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A generalization of Jørgensen’s inequality
to infinite dimension

Liulan Li

Abstract. In this paper, we give a generalization of Jørgensen’s in-
equality to hyperbolic Möbius transformations in infinite dimension by
using Clifford algebras. We also give an application.

Contents

1. Introduction 41
2. Preliminaries 42
3. The main result and its proof 45
4. An application 47
References 48

1. Introduction

In the theory of discrete groups, the following important and useful in-
equality is well known as Jørgensen’s inequality, see [5].

Theorem J. Suppose that f, g ∈ M(R2) generate a discrete and nonele-
mentary group 〈f, g〉. Then

|tr2(f)− 4|+ |tr([f, g])− 2| ≥ 1.

In [4], Hersonsky gave a partial generalization of Theorem J to Möbius
transformations in Rn by using Clifford algebra, which is stated in the fol-
lowing form.

Theorem H. Let f, g ∈ M(Rn) such that f and [f, g] are hyperbolic, and
suppose that 〈f, g〉 is a discrete and nonelementary group. Then

|tr2(f)− 4|+ |tr([f, g])− 2| ≥ 1.
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In [12], Waterman generalized Jørgensen’s inequality to high dimensional
groups and obtained

Theorem WA. Let f , g ∈ M(Rn). If 〈f, g〉 is discrete and nonelementary,
then

‖f − I‖ · ‖g − I‖ ≥ 1
32

.

In [11], Wang also studied the generalization of Jørgensen’s inequality to
hyperbolic Möbius transformations in high dimension, giving the following
generalization of Theorem H.

Theorem W. Let f, g ∈ M(Rn) such that f is hyperbolic and [f, g] is
vectorial, and suppose that 〈f, g〉 is a discrete and nonelementary group.
Then

|tr2(f)− 4|+ |tr([f, g])− 2| ≥ 1.

We refer to [6, 9, 10, 11, 12, 13] for related investigations in this direction.
The main aim of this paper is to establish Jørgensen’s inequality in the

infinite dimensional case. Our main result is Theorem 3.1, which is a gener-
alization of Theorems H and W and a partial generalization of Theorem J
to infinite dimension. We will state and prove it in Section 3. In Section 4
we will give an application of Theorem 3.1.

2. Preliminaries

The Clifford algebra ` is the associative algebra over the real field R,
generated by a countable family {ik}∞k=1 subject to the following relations:

ihik = −ikih (h 6= k), i2k = −1, ∀h, k ≥ 1

and no others. Every element of ` can be expressed of the following type

a =
∑

aII,

where I = iv1iv2 . . . ivp , 1 ≤ v1 < v2 < · · · < vp, p ≤ n, n is a fixed natural
number depending on a, aI ∈ R are the coefficients and

∑
I a2

I < ∞. If I = ∅,
then aI is called the real part of a and denoted by Re(a); the remaining part
is called the imaginary part of a and denoted by Im(a).

In `, the Euclidean norm is expressed by

|a| =
√∑

I

a2
I =

√
|Re(a)|2 + |Im(a)|2.

The algebra ` has three important involutions:
(1) “′”: replacing each ik (k ≥ 1) of a by −ik, we get a new number a′.

a 7→ a′ is an isomorphism of `:

(ab)′ = a′b′, (a + b)′ = a′ + b′,

for a, b ∈ `.
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(2) “*”: replacing each iv1iv2 . . . ivp of a by ivpivp−1 . . . iv1 . We know that
a 7→ a∗ is an anti-isomorphism of `:

(ab)∗ = b∗a∗, (a + b)∗ = b∗ + a∗.

(3) “¯”: ā = (a∗)′ = (a′)∗. It is obvious that a 7→ ā is also an anti-
isomorphism of `.

We refer to elements of the following type as vectors:

x = x0 + x1i1 + · · ·+ xnin + · · · ∈ `.

The set of all such vectors is denoted by `2 and we let `2 = `2
⋃
{∞}. For

any x ∈ `2, we have x∗ = x and x̄ = x′. For x, y ∈ `2, the inner product
(x · y) of x and y is given by

(x · y) = x0y0 + x1y1 + · · ·+ xnyn + . . . ,

where x = x0 + x1i1 + · · ·+ xnin + . . . , y = y0 + y1i1 + · · ·+ ynin + . . . .
Obviously, any nonzero vector x is invertible in ` with x−1 = x̄

|x|2 . The
inverse of a vector is invertible too. Since any product of nonzero vectors is
invertible, we conclude that any product of nonzero vectors is invertible in
`. The set of products of finitely many nonzero vectors is a multiplicative
group, called Clifford group and denoted by Γ.

Definition 2.1. If a matrix g =
(

a b
c d

)
satisfies:

(1) a, b, c, d ∈ Γ
⋃
{0},

(2) 4(g) = ad∗ − bc∗ = 1,
(3) ab∗, d∗b, cd∗, c∗a ∈ `2,

then we call g a Clifford matrix in infinite dimension; the set of all such
matrices is denoted by SL(Γ).

Let

I =
(

1 0
0 1

)
, g−1 =

(
d∗ −b∗

−c∗ a∗

)
.

