X),

where the inclusion can be identified with a Karoubi filtration and D% (X)
with its quotient (see [6, Lemma 3.6]). Hence, there is a homotopy fibration
sequence in K-theory:

K(7T¢(X)) = K(0%X)) = K(DYX)). (2.20)

The functor X — K(D%(X)) is a G-equivariant homology theory on G-
CW-complexes, and its value at G/H is weakly equivalent to YXK(RH) [4,
Sections 5 and 6].
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Applying (2.20) to the projection ExG — pt, we obtain the following
commutative diagram with exact rows:

. — Kp(O%(E£G)) — Kp(DO(E£G)) 2% Ko \(T(E£G)) — ...

T

S— Kn(OG(pt)) — Kn(DG(pt)) — n—1(T(pt)) — ...

(2.21)
By [9, Corollary 6.3], o, identifies with the assembly map assemg, ,
(2.18). Using the shift z — 2 + 1, it is easy to see that O%(pt) admits
an Eilenberg swindle, hence K,(O%(pt)) = 0 and J, is an isomorphism.
Moreover, v,—1 is also an isomorphism, because its source and target are
both isomorphic to K,,_1(RG) by Lemma 2.7. This explains the choice of
notation: (’)G(E]:G) is the obstruction category, i.e. the assembly map is a
weak equivalence if and only if K,(O%(ExG)) =0, Vn € Z.

3. Two examples

From now on, we will focus on two particular assembly maps:

(i) for the group (t) and the trivial subgroup family, and
(ii) for the infinite dihedral group Dy, and the family Fin of finite sub-
groups.

As we explain below, both assembly maps are isomorphisms if we take a
regular ring R as our coefficient ring. For (i), this amounts to the well-
known theorem of Bass-Heller-Swan. For (ii), we will show that the assembly
map is an isomorphism using the equivariant Atiyah-Hirzebruch spectral
sequence and a computation of K,(RDs ) made by Davis-Khan-Ranicki [8].
Throughout this section, we use no techniques from controlled algebra.

3.1. The assembly map for (t). As noted in the introduction, a model
for E(t) is the free (t)-space R. The assembly map for (t) and the trivial
subgroup family gives us a morphism

assemr : HIV(R,K(R)) — H{" (pt, K(R)) = Ky (R[t,t1]). (3.1)

We will describe the source of (3.1) in terms of the K-theory of R using a
Mayer-Vietoris sequence.

We will drop K(R) from the notation for clarity, and write H. o (7) instead
of H" (7, K(R)).

When regarding R as a (t)-CW-complex, we only have one (¢)-0-cell, which
is compromised by the integers Z C R. Then we have one (t)-1-cell with
attaching map o : (t) x {0,1} — Z defined as a(t*, €) = k+¢. The following
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adjunction space pushout describes R as a (t)-CW-complex:
Q@
t) x{0,1} —— Z

I

() x 0,1]

J

?

R

This pushout gives a long Mayer-Vietoris sequence in homology as follows:

HO () x {0,1}) 20 B @) @ HO (1) x [0,1))

(Jis —Cx)

(R)

o
0

c— B (Z) @ B ((t) x [0,1]) HY"((t) x {0,1})

G

We are only interested in calculating Hl(t> (R) so we will only use the five

terms of the sequence depicted here. Since H,ﬁt> is an equivariant homol-
ogy theory and (t) x [0,1] is equivariantly homotopy equivalent to (¢), the
sequence before is isomorphic to the following one:

a7 ((0)? w0 (@) S w1 (®)

On the other hand, since we are taking coefficients in the spectrum K(R),

we have that Hit>((t>) = K,(R). We observe now that «, can be expressed
as (id,id): the morphism a is defined as the identity on the first summand
and as the shift on the second. The shift induces the identity because on
the K-theory of the R-linear category RG")((t)) — with G{((t)) being the
transport groupoid of (t) — the inclusion of (t) in any element of G ((t))
induces an equivalence (see [9, Section 2]). Since it induces the same equiv-
alence in every inclusion, it is easily seen that it must be the identity. This
implies that the cokernel of (au,is) : K1(R)? — K1(R)? is isomorphic to
K1(R). Similarly, the kernel of (., i.) : Ko(R)? — Ko(R)? is isomorphic to
Ko(R). This gives the following short exact sequence:

0 K1(R) 2 HY(R) = Ko(R) — 0 (3.2)

We will now show that this sequence splits. Note as ¢ : H ft> (t)?— H 1<t> ((t))
the quotient map to the cokernel of (a,i.). The maps induced by the
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projections R — pt and (t) — pt give a commutative diagram:

m{ (1) =L B ®)
| )
H{ (1)) H" (pt)

Since H1<t> (pt) = Ki(R(t)) and H1<t>(<t)) = K(R), we can define a map
r:H 1<t> (pt) —» H 1<t>((t)), which is induced in K-theory by the ring morphism
R(t) — R sending t to 1. Due to the commutativity of the previous diagram,
the map r composed with the induced map of the projection R — pt splits

(3.2), meaning that H1<t> (R) = K1(R) ® Ko(R).

