New York Journal of Mathematics
New York J. Math. 24a (2018) 56-86.

Semicrossed products of
operator algebras: a survey

Kenneth R. Davidson, Adam H. Fuller
and Evgenios T.A. Kakariadis

We dedicate this article to the memory of William B. Arveson,
who has inspired all of us with his vision and deep insights
that completely changed the way we look at operator theory.

ABSTRACT. Semicrossed product algebras have been used to study dy-
namical systems since their introduction by Arveson in 1967. In this
survey article, we discuss the history and some recent work, focussing
on the conjugacy problem, dilation theory and C*-envelopes, and some
connections back to the dynamics.
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1. Introduction

The study of operator algebras arising from dynamical systems is almost
as old as the study of operator algebras themselves. W*-crossed products
were originally studied in the seminal work of Murray and von Neumann. An
analogous theory of C*-crossed products has also been developed to build a
universal C*-algebra which encodes the action of a group of *-automorphisms
on a C*-algebra A. See Pedersen [68] or Williams [78] for an introduction.
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We instead turn our focus to actions of semigroups on an arbitrary operator
algebra A by endomorphisms. In this case, the natural object encoding this
action is a nonselfadjoint operator algebra, even when A is a C*-algebra.

Arveson [3] wrote the seminal paper on this approach in 1967. He started
with an ergodic, measure preserving transformation on [0, 1] with Lebesgue
measure m. This induces a *-automorphism of L°°[0,1]. From this, he
constructs a concrete weak-x closed nonselfadjoint operator algebra that
encodes the dynamics. The main result is that two such ergodic actions are
conjugate if and only if the operator algebras are unitarily equivalent. In
a sequel, he and Josephson [7] recast this in the norm-closed setting of a
homeomorphism on a locally compact operator space. Again they built a
concrete operator algebra, and sought conditions relating conjugacy of the
two dynamical systems to isomorphism of the associated algebras.

An important conceptual development was the work of Peters [69] in
which he defined the semicrossed product as a universal operator algebra,
associated to a single x-endomorphism acting on an arbitrary C*-algebra.
The universal nature of this definition freed the operator algebra from a
specific representation. This predated the modern theory of abstract op-
erator algebras. Peter’s definition was readily generalized to the action of
an arbitrary semigroup of endomorphisms of a (not necessarily selfadjoint)
operator algebra. However, as we shall see, there are many choices to make
when considering the class of allowable representations that do not arise
when studying the action of Z, on a C*-algebra.

The study of nonselfadjoint operator algebras is greatly influenced by an-
other seminal paper of Arveson [4] in which he generalized Sz.Nagy’s theory
of dilations [76] to general operator algebras. The impact of this paper is
widespread and profound, and we will only focus on its implications for semi-
crossed products. Arveson’s point of view was that every operator algebra
A should be a subalgebra of a C*-algebra, and among all C*-algebras which
can be generated by a (completely isometric) copy of A, there is a preferred
one called the C*-envelope. This is the analogue of the Shilov boundary
of a function algebra, and is the unique minimal C*-algebra containing A.
The existence of this C*-envelope was established by Hamana [43]. A very
revealing new proof was provided by Dritschel and McCullough [29]. They
observed that every representation of the operator algebra can be dilated to
a mazximal representation; and that these maximal representations extend
uniquely to a x-representation of the C*-envelope. This leads to an explicit
construction of the C*-envelope by finding a maximal dilation of any com-
pletely isometric representation. So to understand an operator algebra, we
wish to understand the nature of the C*-envelope, and the maximal dila-
tions.

The original work on semicrossed products dealt with an action by a
single x-automorphism on an abelian C*-algebra. A few early exceptions
are McAsey and Muhly [58], who have a very general view even though
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they use a concrete representation, and get sharp results for semigroups
that totally order the group (such as Ry); and Ling and Muhly [57] for
semicrossed products over Z'!. As the area developed, this has expanded
to the consideration of an action of a semigroup on an arbitrary operator
algebra by endomorphisms. More recent examples include Donsig, Katavolos
and Manoussos [28] and Alaimia and Peters [1] for actions of Z'}, the first
author and Katsoulis [22] and Duncan [31] for actions of the free semigroup
F;'; the second author [36] for direct sums of positive cones in the real line;
and the third author and Katsoulis [50] for operator algebras associated to
n *-endomorphisms of a C*-algebra.

In this survey we focus particularly on two issues which have driven the
development of semicrossed products. The first is the conjugacy problem.
Can we distinguish dynamical systems (up to conjugacy) by their semi-
crossed products? The answer appears to be positive in many general cases.
Our aim is to convince the interested reader that semicrossed products (and
in general nonselfadjoint operator algebras) are not just an artifact of con-
venience. Indeed, even for one-variable homeomorphic classical systems, the
counterexample of Hoare and Parry [44] shows that the C*-crossed product
is not a complete invariant for conjugacy. Outstanding effort is required to
achieve a complete encoding via C*-crossed products, and is limited to par-
ticular systems. For example, see the deep work of Giordano, Putnam and
Skau [40] and Giordano, Matui, Putnam, and Skau [37, 37, 38] on Cantor
systems. Moreover semicrossed products of arbitrary C*-dynamical systems
over abelian semigroups are unconditionally defined and (usually) contain
a copy of the system. This is in contrast to generalized C*-crossed prod-
ucts, where the system is embedded by a quotient when it is non-injective,
or where the existence of transfer operators is required. For example, see
[10, 16, 34, 49, 54, 56, 63, 67, 74]; see the work of the third author with
Peters [51] for a discussion.

The second issue is dilation theory and identification of the C*-envelope.
In particular, we will concentrate on semigroups P which are contained in
a group G (generated by P). The goal is, whenever possible, to build a
C*-algebra B and an action 8 of G on B by x-automorphisms so that the
semicrossed product sits completely isometrically inside the crossed prod-
uct B xg G. Then we wish to show that the C*-envelope either equals
this crossed product or is a full corner of it, so that it is Morita equiva-
lent to a crossed product. We also discuss semicrossed products by certain
non-abelian semigroups. In particular we discuss Ore semigroups and free
semigroups.

Connecting properties of the dynamics to simplicity of C*-crossed prod-
ucts is of particular interest in the theory of operator algebras (see for exam-
ple [72]). In section 5, we discuss how the ideal structure of the C*-envelope
of a semicrossed product relates to minimality of the underlying dynamical
system.
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2. Covariant Representations and Semicrossed products

A classical dynamical system consists of a locally compact Hausdorff space
X and a proper continuous map o of X into itself. One is interested in var-
ious questions about how iterations of the map o evolve. The C*-algebra
Co(X) is the obvious operator algebra that encodes X, and one can re-
cover X as the maximal ideal space of Cy(X). The map o induces a *-
endomorphism of Co(X) by a(f)(z) = f(o(z)). This is why we require o to
be proper. Thus there is an action of Z; on Cy(X) by

an(f)(z) = " (f)(x) = f(o"(x)) forn >0,

where ¢” indicates the composition of n copies of o.

In the context of more general operator algebras, we limit our attention to
completely contractive endomorphisms. When A is a C*-algebra, completely
contractive endomorphisms are automatically *-endomorphisms.

Definition 2.1. Let P be a semigroup and let A be an operator algebra.
Let End(A) denote the completely contractive endomorphisms of A. A semi-
group dynamical system (A, a, P) consists of a semigroup homomorphism
a: P — End(A).

When A is a C*-algebra, we call (A, a, P) a C*-dynamical system. When
A is an abelian C*-algebra, it is a classical system. A dynamical system is
said to be unital /injective / surjective | automorphic when each as, s € P, is
unital /injective/surjective/automorphic.

For a C*-dynamical system (A, a, G) over a group G, one builds the uni-
versal C*-algebra determined by the pairs (7,U), where 7: A — B(H) is a
x-representation, U: G — U(H) is a unitary group homomorphism and

mag(a) = Uym(a)Uy; fora € Aand g € G.

