NYJM Logo

New York Journal of Mathematics
Volume 25 (2019), 541-557

  

Robert Kesler, Michael T. Lacey, and Darío Mena Arias

Lacunary discrete spherical maximal functions

view    print


Published: June 20, 2019.
Keywords: spherical averages, discrete, maximal functions, lacunary, Circle method.
Subject: Primary: 42B24, Secondary: 1105.

Abstract
We prove new lp(Zd) bounds for discrete spherical averages in dimensions d ≥ 5. We focus on the case of lacunary radii, first for general lacunary radii, and then for certain kinds of highly composite choices of radii. We follow a style of argument from our prior paper, addressing the full supremum. The relevant maximal operator is decomposed into several parts; each part requires only one endpoint estimate.

Acknowledgements

Research supported in part by grant from the US National Science Foundation, DMS-1600693 and the Australian Research Council ARC DP160100153.


Author information

Robert Kesler:
School of Mathematics
Georgia Institute of Technology
Atlanta GA 30332, USA

robertmkesler@gmail.com

Michael T. Lacey:
School of Mathematics
Georgia Institute of Technology
Atlanta GA 30332, USA

lacey@math.gatech.edu

Darío Mena Arias:
CIMPA, Escuela de Matemática
Ciudad de la Investigacion, Universidad de Costa Rica
Sede Rodrigo Facio, San Pedro, Montes de Oca, San Jose 11501, Costa Rica

DARIO.MENAARIAS@ucr.ac.cr