3.2. The assembly map for Do,. We use the presentation (1.2) for D.
It is easily seen that every element of D, can be uniquely written as r™s"
with m € Z and n € {0,1}. Moreover, any non-trivial subgroup of D
belongs to one of the following families:

(1) (r™s) with m € Z,

(2) (r"™) with m € N,

(3) (r™m,rks) with m € N and k € Z.
Subgroups of type (1) have order 2, those of type (2) are infinite cyclic and
those of type (3) are isomorphic to Ds. We will write H,, for the subgroup
(r"™s) — note that these are different for different values of m € Z. Let Fin
be the family of finite subgroups of D, consisting of the trivial subgroup
and those subgroups of type (1). We are interested in the assembly map for
Do, and the family Fin.

Let Dy act on R on the left by putting

rs" - x=m+ (—1)"x

for m € Z, n € {0,1} and = € R. The element r"™ acts by translation by m
and r™s acts by symmetry with respect to the point 5. Then Ezy, Do = R

since R = () for H ¢ Fin and R¥ is contractible for H € Fin. In what
follows, we will show that the assembly map for D, and the family Fin,

assemg, : HY> (R, K(R)) = HP>(pt, K(R)) = K,(RDx), (3.3)

is an isomorphism for regular R.

For a Dy.-CW-complex X, the equivariant Atiyah-Hirzebruch spectral
sequence [12, Example 10.2] converges to HP”=(X,K(R)). Its second page
is given by:

E} = H, (CO™P>~(X) ®orp., HP>(?, K(R)))

Here, CP™P>(X) : (OrDy,)°P — Ch is the functor that sends a coset Doo/H
to the cellular chain complex of X, HqDOO(?7 K(R)) : OrDy — Ab is the
restriction of the equivariant homology with coefficients in K(R), and ®o,p,,
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stands for the balanced tensor product. Let us compute the left hand side
of (3.3). If H C Dy is a subgroup of types (2) or (3), then R = ()
and so CQ™P>(R)(Dwo/H) is the zero chain complex. Since Rffm = {2},
COPo (R)(Dyo/H,y) is the abelian group Z — generated by the 0-cell o

concentrated in degree 0. Finally, CO™P>(R)(Dy./1) is the complex

e 07 Dx) M@ o g(Zr)

where d; acts on the basic element g € Dy by di(g) = g - % —¢g-0. To

ease notation, we will write A, instead of CO™P>(R) ®0,p.. HqDOO (7, K(R)).

Taking the above into account, A, = 0 for n # 0,1. Moreover, we have
7(Pos) K,(R)

Ay = 5 (3.4)

(Z(Z) ® Z<Z+%)> @ K (R) & @, Z @ Ky(RH,y,)
No
where Nj; is the subgroup generated by the elements f*(z) ® y — x ® fi(y)
for all morphisms f: Do/H — Do /K in OrDs,. For Aj, we only have to
consider morphisms f : Dy /1 — Dy /1 and these induce the identity upon
applying HP>=(?, K(R)). It follows that Nj is generated by the elements
of the form f*(z) ® y — z ® y. Since D, acts transitively on the 1-cells of
R, all the copies of K,(R) in the right hand side of (3.4) become identified
after dividing by /N7 and hence (3.4) is isomorphic to K,(R). To be precise,
any of the inclusions K,(R) — Z(P~) @ K,(R) corresponding to an element
of Dy induces the same isomorphism K,(R) = A;. The situation for Ay is

slightly more complicated: we have to consider morphisms Dy, /1 — Do /1,
Do /1 = Do /Hy, and Doy /H,, — Do/ Hy. Tt is easily verified that

Ay = (3.5)

if m =n (mod 2),

*
Homorp.,, (Doo/Hm; Doo/Hn) = { {Q)} otherwise.

It follows that each summand in ,,.,Z ® K,(RH,,) is identified either
with K,(RHy) or with K,(RH) upon dividing by Ny. The action of D
on the O-cells of R has two orbits: Z and Z + %. It follows that

(2® 0 2®D) @ Ky(R)

is identified with K,(R) @ K,(R) after dividing by Ny — one copy of K,(R)
for each orbit of the 0-cells.