The crossed product A X, G is the closure of the trigonometric polynomials
on U, with coefficients from A. The covariance relations show that it doesn’t
make any difference whether the coefficients are taken on the left or on
the right. Moreover this algebra is universal in the sense that whenever
m and U are given satisfying the covariance relations, there is a canonical
«-representation m x U of A X, G into B(H) which restricts to 7 on A and
to U on G. In particular when G is abelian, w x U is faithful if and only if
7 is faithful and the pair (7, U) admits a gauge action {#; : § € G} over the
dual group.

Given a semigroup dynamical system (A, «, P), the goal is to construct
an operator algebra in a similar manner. The best choice of a covariant
representation when P is not a group is less clear because there are several
equivalent formulations in the group setting which yield different results for
general semigroups. The following definition follows from the original choice
of Peters [69], and is arguably the best choice when P is abelian (see [47]).
We will discuss the non-abelian case later in this section.
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Definition 2.2. Let P be an abelian semigroup; and let (A, «, P) be a
dynamical system. A covariant pair (7,T') for (A, «, P) on a Hilbert space
H satisfies

(1) m: A — B(H) is a completely contractive representation of A;
(2) T: P — B(H) is a representation of P as contractions;
(3) m(a)Ts = Tswas(a) for all s € P and a € A (covariance relation).

We call a covariant pair (7,T") contractive/isometric/unitary if the repre-
sentation T" of P is contractive/isometric/unitary.

A semicrossed product is a universal algebra with respect to a class of
covariant representations. Traditionally, semicrossed products have been
defined over all contractive covariant pairs (7, 7). However, as we will see,
it is often worthwhile to consider more restrictive representations of the
semigroup.

Definition 2.3. Let (A, «, P) be a dynamical system over an abelian semi-
group P. Let coo(P,, A) be the algebra with the linear structure of the
algebraic tensor product coo(P) ® A and a multiplication given by the co-
variance relations:

(es®a)(e; @b) = €5yt @ ag(a)b for s,t € P and a,b € A.

Given a family F of covariant pairs for (A, «, P), define a family of semi-
norms on M, (COO(P,a, A)) by

I Z es @ Ag|| = sup {|| Z(Ts ® In)ﬂ(”)(AS)HB(H(n)) (m,T) € F},
seP seP
where A, € M,(A) and A,, = 0 except finitely often. Let N be the set of
elements of coo(P, o, A) with norm 0, which is an ideal. The operator algebra
completion of cyo(P, a, A)/N with respect to this family of seminorms yields
an operator algebra A x7 P called the semicrossed product of A by P with
respect to F.

Note that even if F is not a set, the collection of norms is a set of real
numbers; and the supremum is finite since

I (Te® L)x™ (A <> 114
seP seP
If (7, T) is a covariant pair, then there is a representation 7' x w of coo(P)® A
into B(H) such that
(T x m)(es ®a) =Tsm(a) forallae€ A and s € P.

When (7,T) € F, it is clear from the definition of the seminorms that
this extends to a completely contractive representation of A xZ P, which
is also denoted by T x m. It is routine to select a set R of covariant pairs
(m,T) from F so that for every element of M, (COO(P, a,A)) for n > 1, the
supremum is obtained over the set R. Then we can form the representation
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p= Z%T) cr T xm. 1t is easy to verify that this yields a spatial completely
isometric representation with respect to this family of seminorms. So we
have defined an operator algebra structure on A x7 P.

We define a few classes of covariant representations which we will consider.

Definition 2.4. (i) A x, P is the (contractive) semicrossed product deter-
mined by all covariant pairs of (A4, «, P);

(ii) A xI P is the isometric semicrossed product determined by the iso-
metric covariant pairs of (A, «, P).

One can define other semicrossed products. For example, one can ask
that T' be unitary or co-isometric as well. One can also impose different
norm conditions, such as a row contractive constraint on a set of generators
of P. One can also specify a family of representations such as the family of
Fock representations which we define below.

These choices do not always yield an algebra that contains A completely
isometrically. However we normally seek representations which do contain
A completely isometrically. When it does not, it is generally because the
endomorphisms are not faithful, but the allowable representations do not
account for this. This would happen, for example, if we restricted the co-
variant pairs so that 7" had to be unitary while some o has kernel. The
Fock representations show that the contractive and isometric semicrossed
products do always contain such a copy of A.

Example 2.5 (Fock representations). Let m be any completely contractive
representation of A on H. Let {e; : t € P} be the standard orthonormal
basis for ¢2(P); and define isometries on ¢*(P) by Sse; = es1y. Form a
Hilbert space H = H ® ¢2(P); and define a covariant pair (7, V) acting on
H by

7(a) = diag(ray(a))iep and Vo=1® S;.

Clearly, each V; is an isometry. This is a covariance relation because

T(a)Vs(z @ e) = T(a)(z @ espe) = Tas1i(a)r @ esqy
= Vs(rasyt(a)z @ ep) = ViTas(a)(z @ eq).

Every operator algebra A has a completely isometric representation. There-
fore A sits completely isometrically in A x!¥ P, and thus also in A x4 P.

The commutativity of P is required in these calculations. When P is
not abelian, one can define S5 to be the right shifts Rse; = eys. Then this
does yield a representation of (A, a, P) satisfying properties (i) and (iii) of a
covariance relation. However this produces an antihomomorphism of P into
B (ﬁ ) because it reverses multiplication: RsR; = Rys.

The semigroup Z. We will write (A, aq) instead of (A, o, Z4 ) since the
system is completely determined by o;. When A = Cy(X) and a1 (f) = foo,
we write this classical system as (X, o).
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The isometric semicrossed product was defined by Peters [69] for C*-
dynamical systems (A, «1). Later Muhly and Solel [59] showed that every
contractive covariant representation of a C*-dynamical system over Z, di-
lates to an isometric covariant representation. Therefore Ax,Z, ~ AxSZ,
for any C*-dynamical systems (A, a1). See [61] for a proof avoiding the use
of C*-correspondences. In the commutative case, Peters further showed
that the Fock representation yields a (completely) isometric representation
of A x7Z,. Peters’ arguments can be adapted to the non-commutative
setting (see for example [46, Section 1]).

Peters introduced another important construction. Consider the direct
limit A = lig(An, a1) where each A, = A:

Ay =2 Ay M oA M A .
all ali a1l l&l
Ay -2 Ay M oAy M A

There are canonical maps w, : A, — Z, and their union is dense in A.
The direct limit of the maps a; from A, to itself extends to an injective *-
endomorphism a; of A. In addition, &;(wp(Ar)) = wp—1(An—1). So & has
dense range, and thus is an automorphism. When «; is injective, (ﬁ, a,7) is
an extension of (A, , Z,.). When oy is not injective, (A, &, Z) is an extension
of the injective quotient system (A/R,, &, Z4) where R, = U, ker o, is the
radical ideal of this dynamical system, ¢ is the quotient of A onto A/R,,
and ¢ is the induced system on the quotient.

Peters shows that, for injective C*-systems, A X, Z, sits completely iso-
metrically in the crossed product A Xg Z. He uses this to show that every
isometric covariant representation dilates to a unitary covariant represen-
tation. Thus for injective C*-dynamical systems over Z, , the semicrossed
product A X, Z is completely isometrically isomorphic to the semicrossed
product for unitary covariant relations, A x2" Z,. The non-injective case
was studied by the third author and Katsoulis [49] and the third author
[47]. This requires a dilation to an injective system which we discuss later.

