New York Journal of Mathematics
Volume 23 (2017) 1671-1695

  

Julien Bichon, Uwe Franz, and Malte Gerhold

Homological properties of quantum permutation algebras

view    print


Published: November 14, 2017
Keywords: Hopf algebras, quantum permutation algebras, Hochschild cohomology, Calabi-Yau algebras
Subject: 16T05, 16E40, 16E65

Abstract
We show that As(n), the coordinate algebra of Wang's quantum permutation group, is Calabi-Yau of dimension 3 when n≧ 4, and compute its Hochschild cohomology with trivial coefficients. We also show that, for a larger class of quantum permutation algebras, including those representing quantum symmetry groups of finite graphs, the second Hochschild cohomology group with trivial coefficients vanishes, and hence these algebras have the AC property considered in quantum probability: all cocycles can be completed to a Schürmann triple.

Acknowledgements

This work was supported by the French "Investissements d'Avenir'' program, project ISITE-BFC (contract ANR-15-IDEX-03). We acknowledge support by MAEDI/MENESR and DAAD through the PROCOPE programme.


Author information

Julien Bichon:
Laboratoire de Mathématiques Blaise Pascal, Université Clermont Auvergne, Complexe universitaire des Cézeaux, 3 place Vasarély 63178 Aubière Cedex, France
julien.bichon@uca.fr

Uwe Franz:
Laboratoire de mathématiques de Besançon, UMR 6623, CNRS, Université Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon cedex, France
uwe.franz@univ-fcomte.fr

Malte Gerhold:
Institut für Mathematik und Informatik, Walther-Rathenau-Str. 47, 17489 Greifswald, Germany
malte.gerhold@uni-greifswald.de