Finally, any morphism Dy, /1 — Do /H,, induces the natural morphism
K,(R) — Ky(RH,,) upon applying wa (?,K(R)). Thus, the copy of
K4(R) corresponding to the orbit Z is identified with its image in K,(RHy),
and the copy of K4(R) corresponding to Z + % is identified with its image
in K (RH1). Hence, (3.5) is isomorphic to K4(RHo) @ K,(RH;1). To be
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precise, the inclusion
K((RHo) ® Ky(RHy) — @,,cz Z @ Ky(RH,,)

induces an isomorphism
K,(RHy) ® K4(RH;) = Ay.

Write v, : Kq(R) = K4(RH,y,) for the split monomorphism induced by the
inclusion 1 C H,,. It can be shown that A, is the complex:

(=tost1)

-+ ——>0—— K (R) — K,(RHy) ® K4,(RH;) —=0

Upon taking homology, we get the second page of the Atiyah-Hirzebruch
spectral sequence converging to HP>= (R, K(R)):

K (RHo) G Ko (RH) ifp=0
2 _ q 0 K, (R) q 1 )
Epq = Hp(As) = { 6 otherwise.

Note that this is actually the infinity-page, and it is easily deduced from it
that HP>~(R,K(R)) = K,(RHo) Gk, (ry K (RH).

Let B, be the chain complex CO™P>(pt) @o.p,, H(FOO(?,K(R)). Note
that, for any subgroup H C D, CO™P=(pt)(Dyo/H) is the abelian group
Z concentrated in degree 0. Then B,, = 0 for n # 0 and we have:

5, - ®uEy(RH)

No

Obviously, By = K;(RDy). But it follows from [8, Corollary 3.27] that,
when R is regular, the inclusion K,(RHy) ® K,(RH1) - @y K,(RH) in-
duces an isomorphism:

Kq(RHo) @, (r) Ko(RH)) —=. B,

It is easily seen that the projection R — pt induces the following morphism
of chain complexes:

(—t0,t1)

A, ---HIHK(I(R) K,(RHo) ® K (RH,) 0
B, 0 0 Kq(RHo) @, (ry Kq(RH) — 0

Since this is a quasi-isomorphism, the morphism induced between the sec-
ond pages of the Atiyah-Hirzebruch spectral sequence is an isomorphism.
As we have already seen, we can recover HqD > (R,K(R)) from this spec-
tral sequence. Hence, the above shows that the assembly map (3.3) is an
isomorphism.

Remark 3.6. The fact that (3.3) is an isomorphism for regular R also follows
from [13, Theorem 65] and [10, Theorem 2.1].
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4. Vanishing theorem for K,

In this section, we show that automorphisms in O (R) and OP>(R) with
small enough horizontal size have trivial class in K7.

In the case of (t) with the trivial subgroup family, the action of (¢) on
E(t) = Ris free. Then, using Corollary 2.15, we can use the category O (R)
instead of O™ (R). On the other hand, in the case of Dy, with the family
Fin, the action of Dy on Er;, Do = R is not free. But instead of using the
standard resolution, we use Lemma 2.12 observing that (r) acts freely on R
and Dy, /(r) = 7Z/2. Hence, we can use the resolution p: R := Z/2 xR — R
given by the projection and the diagonal action on R. As in Corollary 2.15,
we can use the category OP=(R) instead of OP><(R) with the standard
resolution. We interpret the resolution R as two different copies of R.

Remark 4.1. The category OP=(R) can be embedded into (O (R))®2 by
restricting the modules over each copy of R x [1,00). Because the action
of r € Dy, is the same as the action of ¢ in R, the restricted modules are
also (t)-equivariant. The control conditions are trivially satisfied. It is also
important to note that the control condition on the morphisms is given by
Remark 2.14, this means that the morphisms on this category can have non-
null coordinates from one copy to another at arbitrary height, that is, this
control condition does not control the distance between the copies of R.

Remark 4.2. Set ¢ : M — M in TP>=(R) as

Y R ifxeZ,
(e2) = {0 otherwise,

(6) id ife£Adandx=y€Z,
Plew) = {O otherwise.

Then ¢ is clearly an automorphism and it is easily seen that [U(p)] = [s] €
K1(RDs). Because of the earlier remark, ¢ is a 0-automorphism, so the
class [s] is automatically small.