The extension of these identifications to systems over nonselfadjoint op-
erator algebras is more complicated. The third author and Katsoulis [48]
show that whenever a; is a completely isometric automorphism of A, one
gets AxS7Z, ~ AxU7Z,. However the contractive and the isometric semi-
crossed products do not coincide in general. This follows from the coun-
terexamples of Parrott [66] or Kaijser-Varopoulos [77] of three commuting
contractions which do not dilate to three commuting isometries. These ex-
amples yield a contactive covariant relation for (A(D?),id,Z ) which does
not dilate to an isometric covariant relation. This problem is strongly con-
nected to one of the fundamental problems in dilation theory: the existence
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of commuting lifting theorems. The reader is referred to [23] by the first
author and Katsoulis for a full discussion.

There is a fairly general situation where a positive result holds. When
a1 is a completely isometric automorphism of the tensor algebra ’T; of a
C*-correspondence in the sense of Muhly and Solel [59], every contractive
covariance relation dilates to an isometric one. Therefore, Ty xo Zy ~
Ty X57Z.. This was established by the first author and Katsoulis [21] when
’T; is Popescu’s noncommutative disc algebra A,. For general C*-corr-
espondences it was shown by the third author and Katsoulis [48] under
the assumption that o fixes the diagonal of 7'; . In full generality, it was
proven by the first author and Katsoulis [23, Section 12] as a consequence
of commutant lifting. An ad hoc proof of this was later added to the end of
[48].

Spanning cones. We are concerned with what occurs when we replace Z
with other semigroups. A general semigroup is rather pathological; so we
restrict our attention to semigroups that imbed into a group. This requires
that P satisfy both left and right cancellation. For an abelian semigroup,
there is the well known construction of the Grothendieck group; and when
the semigroup has cancellation, this imbedding is faithful. For non-abelian
semigroups, it is more complicated. We discuss the case of Ore semigroups
in section 4.

Definition 2.6. Let G be an abelian group. A unital semigroup P C G
is called a cone. A cone P is a positive cone if PN —P = {0}. A (not
necessarily positive) cone P is called a spanning cone if G = —P + P.

If P is a spanning cone, we define a pre-order on G by g < h if and only
if h— g € P. This makes GG and P into directed sets because if g = —s1 + s9
and h = —t1 + t5 in G are written with s;,t; € P, then one can see that g
and h are both dominated by so + t9. If in addition P is a positive cone,
then this yields a partial order on G. Conversely, given a partially ordered
abelian group G, we obtain a positive cone P :={p € G : p > 0}.

If the partial order on G induced by P makes G into a lattice (i.e., any two
elements a, b in G have a least upper-bound aV b and a greatest lower-bound
a Ab), then (G, P) is an abelian lattice-ordered group.

Let (G, P) be an abelian lattice-ordered group. Write any g € G as
g=—s+twiths,teP. Ifweset gp =t—(sAt)and g- =s— (sAt),
we obtain gy,g- € P with g+ A g— = 0 such that ¢ = —g_ + ¢g+. This
decomposition is unique [39].

Definition 2.7. Let (G, P) be a latticed-ordered abelian group. A contrac-
tive representation T': P — B(H) is called regular if there exists a unitary
representation U: G — B(K) with H C K such that

PuUyly =T} T,

g, forallged.
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A contractive representation 7': P — B(H) is called Nica-covariant if
T, Ty =T;Ts whenever s,t€ P andsAt=0.

The property of Nica-covariance was introduced by Nica [64] in the study
of C*-algebras generated by isometric representations of positive cones of
quasi-lattice-ordered groups. These representations have proven to be of
importance in the theory of crossed product C*-algebras by semigroups, e.g.,
see Laca and Raeburn [55]. In particular when P = Z", Nica-covariance is
equivalent to saying that the canonical generators are mapped to n doubly-
commuting contractions, meaning that ;1) = TT; for ¢ #3.

Let (G, P) be an abelian lattice-ordered group, and let 7" be an isometric
Nica-covariant representation of P. Since T is isometric, Qs := TsT, is a
projection for each s € T'. The property of Nica-covariance guarantees that

QsQt = Qspr forall s,t € P.

Thus isometric Nica-covariant representations represent P not only as a
semigroup, but also as a lattice.

If U: G — B(H) is a unitary representation of an abelian lattice-ordered
group (G, P), then Ulp is clearly regular. Conversely, if U is a unitary
representation of P, then the unitaries automatically x-commute, and the
representation extends to a representation of G' by U_gy¢ = U;U;. In par-
ticular, any unitary representation of P is Nica-covariant.

In some instances, a Nica-covariant representation of P is automatically
regular. For automorphic C*-dynamical systems (A, o, Z" ), Ling and Muhly
[57] show that Nica-covariant covariant representations are regular. The
second author has generalized this result to C*-dynamical systems (A, «, P)
where P = Y7 9 P;, with each P; a positive cone in R [36]. In general, if
(G, P) is an arbitrary abelian lattice-ordered group, it is unknown whether a
Nica-covariant covariant representation of a C*-dynamical system (A, «, P)
is necessarily regular.

Definition 2.8. If (G, P) is a lattice-ordered abelian group, let A x5¢ P
denote the Nica-covariant semicrossed product determined by the regular
Nica-covariant covariant pairs.

Every regular contractive covariant representation dilates to an isomet-
ric representation, and conversely every isometric covariant representation
is regular. So there is no need for a regular semicrossed product. A
regular Nica-covariant (contractive) covariant representation dilates to a
Nica-covariant isometric covariant representation. When (G, P) is a lattice-
ordered abelian group, the Fock representation of Example 2.5 is Nica-
covariant. Therefore A x2¢ P contains A completely isometrically. We show
in [17] that the Fock representations completely norm A x2¢ P.

A first attempt to generalize the one-variable results to spanning cones
was carried by Duncan and Peters [32] for homeomorphic classical systems.
The object under consideration in [32] was the concrete algebra generated
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by the Fock representations by point evaluation maps. We extend their
results to non-commutative C*-dynamical systems in [17].

Finally we mention some generalizations of Andd’s dilation of two com-
muting contractions. Ling and Muhly [57] show that if (A, «, Zi) is a unital
automorphic C*-dynamical system, then every contractive covariant repre-
sentation dilates to a unitary covariant representation. In our language, this
means A X, Z% ~ A x™ Z2. Then Solel [75] established a general result
in the setting of product systems which implies for a C*-dynamical system
(A, a,Z2) that A x, Z% ~ AxB7Z2.

Free semigroups. Let ;| be the free semigroup on n generators. Since this
semigroup is finitely generated, one can define variants of the semicrossed
product while maintaining the action on the left as in the abelian case.
These semicrossed products were first considered by the first author and
Katsoulis [22] for classical systems over F”! and Duncan [31] who identifies
these classical semicrossed products with a free product of simpler algebras.

Definition 2.9. Let (4, a,F,") be a C*-dynamical system. A left covariant
family (m,{T;}1"_,) of (A, o, F;}) consists of

(1) m: A — B(H) is a *-representation;

(2) T; € B(H) and ||T;]| <1 for 1 < i < n;

(3) Tim(a;(a)) = w(a)T; for every a € Aandi=1,...,n.

The reason this does not quite fit the rubrik of Definition 2.2 is be-
cause items (ii) and (iii) are incompatible. The homomorphism « of F7
into End(A) is determined uniquely by the family {a;}, namely a,,(a) =
QO - .0, (a) for w = igig. .. 0, € F7. Thus we often write this system
as (A,{a;}" ;). One can also uniquely extend {7;} to a homomorphism
T of F% into B(H) by T, = T;,T;, . .. T;,. However the covariance relation
doesn’t work out as one might expect. One must use the anti-automorphism
that sends w to its opposite word w = iy ...%;. The covariance relation can
now be expressed as w(a)Ty = Ty mayw(a). (Alternatively, one could save
(iii) by defining T, to be T3, T, , ...T;, instead. So (iii) now holds; but the
map from w to T, would be an antihomomorphism, and so (ii) would fail.)

