| |
|
Julien Bichon, Uwe Franz, and Malte Gerhold
Homological properties of quantum permutation algebras view print
|
|
Published: |
November 14, 2017 |
Keywords: |
Hopf algebras, quantum permutation algebras, Hochschild cohomology, Calabi-Yau algebras |
Subject: |
16T05, 16E40, 16E65 |
|
|
Abstract
We show that As(n), the coordinate algebra of Wang's quantum permutation group, is Calabi-Yau of dimension 3
when n≧ 4, and compute its Hochschild cohomology with trivial coefficients.
We also show that, for a larger class of quantum permutation algebras, including those representing quantum symmetry groups of finite graphs, the second Hochschild cohomology group with trivial coefficients vanishes, and hence these algebras have the AC property considered in quantum probability: all
cocycles can be completed to a Schürmann triple.
|
|
Acknowledgements
This work was supported by the French "Investissements d'Avenir'' program, project ISITE-BFC (contract ANR-15-IDEX-03). We acknowledge support by MAEDI/MENESR and DAAD through the PROCOPE programme.
|
|
Author information
Julien Bichon:
Laboratoire de Mathématiques Blaise Pascal, Université Clermont Auvergne, Complexe universitaire des Cézeaux, 3 place Vasarély 63178 Aubière Cedex, France
julien.bichon@uca.fr
Uwe Franz:
Laboratoire de mathématiques de Besançon, UMR 6623, CNRS, Université Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon cedex, France
uwe.franz@univ-fcomte.fr
Malte Gerhold:
Institut für Mathematik und Informatik, Walther-Rathenau-Str. 47, 17489 Greifswald, Germany
malte.gerhold@uni-greifswald.de
|
|