4.1. The swindle. Let a : A — B be a morphism in O (R) and I an
open interval in R of length 1. We say that « restricts to I if supp(A) and
supp(B) do not intersect I x [1,+o00) and for every (z,t) € I x [1,400)

and every (y,s) ¢ I x [1,+00) then O‘Ezi)) =0 and OCE;?) = 0.

Let o : A — B be a morphism in O (R) that restricts to an interval I.
Set then I = (a,a + 1). We proceed to squeeze a to I in the following way.
For each natural number, let f, : R — R be the function that at each

interval I 4+ k interpolates linearly the endpoints to a + k + % - % and
a+k+ % + % respectively,
1 1 —a—k
fn(x):a+k:+f—f+wifx6[a+k,a+k+1). (4.3)

2 2n n
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Note that since each f, is defined over an interval of length 1, we have that
fa(z+1) = fn(x)+1 and thus, is equivariant for the action of (t). Although
each f, depends on the choice of the interval I, we drop it from the notation
as it will be clear from the context which interval we are using. Observe
that f1 =1d.

Let (74 )nen be an unbounded strictly increasing sequence of real numbers
in [1,00) with 71 = 1. We define the nth layer of the squeezing of A (with
heights 7, ), noted by S, (A), as the geometric module given by

A
S(A) (zp) = 0

Note that S1(A) = A.
Intuitively, S, (A) is the geometric module given by raising A to 7, and
then squeezing it to the midpoint of the interval I.

(P (@)1= ) ift > 7, and x € Imf, (4.4)
if else. '

[1,+00)

S5(A)
S4(A)
S3(A)

Sa(A)

Si(A) = A

a—1 a a+1 a-+2

Observe that A and S,,(A) are isomorphic through the isomorphism that
sends A4y 10 Sn(A)(fo(2)t+m—1) = A(zy) With the identity. The corre-
sponding morphism to « through the isomorphism just described is noted
as Sp(a) : Sp(A) — Sp(B).

Define S(A) = @,,cn Sn(A) given by the sum of all layers. Since the layers
get raised, S(A) has only a finite sum at each height. Note also that since
each layer gets squeezed further and further, there is a well defined morphism
S(a) : S(A) — S(B) given by Sy () at the layer n. The squeezing, and the
fact that o does not have non null coordinates between intervals, guarantee
that this endomorphism satisfies the control condition at occ.

Definition 4.5. For an open interval I C R, let o (R)7 be the subcategory

of O (R) given by the objects whose support does not intersect 81 x [1, +00)
and morphisms that restrict to the interval I.



624 E. ELLIS, E. RODRIGUEZ CIRONE, G. TARTAGLIA AND S. VEGA

Also, given a strictly increasing unbounded sequence (Tn)n with~7'1 =1,
the construction just described defines functors S, : ON(R); — OV (R);
and S : O(R); — OO (R);.

Note that these constructions can also be made on the category O(I) with
no action of (t). In this case, we only consider the interval I, so the functions
fn are defined within I. In this way, we also get functors S, : O(I) — O(I)
and S : O(I) = O(I).

Remark 4.6. We can also define a category OP=(R); of objects that restrict
to an interval on each copy 0 x R x [1,00) and 1 X R X [1,00). It is easy to
see, using Remark 4.1, that the functors S and S, also give corresponding

functors over @OP=(R);, as the same construction applies to each copy of
R x [1,00).

Proposition 4.7. The categories O (R); and O(I) are isomorphic.

Proof. We have a functor F : O®(R); — O(I) given by restriction to I
which sends each morphism ¢ : A — B that restricts to I to

F(9)3) = 6(%)  Away = By

for each z,y € I and t,s € [1,+00). F has an inverse G : O(I) — OO (R);
given by repeating the same morphism ¢ : M — N over each translation of
I; for each z,y € I and k € Z set

GM)(eikt)y = Mayy  GIN)(yaks) = Niy.s)
(y+ks) _ 1 (ys) .
GW)Gorn) = Yoy * Mgy = Nigs)-
It is easily checked that both compositions of F' and G give the corresponding
identities. U

Lemma 4.8. Set 7, = n. Then, the functor S makes the category O(I)
flasque, i.e. there is a natural isomorphism S @& id — S. In particular,

K.(O(I)) = K,(O®(R);) is trivial.