Definition 2.10. Let (A4, {a;}! ;) be a C*-dynamical system.
(1) The free semicrossed product A xq F'} is the semicrossed product
algebra with respect to all left covariant contractive families.
(2) The tensor algebra T (A, «) is the semicrossed product algebra

with respect to the row contractive left covariant contractive families
(m, {T}7,), satisfying ||[T} ... T[] < 1.

The tensor algebra is indeed a tensor algebra in the sense of Muhly and
Solel [59] associated to a natural C*-correspondence. The following theo-
rem was proved in the classical case by the first author and Katsoulis [22,
Proposition 6.2]. The general case was proved by the authors in [17]. The
dilation of each T; can be described as an explicit Schaefer type dilation.
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Proposition 2.11. [17] Let (A, {a;}} ) be a C*dynamical system. Then
every left covariant contractive family dilates to a left covariant isometric
family.

In the classical case, it is also shown in [22] that every row contractive
covariant family dilates to a row isometric covariant family. In particular,
as in Example 2.5, the Fock representations using the right shifts R; on
H=H® (2(F7) are row isometric. This shows that the C*-algebra A is
faithfully represented inside both A x,F’t and the tensor algebra 7 (A, ).

Other nonabelian semigroups. The theory of semicrossed products over
non-abelian semigroups is considerably less developed. The work on the free
semigroup is the main exception. As noted in the free semigroup situation,
the left covariance relations lead to an antihomomorphism of P into B(H).
This can result in the multiplication rule on cgo(A, o, P) failing to be asso-
ciative. Another solution is needed. There is further discussion of this in
[17]. Instead one can use the right variant of the covariance relation.

Definition 2.12. Let P be a semigroup; and let (4, «, P) be a dynamical
system. A right covariant representation of (A, «, P) on a Hilbert space H
is a pair (m,T) such that

(1) m: A — B(H) is a completely contractive representation of A;

(2) T: P — B(H) is a representation of P as contractions;

(3) Tsm(a) = was(a)Ts for all s € P and a € A (right covariance rela-

tion).

We call a covariant pair (7,T) contractive/isometric/unitary if the repre-
sentation T of P is contractive/isometric/unitary.

A semicrossed product can then be obtained in a similar manner.

Definition 2.13. Let (4, «, P) be a dynamical system over a non-abelian
semigroup P. Define cgo(P, o, A), to be an algebra with the linear structure
of the algebraic tensor product A® cgo(P) and a multiplication given by the
right covariance relations:

(a®es)(b®er) =ans(b) ®es for s,t € Pand a,be A.

Given a family F of right covariant representations, define a seminorm on
the matrix algebras M, (coo(P, a, A),) by

1D As@es| =suwp {[| Y7 (A) T @ )| g gy * (7, T) € F},
seP seP

where Ay € M, (A) and A; = 0 except finitely often. The operator alge-
bra completion A(A, a, F), of coo(P,cr, A), with respect to this family of
seminorms is the semicrossed product of A by P with respect to F.

We write (A, «, P), when F is the family of all covariance relations, and
A(A, «,is), when F is the family of isometric covariance relations.
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We write elements of P on the right to correspond with the right co-
variance relations. As before, the supremum is over a set of real num-
bers, even when the family F is not a set; and this supremum is finite
because it is dominated by ) . p ||As]|. Each covariant pair (7,7 in F
yields a completely contractive representation of (A4, «, F), determined by
(mx T)(a®es) =m(a)T,;. Again one can select a set R from F so that the
supremum of the norms is attained over R for every element. The direct sum
of the representations 7w x T over (m,T) € R yields a completely isometric
isomorphism of A(A, a, F), into some B(H).

In the non-abelian case, even being a subsemigroup of a group is not
sufficient structure for strong dilation results. We will show better results
can be obtained for Ore semigroups.

3. Semicrossed products and the conjugacy problem

We will now discuss how semicrossed products can be used to distinguish
between non-conjugate dynamical systems. It is a classical problem to deter-
mine invariants that can discriminate between two inequivalent dynamical
systems. Historically this is the first application of semicrossed products.

The semigroup Z4. First recall what it means for two classical dynamical
systems to be conjugate.

Definition 3.1. Two classical dynamical systems (X, o) and (Y, 7) are said
to be conjugate provided that there is a homeomorphism v of X onto Y
such that 7y = ~vo.

In [44], Hoare and Parry give an example of a homeomorphic classical
system (X, o) such that o and o~! are not conjugate. However, the crossed
product C*-algebras C(X) X, Z and C(X) X,-1 Z are always isomorphic.
Thus, in general, C*-crossed products do not provide a complete isomor-
phism invariant for conjugacy of dynamical systems.

In contrast, semicrossed products have proven to be very useful for this
purpose. Arveson, in his seminal paper [3], constructed a concrete weak-x
closed analogue of the semicrossed product to distinguish ergodic transfor-
mations. Then with Josephson [7], he tackled the norm-closed case and
obtained important partial results.

Example 3.2 (Arveson-Josephson algebras). Let X be a locally compact,
Hausdorff space and let ¢: X — X be a homeomorphism. Assume that
there is a separable regular Borel probability measure m on X such that

(1) mo ¢ << m (quasi-invariance);

(2) m(U) > 0 for all non-empty open subsets U of X;

(3) the set of periodic points P = J,,-o{¢"(x) = 2} has measure zero.

It is noted in [7] that the existence of such a measure m is not automatic.



68 K.R. DAVIDSON, A.H. FULLER AND E.T.A. KAKARIADIS
Let U be the unitary on L?(X,m) defined by

Uf= (%59 Fo e

For f € Cy(X), let L be the multiplication operator Lh = fhon L*(X,m).
The Arveson-Josephson algebra 20(X, ¢, m) is the norm-closed algebra gen-
erated by all finite sums

Lfo +Lf1U+ —I-LfnUn for f; € C()(X)

Note that U satisfies the covariance relation UL;U* = Ly,. Peters [69,
Example IV.10] showed that the Arveson-Josephson algebra is isomorphic
to the semicrossed product C(Xo) Xy, Z-.

Arveson and Josephson answered the conjugacy problem under the as-
sumption that the measure is ergodic and invariant under the homeomor-
phism .

Theorem 3.3 (Arveson-Josephson). Let A(X1, @1, m1) and A(Xa, p2,ms2)
be Arveson-Josephson algebras. Further suppose that ms is ergodic and in-
variant under @po. Then the following are equivalent

(1) (X1,¢1) and (X2, p2) are conjugate.
(2) A(X1,p1,m1) and A(Xa, @2, m2) are isometrically isomorphic.
(3) A(X1,p1,m1) and A(Xa, @2, m2) are algebraically isomorphic.

Peters [69] improved on this by allowing ¢ to be a continuous map of
X into itself, but X had to be compact and there could be no periodic
points at all. Hadwin and Hoover [42], still in the compact case, weakened
the condition on fixed points considerably. In 2008, the first author and
Katsoulis [19] removed all such conditions on the dynamical systems and
proved the following.

Theorem 3.4 (Davidson-Katsoulis). Let X; be a locally compact Hausdorff
spaces, and let o; be a proper continuous map of X; into itself. Then the
following are equivalent:

(1) (X1,01) and (X2,02) are conjugate.

(2) Co(X1) X, Zy and Co(X2) Xg, Zy are completely isometrically iso-
morphic.

(3) Co(X1) Xoy Zy and Co(X2) Xo, Zy are algebraically isomorphic.

An example of Buske and Peters [11] shows that if o is a conformal map
of the unit disc onto itself with a unique fixed point interior to the disc,
and a(f)(z) = f(o(z)) is the induced automorphism of the disc algebra
A(D), then A(D) x4 Z4+ ~ A(D) X4-1 Z4. The results of [19] also deal
with the isomorphism problem for semicrossed products of certain function
algebras in the plane. There is an analogous result to the one above, with
the pathology of the Buske-Peters example being the only obstruction to
conjugacy.
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Now we turn to non-abelian C*-dynamical systems over Z. The appro-
priate notion of equivalence is the following.