Proof. We define the natural transformation as follows: for each n > 1,
define ¢, : Sp(A) = Spt+1(A) given by matrix coordinates (qﬁn)gz‘:)) =0 if
f;ﬁl(y) # fl(x) or s #t+ 1 and if fnjil(y) = f1(x) and s =t + 1 since

Snt1(A),s) = A1, ), (41— 1)+1) = At @) t—ns1) = SnlA) o),

we set (¢")anci)) = 4d. Note that this is simply the composition of iso-
morphisms S,(A) — A — S,41(A). Also, put ¢9 : A — Si1(A) = A
equal to the identity of A. Putting together all of these morphisms into
Ontn : S(A) @ A — S(A), defines the natural isomorphism we need. O
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Similar statements can be made in the case of the category OP=(R) using
two copies of the interval I.

Given a geometric module A in O (R) or OP=(R), there are two split-
tings of S(A). One is given by S(A) = S,(A) ® Se(A), where S,(A) and
Se(A) are the sum over the odd and even layers respectively. The second
splitting is S(A) = A® S+ (A) where Sy (A) are all the layers in S(A) omit-
ting the first one. We also have a splitting Sy (A) = Se(A) & Sy+ (A) where
S+ (A) is just So(A) with the first layer removed.

The geometric modules S,(A), Se(A) and Sy+ (A) are isomorphic through
the isomorphism which identifies each layer with the next one (the order is
important!). We note these isomorphisms

Poe : So(A) = Se(A) and
Yeot 1 Se(A) = Sot(A).
Given a morphism a : 4 — B in O (R) or OP>(R), we define
50(0)  Su(4) = Su(B),
Se(@) : Se(A) — Se(B) and
So+ (@) : So+ (A) = So+(B)

given by Sy (a) at the corresponding layers. Observe that since each of the
morphisms are defined layer-wise, we have that

o L9e (@)oo = So(a) and
¢;)1+ So+ (A)eor = Se(a).

Remark 4.9. Let n: A — B be a morphism in O (R). Then the horizontal
size of 7 is given by the formula

hsize(n) = sup {|33 —yl: 77((?;;)) # O} .
In the case 7 is in OP=(R), the horizontal size is given by

hsize(n) = sup {|x K n((f:g:f)) # 0} .
4.2. Vanishing theorem.

Lemma 4.10. Fix the interval I = (0,1) and a sequence 7, as in 4.5 for
the construction of the functors S,. Consider the following subspaces of
(0,1) x [1, +00):

If v : A — A is an endomorphism in O(I) which is the identity on U then
Sn(7y) is the identity on V' for all n.
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Proof. For each n > 1 put:
Su(U) 1= ((0,1) X [L) U ([1 = & 5+ & % [, +00))

Then U = S1(U) and V = N, Sp(U). Recall the definition of f,, in (4.3).
Note that f, is linear and increasing on (0, 1), and that

fn:(071>_>(%_%7%+%)

is bijective. Then, for x € Imf, and t > 7,, (z,t) € S,(U) if and only if
(fil(x),t — 1, + 1) € U. Tt follows easily from the latter that S, (7) is the

n

identity on S, (U), and thus on V' C S, (U). O

Theorem 4.11 (c.f. [14, Theorem 3.6]). Let o : A — A be a 35-auto-
morphism in O (R). Then there is an automorphism 3 : B — B in O (R)
with [a] = [8] in K1(O®(R)) such that B restricts to (1,3). The same is
true with OP>(R) instead of O (R).

Proof. We may assume A does not have modules supported at points whose

first coordinates are integers or half-integers; if this were not the case, we

could replace A by an isomorphic module obtained by slightly shifting A.
Let @, a1 : A — A be the morphisms in O (R) defined by

(z,t) 0 otherwise.

(E) (y,5) _ {(ail)g‘g if x,y € [k, k + 1] for some k € Z,
By construction, @ and a~! restrict to the interval (0,1) — that is, they are
morphisms in O® (R) g 1).
We now choose the sequence (7;,),>1 for constructing the functors Sj,.

Fix K > 0 so that (aﬂ)gi’:)) =0 if |t — s| > K. By control at +00, we may
choose a strictly increasing sequence (7, ),>1 so that the following holds for

all n:

. N\ W)
Whenever s,t > 1, —5K and |z —y| > 35, (aﬂ)gi’tf =0=75; (ail)(y )

foralll < j <n.