Definition 3.5. Two C*-dynamical systems (A, ;) and (B, 1) are said to
be outer conjugate if there is a *-isomorphism v of A onto B and a unitary
v in the multiplier algebra M(A) such that

a1(a) = ady vy 1 B1v(a) = v(y 1 B1v(a))v* for all a € A.

Suppose that (A, ;) and (B, 1) are outer conjugate. Let s and t be
the generators of Zy in A X, Z4 and B xg Z, respectively. As 7 is a *-
isomorphism of A onto B, it extends to a #-isomorphism of their multiplier
algebras. Thus we can define w = v(v*). A computation shows that the
map sending a to y(a) and sa to twy(a) extends to a completely isometric
isomorphism of the semicrossed products A x, Zy and B xg Z,. We are
interested in when the converse is valid.

Semicrossed products often provide a complete isometric isomorphic in-
variant for outer conjugacy of C*-dynamical systems. Muhly and Solel [60,
Theorem 4.1] show that if A = B is a separable C*-algebra, oy and f; are
automorphisms, and one of them has full Connes spectrum, then the semi-
crossed product are isometrically isomorphic if and only if the systems are
outer conjugate. The first author and Katsoulis [20] establish this result
for separable, simple C*-algebras, also when «; is an automorphism. The
methods in both of these papers are more difficult than the following much
more general results due to the first and third authors [18].

Theorem 3.6 (Davidson-Kakariadis). Let (A, a1) and (B, 51) be unital C*-
dynamical systems. Suppose that any one of the following holds:

Qa1 18 injective,

Qa1 18 surjective,

A has trivial centre, (e.g., when A is simple),

A is abelian,

a1(A) N A is finite (no proper isometries).

Then A Xo Zy and B xg Zy are isometrically isomorphic if and only if
(A,aq) and (B, 1) are outer conjugate.

Multivariable systems. A multivariable classical dynamical system is a
locally compact, Hausdorff space X together with a collection o1, ..., 0, of
proper continuous maps of X into itself. For simplicity we write (X, o) for
(X,{0i}}). We say that (X, o) has multiplicity n, := n. Such systems
were studied by the first author and Katsoulis [22].

There are no labels on the maps ¢;. So conjugacy of the two systems
should allow for an arbitrary permutation of the maps by an element of the
symmetric group S,. It is less obvious, but possible in some circumstances,
that one can switch continuously from one permutation to another. This
leads to the following definition.
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Definition 3.7 (Davidson-Katsoulis). Two multivariable dynamical sys-
tems (X, o) and (Y, 7) are piecewise conjugate if there is a homeomorphism
v: X — Y and an open cover {U, : @ € S,,} of X so that

TiVue =V0a(i)lu.  for o € Sp.
The following example illustrates how this can occur.

Example 3.8. Let X =Y =10,1] and n = 2. Let

2x forOSmgé 11—z for0<z <
o1(x) = 1 and o9(z) = 9
1—=x forggxgl 2z —1 forggxg
2x for()gacg%
() =<R1—=x for%ﬁxﬁ% and 7m(zr)= 1—=x for0<z<
20 — 1 for%ﬁxﬁl

Then let Uyq = [0, %) and U9y = (%, 1]. Observe that o1 and 71 agree on
Uq, as do o9 and 19, while o1 and 7 agree on U1) as do o9 and 7. The two
systems ([0, 1], {o1,02}) and ([0, 1], {71, 2 }) are piecewise conjugate, but not

conjugate.

The semigroup that naturally acts here is the free semigroup F’t. The
covariance relations can be expressed in terms of the generators of F’} by

w(f)T; = Tim(f oo;) forall fe Cy(X)and 1<i<n.

Two semicrossed products are considered in that paper, the free semicrossed
product Co(X) x, F} and the tensor algebra 7 (X,o). It appears that
piecewise conjugacy is strongly connected to the structure of these algebras.
The main result of [22] is the following.

Theorem 3.9 (Davidson-Katsoulis). Let (X,0) and (Y, 7) be two multi-
variable dynamical systems. If Co(X) x,F"} and Co(Y') X F} or the tensor
algebras T(X, o) and TH(Y,T) are isomorphic, then (X,0) and (Y,T) are
piecewise conjugate.

In the case n = 1, the converse is easy. The converse remains an open
question for the semicrossed product for n > 2. For the tensor algebra,
the converse has been verified in special cases such as dimX < 1orn <4
[22, 71]. The tensor algebra seems to be easier to work with than other
algebras defined for this kind of system.

This theory of piecewise conjugacy has proven to be useful outside of
operator algebras. Cornelissen [13], and Cornelissen and Marcolli [14, 15]
apply the notion of piecewise conjugacy and Theorem 3.9 to obtain results
in number theory and graph theory. In particular, in [14] they obtain a
group isomorphism invariant for their systems and in [15] they classify
Banach algebras associated to quantum mechanical systems, as in Bost-
Connes-Marcolli systems [9, 41], applied to the reconstruction of graphs. It

1.
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becomes apparent that a converse of Theorem 3.9 is of importance, and it
is established for certain systems that they study.

The problem of the existence of a complete invariant for multivariable sys-
tems was studied in the non-commutative context by the third author and
Katsoulis [50]. They define a notion of piecewise conjugacy for automorphic
C*-dynamical systems in terms of the induced action (/1, &) on the Fell spec-
tra A (see [33] for a useful characterization). A non-commutative version of
Theorem 3.9 is then obtained. Their examination included other algebras,
not all of which are semicrossed products. They include the free semicrossed
product, the tensor algebra, the Nica-covariant semicrossed product Axg°Z’}
and the isometric semicrossed product A x 77, as well as examples formed
by using as a prototype the operator algebras of [26] related to analytic va-
rieties. The following result applies to this general class of algebras, but we
only state it for the two semicrossed products that we have been discussing.

Theorem 3.10 (Kakariadis-Katsoulis). Let (4, «) and (B, ) be automor-
phic unital multivariable C*-dynamical systems. If either the two semi-
crossed products A xoF'y and B xgF'}y or the two tensor algebras T+ (A, )
and TT(B, B) are isometrically isomorphic, then the multivariable systems
(A,&) and (B, ) are piecewise conjugate.

In this generality, a converse does not hold even for n = 1. Kadison and
Ringrose [45] show that there exists a homogeneous C*-algebra A and an
automorphism « of A which is universally weakly inner but not inner. If
the converse of Theorem 3.10 were valid for tensor algebras, then A x,, Z*
and A xiq Z* would be isomorphic and hence would be outer conjugate by
Theorem 3.6. But this would imply that « is inner, a contradiction.

There are other alternatives for extending outer conjugacy from the one
variable case to the multivariable level. Recall that every multivariable
system gives rise to a C*-correspondence X (4, a) [59].

Definition 3.11. Let (A, «) and (B, ) be multivariable C*-dynamical sys-
tems. We say that X (A, «) and X (B, ) are unitarily equivalent when there
is a *-isomorphism v: A — B and a ng X n, unitary matrix [u;;] with
coefficients in M(B) such that

diag{Biv}i2y - [uij) = [uij] - diag{ya;}}2;.

When [u;;] is diagonal up to a permutation, and thus n, = ng, the multi-
variable systems (A, «) and (B, 3) are said to be outer conjugate.

Again the first part of the following theorem is valid for a much wider
collection of algebras associated to the dynamical system.

Theorem 3.12 (Kakariadis-Katsoulis). Let (A4, «) and (B, 3) be unital mul-
tivariable C*-dynamical systems. Suppose that either A is stably finite or «;
and fj are x-epimorphisms for all i,j. Then
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(1) If AxoF% and B xgF"} are isometrically isomorphic, then n, = ng
and the correspondences X (A, «) and X (B, 3) are unitarily equiva-
lent.