Denote endomorphisms of S(A) = S,(A) @ Se(A) as 2 x 2 matrices and
define 1 : So(A) B Se(A) — So(A) @ Se(A) as the product:

C(id o id 0 [id o5t
T= 0 id )\ =t id)\0 id
id 0 id _d)o_el o S (@) id 0
Yoo S (a7T) id (o id ) Yoo S (a7T) id
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Define g : Se(A) @ Sy+(A) = Se(A) @ S+ (A) by:

_(id vl id 0\ (id v }
“\0o id —thoor 1d) \ 0 id
id 0) /id ==Y oS, (@) id 0
Yoot 0 5e (1) id (0 “id ) Yeor 0 Se (1) id

Note that  and p are automorphisms since they are products of elementary
matrices. We also have the following description:

(285, (a7T) =S, (a7 TomoaT) —uloS, (aTom) + vl

" —oe + Yoe 0 S (@ o F) Se (@)
o (e(e7) =S (@ omoaT) o (a7 0d) 1y,
—Yeot + Peot © Se (a o a—l) S,+ (@)

Let 8 :=no(a@® u). Since both n and p are products of elementary
matrices, [o] = [8] in K1(O®(R)). We want to show that S restricts to
(%, %) In order to obtain a more explicit description of 8, we can consider
the matrix representations of a® u and 7 with respect to the decomposition

S(A) = S1(A) ® So(A) @ S3(A) @ - -- (4.12)

and then multiply these matrices. This tedious but straightforward compu-
tation shows that the matrix representation 8 = (8;;); j>1 with respect to
(4.12) can be described as follows. Define:

vj = —39; <FO&OF) +25; <F) +5; (oﬁloaooﬁloaoofl)

0j 1= 25; (@OF) -5 (aoFoaoF>

kj:=1id — 25} (aoa*1> +5; (aoﬁoaoﬁ)
pj = —5; (aoﬁoa)jtsj(a)

Let 7; (respectively 0;) be defined by the formula of ; (resp. d;) with @
and a~! exchanged. Then we have

2atoa—alowoaloa ifi=1,
Bit =19 —tYipoa+poaocaltoa ifi=2, (4.13)
0 otherwise.

For even j, we have that

Wil 07 ifi=j—1,
Bij = —jj+1 07 iti =741, (4.14)

Vitrjr20Yjir1 0k ifi=j+2,
0 otherwise.
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For odd j > 1, we have that

1 -1 e .
Vjmag-10Wj 0k ifi=j7-2,
1

wj_IJOpj ifi=75-1,
Bij = by if i = j, (4.15)
—j.j+1 0 Pj iti=j+1,
0 otherwise.

As we explain below, it follows from the latter description of 5 that it is the
identity on the subspace V' of Lemma 4.10.

Let us show that 6[“; = id. We will first prove that the even columns of
(Bijh‘;)i,jm are those of the identity. For this, taking (4.14) into account, it
suffices to show that §;|{; = id and that both 7; and r; are zero on V. Even
though @ and a~1 aren’t necessarily automorphisms, @ o a~1 and a~loa
are the identity on the subspace U of Lemma 4.10 since hsize (aﬂ) < %.
By Lemma 4.10, Sj(@o a~!) and Sj(a~! o @) are the identity on V for all
j. (We are making a slight abuse of notation here. Strictly speaking, we
are not only using Lemma 4.10 but also the isomorphism of Proposition 4.7,
since @o ! and a~! o@ are morphisms in O (R);. Thus, by U and V we
really mean Z - U and Z - V, respectively.) We have:

To show that ~; is zero on V, let W denote either V' or V. We have:

S [sj (F) oS, (aoﬁﬂ ‘;V 428, (F)’f

+ [Sj (Fo&oF) 0S; (aooﬂ)”f
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This shows that ;|V; = 0 and ~;|{;" = 0. Moreover, we have:

e s (en)os ()]
+ [Sj <Fo@) 08 (Foaoﬁ)} o
— 38, (F>‘ZC+QS]' (F))ZJF S; (F050F>

=35 (@), +28 ()] 55 ().,

+28; (F) Z

|4

\%4

Ve

=0

This completes the proof that v; is zero on V. To prove that x; is zero
on V, one proceeds in the same fashion. We still have to show that the
odd columns of (Bwh‘f)l i>1 equal those of the identity matrix. For the j-th
column with odd j > 1,’ we proceed in analogy to what we did for the even
columns: we use (4.15) and prove that §;|{, = id and that both &; and p;
are zero on V. For the first column, note that o1 o « is the identity on V
since hsize (a*!) < 5. By (4.13) we have:

v 1% S - 1%
Biily =2 <0F10a)}v— (oﬁloaooﬁl ooz)‘

—9 (Foa)}z— (Foa))zzzid—id:id

\%

521|\‘; = (12 oa)|“; + <¢12 anFog)‘:

JR—— \%
= (_wm)"‘; o Oé|“; + (w12)|“§ o) (ao alo a) ‘V
= (—11)12)|¥ o 04|¥ + (¢12)|“; O@h‘; =0

Here, we use that (¢12 0 5)\5 = 1/}12“‘; o¢elV, for any morphism ¢ : A — A,
which follows from the fact that w12|“§c = 0. This concludes the proof that
By = id.

Making appropriate changes to the previous paragraph, one can show,
almost without any further computations, that 5 ]“;C = 0. As before, there
are three cases to be considered: the first column, the even ones, and the
remaining ones. Apart from equations (4.13), (4.14) and (4.15), one needs
the facts that v;, x;, kK and p; are zero on V—which we already proved. It
is also possible to show that 3 ]“;c = 0 but we will not prove this since it is
not used in the sequel.

We proceed to show that § restricts to (%, %) Put B .= (%, %) x [1, +00).
Let (z,t) € B and let (y,s) € B. We will now show that ﬁ((g:f)) = 0. We
have the following two possibilities:

(1) (x,t) e V.

o If (y, S) ¢V, then ﬁ((ij’:)) = 0 because ﬁh‘;c = 0.
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o If (y,s) € V, then B((gts)) = 0 unless (z,f) = (y,s), because
BV, = id. But (z,t) # (y,s) since we are assuming (z,t) € B
and (y,s) ¢ B. Hence B((i/f))
(2) (x,t) € V. Pick n > 1 such that t € [7,,, Tn+1). Then

n =P s
j=1

Thus, ,8( t) = 0 if and only if (,8”)@ s) =0forall<j<nand
all ¢ > 1 Fix 1 < j < n and1 2 1. We proceed to show that
(BU) = 0. By (4.13), (4.14) and (4.15), we know that f;; is the
comp081te of an endomorphism €: 8j(A) — S;(A) followed by the

usual isomorphism ¢ : Sj(A) 55 (A). We have that
(B = ey © iy

where (z,u) is the unique point such that LE?ZJ:;?) = 0. Tt is clear that

(z,u) & B since (y,s) ¢ B. We will show that egz’?)) = 0. It follows
from (4.13), (4.14) and (4.15) that € is a sum of terms, each of which

may be the identity or the composite of at most five factors of the
form S (ail)—in the case j = 1 we also have the factor «; see

(4.13). Let o be one of the terms appearing in e. If 0 = id, then

E; ?)) = 0 since (z,t) # (z,u). Suppose o is a composite of factors

of the form S (ﬁ), say

O-:SOT'O"'OSOI

with 1 < r < 5. If we write (xo,t0) := (z,t) and (x,,%,) = (z,u),
we have:

o = (et oo ()i (4.16)

All the points (xg,t;) that appear in this sum have t;, > 7, — 5K;
indeed, this follows from the facts that tg = ¢t > 7, and vsize(p) <
K for all k. Since (z,t) € V¢N B and t € [Ty, Th+1), We have
that = € (% + &, % — %) Since (z,u) ¢ B, the latter implies that
|z — 2| > &. Thus, for each term in the sum (4.16) there exists k
such that |zp — xp_1] > 30%. Then each term in (4.16) is zero —
this follows, for j < n, from the condition which was required for the
construction of the sequence Tn and, for j = n, from the fact that

hsize [Sn (ﬁ)} . This finishes the proof that (BZJ)(y’S) =0.
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Now suppose (z,t) ¢ B and (y,s) € B. We can find m € Z such that
m - (x,t) € B—and hence m - (y, s) ¢ B. We then have:
B(y78) _ Bm'(yvs) _ 0

(z,t) = FPme(zt) —

This completes the proof that § restricts to (%, %)
In the case of the category OP=(R), the proof works exactly the same.
The control condition noted in Remark 4.1 is crucial for imitating the same

proof. O
As an immediate corollary we get the following theorem.

Theorem 4.17. Let a : A — A be an 35-automorphism in OO(R) or in
OP=(R). Then o has trivial class in K;.

Proof. Use the previous theorem together with Lemma 4.8. ([

5. Small matrices in K;(R[t,t7!])

Let € > 0. In this section we show that the class of ¢ in K1(R[t,t"!]) can
be represented by an e-automorphism. When R is a regular ring, it follows
from this and the proof of [7, Theorem 2] that any element in Ki(R[t,t1])
has a representative which is an e-automorphism; see (1.6).

Recall that an element in K7 (R[t,t~1]) is the class of an invertible matrix
with coefficients in R[t,#71]. We begin by revisiting the notion of size in the
context of matrices.

Let R be a ring (not neccessarily regular) and A a matrix in M, (R[t,t~]),
then A can be written as

A= )" A" for A; € My(R).