(2) TH(A,«) and T*(B, ) are isometrically isomorphic if and only if
the correspondences X (A, ) and X (B, 3) are unitarily equivalent.

This result implies that the tensor algebra is a complete isometric iso-
morphic invariant for unitary equivalence of classical systems. Thus one
way to show that the tensor algebras are a complete isomorphic invariant
for piecewise conjugacy would be to identify the two equivalence relations.
In particular we have the following corollary.

Corollary 3.13 (Kakariadis-Katsoulis). Let (A, «) and (B, ) be two auto-
morphic multivariable C*-dynamical systems and assume that A has trivial
center. Then the following are equivalent:

(1) AxoF} and B xp FTJ{B are isometrically isomorphic.
(2) TT(A,«) and T (B, B) are isometrically isomorphic.
(3) X(A,a) and X (B, ) are unitarily equivalent.

(4) (A,«a) and (B, ) are outer conjugate.

One consequence of the results in [22] and [50] is that isomorphism of the
tensor algebras implies equality of the multiplicities of the systems. How-
ever, the following example from [50] shows that systems with different
multiplicities may have isomorphic tensor algebras. The conjugacy problem
remains open: are the tensor algebras a complete isometric isomorphism
invariant for unitary equivalence in general?

Example 3.14. Let A = B = Oy = C*(s1, s2) be the Cuntz algebra on two
generators, let o = (a1, a2), with ag = ag = id, and let 5(z) = sjxs]+s2xs5,
for all z € Os. Note that § is injective but is not an automorphism. Then
[81 Sg] is a unitary matrix in M; 2(O2) and

aq(x) 0
[ﬁ(az)] [31 32] = [31 32} { 0 ag(:z)] for all z € Os.
Hence the tensor algebras 7+ (A, a) and T+ (B, 3) are completely isometri-
cally isomorphic. However the multiplicities n, and ng are not the same.

4. C*-envelopes of Semicrossed Products

Arveson [4] developed dilation theory to study the representations of
an arbitrary operator algebra. Today, this can be interpreted to mean an
abstract operator algebra in the sense of Blecher, Ruan and Sinclair [8]. At
the time, it meant a subalgebra of a C*-algebra with the inherited matrix
norm structure. He observed that an operator algebra can sit (completely
isometrically) inside a variety of C*-algebras. In the case of a function
algebra A, restriction to the Silov boundary Y yields the minimal C*-algebra
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C(Y) containing A isometrically. The C*-envelope was conceived as the non-
commutative analogue.

Let j: A — C be a completely isometric isomorphism of A into a C*-
algebra C' such that C = C*(j(A)). Then C is a C*-cover of A. The
C*-envelope of A is a C*-cover C!_ (A) = C*(:(A)) of A with the property
that whenever C' = C*(j(A)) is any other C*-cover of A, there exists a
surjective *-homomorphism ®: C' — C¥ ,(A) such that ® o j = ¢.

Whilst Arveson calculated the C*-envelope of many operator algebras
[4, 5], these early papers did not establish the existence of the C*-envelope
in general. He was particularly interested in irreducible representations p of
C*(A) with the property that p|4 has a unique completely positive extension
to C*(A). These are called boundary representations, and they are the ana-
logue of points in the Choquet boundary of a function algebra. Existence
of the C*-envelope was established by Hamana [43]. Hamana’s proof was
extremely significant, but his methods did not connect the C*-envelope to
dilation theory.

In 2001, Dritschel and McCullough [29] announced an exciting new proof
of the C*-envelope that shed new light on this issue. They called a (com-
pletely contractive) representation p of A mazimal if all dilations of p have
the form o = p @ o’. They established that every representation does di-
late to a maximal one, and that the maximal representations have a unique
completely positive extension to a s-representation of C*(A) that factors
through the C*-envelope. Thus the C*-envelope can be obtained by taking
any completely isometric representation of A and dilating it to a maximal
representation p; then C7  (A) = C*(p(A4)).

Their paper did not address the issue of irreducible representations with
this property. Arveson [6] revisited this issue in light of these new devel-
opments, and succeeded in establishing the existence of sufficiently many
boundary representations in the separable case. Arveson’s vision was finally
fully realized when the first author and Kennedy [25] showed that every
operator system has a noncommutative Choquet boundary.

Identifying the C*-envelope of an operator algebra has been a central
problem in dilation theory for the last 45 years. The work of Dritschel and
McCullough [29] focussed attention on the notion of a maximal dilation.
This motivated the third author and Peters [51] to outline a program on
the C*-envelope. For semicrossed products this leads to the issue of di-
lating non-invertible systems to automorphic systems, and connecting the
C*-envelope of a semicrossed product to a C*-crossed product. Such re-
sults imply that the C*-envelope of a semicrossed product is a reasonable
choice for generalizing C*-crossed product constructions to non-invertible
dynamical systems.

C*-envelopes for systems over Z,. The first computation of the C*-
envelope of a semicrossed product was obtained by Muhly and Solel [59,
Corollary 6.9]. They were interested in semicrossed products over Z, as a
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special case of their study of tensor algebras of C*-correspondences. They
established (in somewhat different language) a prototype of the kind of result
we are seeking. They noted that Peters [69] was close to this result in 1984.

Theorem 4.1 (Muhly-Solel). Let A be a unital C*-algebra and let a be a
x-automorphism. Then
C*

env

(AXqZy)~AxyZ.

Peters [70] approached the topic again in 2008, where he studied the C*-
envelopes of semicrossed products of classical dynamical systems over Z, .
His motivation in this work was to explore the relationship between C*-
envelopes of semicrossed products and crossed product C*-algebras. Again,
a strong relationship was found. Let X be a compact Hausdorff space and
let o be a continuous, surjective map on X. From the dynamical system
(X,0,Z4), one can construct a homeomorphic dynamical system (X, o, Z)
as a projective limit:

X2 X< x<Z x<2 .. X

Viewing X as a subset of X and & as a homeomorphic extension of o, Peters
shows that C(X) x4, Z; embeds completely isometrically into C(X) x5 Z.
This leads us to the following result.

Theorem 4.2 (Peters). Let (X,0,Z+) be a dynamical system where ¢ is
continuous and surjective. Then

C*

env

(C(X) Xg Z4) ~C(X) x5 Z,
where (X,5,7) is the system described above.

The system ()~( ,0,7Z) is no other than the minimal automorphic direct
limit extension (X, 0, Zy). It was observed by the third author and Katsoulis
[48] that Peters’ result can be extended to non-classical systems. Soon after
in [49], they treated the general case in the following way. Define the ideal

I=(kera)" ={a€ A:akera={0}};
and let g: A — A/I be the quotient. Let B = A® (A/I ® ¢p), and write a
typical element of B as
b:a0®eo+2q(an)®en for a,, € A.
n>1
Define a *-endomorphism 8 on B by
Blao®@eo+ > qlan) @ en) = afan) @ eo + Y _ qlan—1) ® en.
n>1 n>1

It is not hard to check that this map is injective and dilates . There-
fore (B, f,Z4) is injective and admits a minimal automorphic extension

(§767Z+)'
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Theorem 4.3 (Kakariadis-Katsoulis). Let (A4, «,Zy) be a C*-dynamical
system, and let (B, ,Z4) and (E,E, Z) be constructed as above. Then the
C*-envelope CF, (A xo Zy) is a full corner of B X L.

This result is expressed in the language of C*-correspondences in [49], and
the third author provides an ad hoc proof in [47]. The system (B, 3,Z)
is obtained by “adding a tail” which is reminiscent of the theory of graph
algebras. This idea was first introduced by Muhly and Tomforde [62] to
study non-injective C*-correspondences. However their construction doesn’t
always yield an injective C*-dynamical system [49, Proposition 3.14]. The
third author and Katsoulis [49] show that one can choose from a variety of
tails in order to preserve the appropriate structure of the system.