In order to identify A with a morphism in 7 (R), we need to fix a geometric
R-module M = (M) ,er. Put

{R if © € supp(M),

0 otherwise

1 -1
Withsupp(M):{k—F:L:k,rEZ}z(t}-{O,n,...,n }

n

Note that, by (t)-invariance, an endomorphism o« : M — M in T®(R)

is determined by its components o, for x € {0, %,,"771} Let X =
(xo,21,...,Tn—1) € R™ and define
Vot My (R[t,t7Y]) = TO(R) by Vp(A) =aa: M — M
i=m j=n—1

where as(X) = Y A;X', with AX'e @ M, ; =R"

i=—m 7=0
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Definition 5.1. For each matrix A € M, (R[t,t7!]), we define size(A) =
size(V,(A)).

Consider for each k > 0 the following matrices in M, (R):

3

k k—L k-2 ol
k+ =+ koo k-3 pn2
Dy=| : :
k+ 22 fpyn3 k k—%
k4L ko2 +41
0 L ..om2oed
po0

[\
3
w

n

—
3
|3

n

Dy=| :+ + . J and D, * = (D)
P

no
3= O
O3

d

Then, we have that
size(Ag) = max{dfj ta;; # 0} and size(A) = max {size(Ay)}.

—m<k<m

Remark 5.2. The size of a matrix depends on the dimension n, so it is
not invariant with respect to stabilization in GL,(R[t,t7!]). Considering
B € GL,(R) we have

size< g I?n ) = n—l—LmSize(B)

Proposition 5.3. Let x € Kq(R[t,t!]) be the class of t € GLy(R][t,t™])
and ¢ > 0. If U s the functor of Lemma 2.7, then there exists an e-
automorphism o € TM(R) such that [U(a)] = .

Proof. Take n € N such that * ~ < €. Let (), C R be the Z-compact set

Cp = (t)-{;:ie{o,...,n—l}} = {m—i—;:meZ,ie{O,...,n—l}}
Define for i € {0,...n — 1} the following geometric module:

i i . R ify=m+ <L withmeZ
Q [n] - {Q [n]y}yER Wlth Q [n}y = { 0 OtlyleI‘WiSe. "

If we note Q°[n] = P, we have that

R ifyeZ
P = {Py}yGR’ Py = { 0 otherwise

and that Q'[n] is a translation of P by £. As such, there is an isomorphism
51 P — Qn].

Define v : P — P as the automorphism such that ~i, : P, — P, is idg
when y = w+1 and the null map otherwise. Note that size(y) = 1. Consider
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now 7;; : Q'[n] — Q’[n], given by y;; = §; oy 0§, *. Abusing notation we
write 7;; as .

n—1
Define Q[n] = (P Q'[n] and & = {&;}i jeqo,...n-1} : QIn] — Q[n] given by
i=0
id ifj=i—1,j>1
G2 Q'] = @l =3 Cqynig i =0,i=1
0 otherwise.
Note that supp(Q[n]) = Cp, size(§) = % and ¢ is represented by the matrix
0 0 0 ... 0 ~
(-)"*id 0 0 ... 0 0
0 id 0 0 O
0 0O 0 ... 0 0
0 0 0 ... id 0
Is easy to see that ¢ is an automorphism with € ! represented by the matrix
0 (=1)"*id o 0 0
0 0 id ... 00
0 0 0 0 0
0 0 0 ... 0 id
v 10 0 ... 00

and that size((~') = 1. Letting v : Q[n] — Q[n] be the automorphism
represented by the matrix

0 0 O
0 id 0 O
0 0 id 0
0 0 0 id

we have that

O

Proposition 5.4. Let R be a regular ring. For all x € Ki(R[t,t71]) and
¢ > 0 there exists e-automorphism o € T (R) such that [U(a)] = =.

Proof. Every z € K;(R[t,t7!]) is represented by t"MN with n € Z, M €
GL,,(R) and [N] = [id] (because R is regular), see [7]. Then

z = [t"] + [M].
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By Proposition 5.3, we can consider [t"] = [U(ay,)] such that

size(a,) = size(a;, ') < %
and by Remark 5.2, there exists aps such that [U(aps)] = [M] and
size(ay) = size(ag)) < g
Then taking a = a,, 0 apy we have
[U(a)] =z size(ar) < € size(a) ™! < e

Corollary 5.5. For R a regular ring, the assembly map

K»(DY(R)) — Ki(TY(R))

18 an epimorphism.

Proof. By Proposition 5.4 and Theorem 4.17, the image of every element
of K1(T®"(R)) in K;(O®(R)) is trivial, hence by (2.21) the assembly map

is surjective. ([l
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