The semicrossed product of a C*-dynamical system over Z is an example
of a C*-correspondence in the sense of Muhly and Solel [59]. Therefore one
can get the C*-envelope via the Cuntz-Pimsner algebra. This was accom-
plished under certain conditions by Fowler, Muhly and Raeburn [35]; and
was extended by Katsoulis and Kribs [52] to show that the C*-envelope of
the tensor algebra 7'; of a C*-correspondence is the Cuntz-Pimsner algebra
in the sense of Katsura [53]. Therefore the C*-envelope of A x, Z is the
universal C*-algebra generated by isometric covariant pairs (7, V') such that

m(a)(I —VV*) =0 forac (kera)’.

However, this characterization does not provide the association to a C*-
crossed product that we are seeking.

The examination of similar results for systems of nonselfadjoint opera-
tor algebras is trickier, because of the counterexamples of Parrott [66] and
Kaijser-Varopoulos [77]. Since 2008, papers by the first author and Kat-
soulis [21, 24, 23] and the third author and Katsoulis [48] have focused on
the cases where one can calculate the C*-envelope of a semicrossed product
over Z.. These results rely on an old observation of Arveson [4] that every
completely isometric automorphism of an operator algebra A extends to a
s-automorphism of Cf,(A).

env

Theorem 4.4 (Kakariadis-Katsoulis). Let A be an operator algebra and let
a be a completely isometric automorphism. Then

*
Cenv

(AxBZ,)~C:

env

(A) x4 Z.

More generally, if o is a completely contractive endomorphism of A which

extends to a x-endomorphism of C%,,(A), then

Cva(A Xiof Z+) ~ CL (Cy

env ( env

(A) xa Zy).

In particular when « is a completely isometric automorphism of a tensor
algebra 7}", then C} (7}'(|r X Zy) =~ Ox Xg Z.

env
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C*-envelopes for dynamical systems over abelian semigroups. In
contrast to the one-variable case, one cannot generally obtain such uncondi-
tional results for other semigroups. This fails even for trivial systems over Z}
since one cannot dilate three commuting contractions to unitaries [66, 77].
Ling and Muhly’s automorphic And6 theorem [57], mentioned earlier, can
be used to show that if (4, «,Z2) is a unital automorphic C*-dynamical
system, then C} (A4 x Z%) ~ A x, Z2.

One of the first attempts to compute the C*-envelope of a semicrossed
product over more general positive cones is due to the second author in [36].
The semigroups studied there were of the form P = Zfi"l P;, where each
P; was a positive cone in Ry. If G is the subgroup of R" generated by P,
then (G, P) is a lattice-ordered abelian group. Thus it is natural to consider
the Nica-covariant representations of this semigroup. In this instance Nica-
covariant representations of P are automatically regular. The methods in
[36] generalize those developed in [48] to the multivariable context.

Theorem 4.5 (Fuller). Let P = Y"I'¥) P;, where each P; is a positive cone
in Ry. If (A, «, P) is a dynamical system consisting of completely isometric
automorphisms of an operator algebra A, then

Cf (A X" P) o~ CE(A) xq G

env env

For spanning cones of more general abelian groups without a lattice struc-
ture, we have the following.

Theorem 4.6. [17] Let P be a spanning cone of an abelian group G. If
(A, a, P) is a dynamical system consisting of completely isometric automor-
phisms, then

C L (A XB Py~

env

(A) x4 G.

For the rest of this section, we will restrict our attention to C*-dynamical
systems. Peters’ method [70] of creating a homeomorphic extension of a
classical system extend to C*-dynamical systems over spanning cones. This
method has been developed by Laca [54].

Since spanning cones are directed, we can construct the direct limit C*-
algebra A associated to the connecting *-homomorphisms ay: A; — Agiy
for A; := A and s,t € P. For every p € P a *-automorphism «,, is defined
with respect to the diagram

A $'145—&-t H‘fz{

Tk
A 2 As+t - AV

Furthermore the mapping a: P — Aut(A) is a semigroup homomorphism.
Therefore it extends to a group homomorphism of G = —P + P. Thus
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we obtain an automorphic system (ﬁ, a,G), which is called the minimal
automorphic extension of (A, «, P).

When (A, a, P) is injective, the system (ﬁ, a, @) is indeed an extension.
However, as mentioned earlier, the *-homomorphisms of A, into A factor
through the quotient by the radical ideal R, = |J,pker as. Define A=
A/R,. As R, is invariant under each g, this induces an injective dynamical
system (A, &, P).

We will concentrate on the case when (G, P) is an abelian lattice-ordered
group. Because the Nica-covariant representations take into account the
lattice structure of the semigroup, we consider A x2¢ P as the natural semi-
crossed product in this context.

Theorem 4.7. [17] Let (G, P) be a lattice-ordered abelian group, and let
(A, a, P) be an injective C*-dynamical system. Let (A, &, G) be its minimal
automorphic extension. Then

C*

env

(Ax P)~ AxzG.

We can say more when P = Z'}. Note that, in this case, all Nica-covariant
representations are automatically regular. We will be able to remove the
condition that the x-endomorphisms «y are injective. In this case, the C*-
envelope turns out to be a full corner of the crossed product. The first step
is an adding tails method to imbed (A, o, Z7} ) into an injective system. It is
much more complicated than the Z, case. There are many ways to extend
the system to an injective one, but we need to construct a minimal dilation
that will provide the C*-envelope.

We will write 1,...,1i,...,n for the standard generators of Z" . Also write
0=1(0,...,0)and 1 = (1,...,1). For z = (x1,...,2,) € Z%, define

supp(z) = {i:z; #0} and zt = {y € Z" : supp(y) Nsupp(z) = 0}.

For each z € Z} \ {0}, consider the ideal (ﬂiesupp@) ker ai)J‘. We require
the largest ideal contained in this ideal which is invariant for o, whenever
Y€ zt, namely

I, = m a;l(( m kerai)J'>.

yext i€supp(z)

In particular, Iy = {0}, and I, = I; = (ﬂ?:l ker ai)J' for all z > 1.
Define B, := A/, for x € Z" and let ¢, be the quotient map of A onto
B;. Set B=3" zezi@ B,. A typical element of B will be denoted as

b= Z qz(az) ® eg,

zEL
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where a, € A. Observe that I is invariant under o5 when x; = 0. Therefore
we can define *-endomorphisms f5; € End(B) as follows:

1z0i(a) @ eg + gzyi(a) ® egyy i ; =0,
0z(a) ® epyi for z; > 1.

Bi(gz(a) @ eg) = {

It is clear that the compression of (B, 3,Z") to A is the system (A, a,Z7).
So (B, B,Z%) is a dilation of (A, a, Z). Furthermore (B, 3,Z") is injective,

hence it admits a minimal automorphic extension (B, 3, Z").

Theorem 4.8. [17] Let (A, o, Z7) be a non-injective C*-dynamical system.
Let (B, B,Z1) be the injective dilation of (A, o, Z) described above, and let

(B, B,Z™) be the automorphic eztension of (B, 3, Z%). Then C% (Ax2CZT)

env
is a full corner of B Xy .

As a consequence of our methods we also obtain the following character-
ization for the C*-envelope.

Theorem 4.9. [17] Let (A, o, Z%) be a C*dynamical system over ZI}.
Then the C*-envelope of A x3° Z is the universal C*-algebra generated
by Nica-covariant isometric pairs (w, V') such that

m(a) - H (I-WVVi*)=0 forallacl,.
iesupp(z)

Combining this with the works of Sims and Yeend [73], and Carlsen,
Larsen, Sims and Vittadello [12], and with a gauge invariant uniqueness
theorem we provide in [17], we get that the C*-envelope is in fact the Cuntz-
Nica-Pimsner algebra of a relative product system.

Ore Semigroups. One class of non-abelian semigroups with a very useful
structure are the Ore semigroups. They imbed into a group in a special
way. Dilations of actions over Ore semigroups have been studied by Laca
[54] rather successfully. In order to imbed into a group, a semigroup must
be cancellative, meaning that it is both left and right cancellative.

Definition 4.10. A cancellative semigroup P is an Ore semigroup if PsN
Pt # () for all s,t € P.

It was shown by Ore [65] and Dubreil [30] that any Ore semigroup P can
be embedded into a group G such that G = P~'P. Laca [54] shows that
G is characterized by the following universal property: if p: P — K is a
semigroup homomorphism into a group K, then it extends to a (necessarily
unique) group homomorphism of G into K.

Ore semigroups come with an order structure. For s,¢in P, we say s < t if
t € Ps. This ordering directs P, as the Ore property ensures that given s1, so
in P, there is a ¢ in P such that s; <t and sy < t. Therefore a direct limit
A can be constructed with respect to the connecting maps a;: Ay — Ags
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for A; := A and s,¢ in P. Then an automorphic C*-dynamical system
(A, @, G) can be obtained by carefully defining the endomorphisms ;. Let
ws: As — A and define a;, by the rule

apws(a) = wgay(a) when ts = gp, for all a € A.

When « is not injective, (A, @, P) imbeds into (A, &, G) via a quotient by
the radical ideal R, = U ker a.

This construction was first obtained by Laca [54] for injective systems. A
similar construction shows also that an isometric semigroup action V: P —
B(H) of an Ore semigroup P dilates to a unitary group action U: G — B(K)
of the universal group G of P. We obtain the following characterization of
the C*-envelope.

Theorem 4.11. [17] Let (A, a, P) be a unital C*-dynamical system over
an Ore semigroup. Then

Cloe(A(A, Pyis),) ~ A x5 G,
where (E, &, Q) is the minimal automorphic extension of (A, &, P).

The condition that the system is unital is crucial here as it enables us to
use the identity of A as the identity of the semicrossed product. Hence it is
generated by a copy of A and a copy of P.

In the non-unital case we can use a folklore idea to realize this by restrict-
ing ourselves to non-degenerate representations of A. That is, we define
A(Ang, P,is), to be the universal algebra for isometric right covariant pairs
(m, V) such that 7 is in addition a non-degenerate representation of A.

Theorem 4.12. [17] Let A be a unital C*-algebra, and let (A, «, P) be
a (possibly non-unital) C*-dynamical system over an Ore semigroup P.
Let (ﬁ, a,G) be the minimal automorphic extension of (A,a, P). Then
Cr o (A(Ang, P,is)y) is a full corner of A x5 G.

env
Free semigroups. Let (A, «,F;) be a C*-dynamical system over F;. The
calculation of the C*-envelope of A X, ;" depends on the dilation Propo-
sition 2.11. We have the following description of the C*-envelope in the
automorphic case. The key step in the proof is to first dilate the T; to
isometries, and then further extend them to unitaries while maintaining the
covariance relations.

Theorem 4.13. Let (A, {o;}],) be a unital automorphic C*-dynamical
system. Then
Conv(A Xo ) ~ A %o F.

The C*-envelope of a tensor algebra is shown to be the Cuntz-Pimsner
algebra of the relative C*-correspondence by Katsoulis and Kribs [52], ex-
tending Fowler, Muhly and Raeburn [35], who established this for the case
of a faithful and strict correspondence. It can also be associated to a gen-

eralized crossed product that resembles those considered by Paschke [67].
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This procedure for classical systems was carried out by the first author and
Roydor [27]. It was extended to the non-commutative case by the third au-
thor and Katsoulis [49]. Most of these results follow by applying a version
of the “adding tails” technique to imbed non-injective systems into injective
ones.

5. Minimality and C*-envelopes of semicrossed products

Earlier, we argued that the C*-envelope of a semicrossed product is the
appropriate analogue of a generalized group C*-crossed product. This is
partly due to its universal property. It is also due in part to the fact that,
much like C*-crossed products, minimality of a dynamical system can some-
times be detected by the C*-envelope of the semicrossed product. This is a
consequence of the dilation theory, which connects properties of the group
action to properties of the semigroup action.

Definition 5.1. A C*-dynamical system (A, «, P) is minimal if A does not
contain any non-trivial a-invariant ideals.

When P is a group G, this notion of minimality coincides with the usual
one for automorphic systems. Furthermore, when (G, P) is a lattice-ordered
abelian group, a unital automorphic C*-dynamical system (A, a, P) is min-
imal if and only if (A, o, G) is minimal.

We recall some definitions from the theory of crossed products. Let
a: G — Aut(A) be a group homomorphism of an abelian group G. The
universal property of the crossed product implies there is a gauge action of
the dual group G by *-automorphisms which acts on finite sums by

%O Ugag) = {9,9)Ugay.

geG geqG

Consider the conditional expectation E: A x, G — A given by

E(F) = /avg,(F)dg,

and define the Fourier coefficients of an element F' in the crossed product
by E4(F) := E(U_4F).

Moreover, if 7 is an ady«-invariant ideal of A x, G over G, then E4(T)
is an a-invariant ideal of A over G. An ideal Z of A x,, G is called Fourier-
invariant if E4(Z) CZ for all g € G.

Theorem 5.2. [17] Let (G, P) be a lattice-ordered abelian group and let
(A, a, P) be a unital injective C*-dynamical system. Then the following are
equivalent:

(1) (4, a,G) is minimal;

(2) (A,&,G) is minimal;

(3) C

(A X2 P) ~ AxgG has no non-trivial Fourier-invariant ideals.
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With the help of Theorem 4.8, one can remove the hypothesis of injec-
tivity above in the case when P = Z/. The conclusion is the same because
minimality of any of (A,a,Z"%) , (B, 3,Z") or (E,E, Z') implies injectivity
of the system.

Hence, if C%, (A x2° Z7) is simple, then (A,«,Z;) is minimal. The
converse however is false even for n = 1. Indeed let A be any simple C*-
algebra; then (A,id4,Z4) is trivially minimal but A x4, Z = A® C(T) is not
simple. Such systems fail to be topological free, which explains in part why
minimality does not imply simplicity. The classical dynamical systems are
more amenable, and stronger results can be obtained.

Definition 5.3. A classical dynamical system (X, p, P) over a semigroup
P is called topologically free if {x € X : ps(x) # ¢r(z)} is dense in X for all
s,r € P.

This definition is a reformulation of group topological freeness appropriate
for the semigroup context. The following result is obtained by observing
that topological freeness is equivalent to injectivity of the semigroup action,
followed by an application of a result of Archbold and Spielberg [2]. We
will let (X, %, G) denote the minimal automorphic extension of (X, ¢, P).
Note that surjectivity of the maps s is equivalent to the injectivity of the
corresponding endomorphisms.

Theorem 5.4. [17] Let (X, p, P) be a surjective classical system over a
lattice-ordered abelian group (G, P). Then the following are equivalent:

(1) ()N(, @, P) is minimal and @5 # . for all s,r € P;
(2) (X, 9, G) is minimal and topologically free;
(3) the C*-envelope C(X) x5 G of C(X) x5 P is simple.

If (X,p,Z7) is a classical system, then we can drop the hypothesis of
injectivity by applying Theorem 4.8. Again, we can conclude that simplicity
of C(Y) x#Z" is equivalent to the surjective system (Y, 7, Z") being minimal
and topologically free, and it forces (X, ¢, Z) to be surjective.

Added in proof: This article surveys results on semicrossed products
and dynamical systems until its finalization and acceptance in April 2014.
The interested reader should consult the literature for recent developments.
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