Obviously, gg−1 = g−1g = I, that is, g−1 is the inverse of g. By a simple
computation, we know that SL(Γ) is a multiplicative group of matrices.

For any g = ±
(

a b
c d

)
∈ SL(Γ), the corresponding mapping

g(x) = (ax + b)(cx + d)−1

is a bijection of `2 onto itself, which we call a Möbius transformation in
infinite dimension. Correspondingly, the set of all such mappings is also a
group, which is still denoted by SL(Γ).

Now, we give a classification of the nontrivial elements of SL(Γ) as follows:
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• f is loxodromic if it is conjugate in SL(Γ) to
(

rλ 0
0 r−1λ′

)
, where

r ∈ R\{±1, 0}, λ ∈ Γ and |λ| = 1; if λ = ±1, then f is called
hyperbolic.

• f is parabolic if it is conjugate in SL(Γ) to
(

a b
0 a′

)
, where a, b ∈ Γ,

|a| = 1, b 6= 0 and ab = ba′; if a = ±1, then f is called strictly para-
bolic.

• Otherwise we say f is elliptic.

Definition 2.2. For g =
(

a b
c d

)
∈ SL(Γ), we define the trace of g as

tr(g) = a + d∗.

For a nontrivial element g =
(

a b
c d

)
∈ SL(Γ), if b∗ = b, c∗ = c and

tr(g) ∈ R, then we call g vectorial.
For the trace, we have the following result (see [8]).

Lemma 2.3. Let g =
(

a b
c d

)
∈ SL(Γ). Then Re(tr(g)) is invariant under

conjugation.

The following two lemmas come from [8].

Lemma 2.4. g =
(

a b
c d

)
∈ SL(Γ) (c 6= 0) is hyperbolic if and only if

tr(g) ∈ R, tr2(g) > 4 and c ∈ `2. If g is hyperbolic, then the two fixed points
of g are

u, v = −1
2
(c−1d− ac−1)± 1

2
c−1((a + d∗)2 − 4)

1
2 .

Lemma 2.5. g =
(

a b
0 d

)
∈ SL(Γ) (b 6= 0) is hyperbolic if and only if

tr(g) ∈ R, tr2(g) > 4 and b ∈ `2. If g is hyperbolic, then the two fixed points
of g are ∞ and −b(a− d)−1.

Definition 2.6. For a subgroup G ⊂ SL(Γ), we call G elementary if G has
a finite G-orbit, that is, there exists a point x ∈ `2 such that

G(x) = {g(x)|g ∈ G}
is finite; otherwise, we call G nonelementary.

We say that G is discrete if g, f1, f2, · · · ∈ G and fi → g imply fi = g for
all sufficiently large i. Otherwise, G is not discrete.

Lemma 2.7. Let f ∈ SL(Γ) be not elliptic, and let θ : SL(Γ) → SL(Γ) be
defined by

θ(g) = gfg−1.
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Suppose that there exists n such that θn(g) = f , then the group 〈f, g〉 gen-
erated by f and g is elementary.

Proof. Define g0 = g and gn = θn(g). So for some m ≥ 0,

gm+1 = gmfg−1
m .

Suppose first that f is parabolic. Since f has exactly one fixed point,
we may assume that f(∞) = ∞. As g1, . . . , gn are conjugate to f , they
are each parabolic and so have a unique fixed point. Thus if gr+1 fixes ∞,
then so does gr, where r ≥ 0. As gn(= f) fixes ∞, we deduce that each gj

(j = 0, 1, . . . , n) fixes ∞. This shows that 〈f, g〉 is elementary.
Suppose now that f is loxodromic and the two fixed points of f are x and

y. Clearly, g1, . . . , gn each have exactly two fixed points. Now suppose that
gr+1 fixes x and y (as does gn): then

{x, y} = {gr(x), gr(y)}.

Since gr cannot interchange x and y for r ≥ 1, we know that if gr+1 fixes x
and y, then so does gr for r ≥ 1. It follows that g1, . . . , gn each fix x and
y. This shows that f and g leave the set {x, y} invariant and so 〈f, g〉 is
elementary. �

3. The main result and its proof

Now we come to state and prove our main result.

Theorem 3.1. Let f, g ∈ SL(Γ) such that f is hyperbolic and [f, g] is vec-
torial, and suppose that 〈f, g〉 is discrete and nonelementary, then

(3.1) |tr2(f)− 4|+ |tr([f, g])− 2| ≥ 1.

Proof. By Lemmas 2.4, 2.5 and 2.3, we know that tr(f) ∈ R, and tr(f)
and tr([f, g]) are invariant under conjugation. Without loss of generality,
we may assume that

f =
(

τ 0
0 τ−1

)
, g =

(
a b
c d

)
,

where τ > 0 and τ 6= 1. Let κ denote the left side of relation (3.1) and
suppose that (3.1) fails. Then

(3.2) κ = (τ − τ−1)2(1 + |bc|) < 1.

We let

g0 = g, gm+1 = gmfgm
−1, gm =

(
am bm

cm dm

)
, m = 0, 1, . . . .
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Then, we have

am+1 = τamdm
∗ − τ−1bmcm

∗,(3.3)

bm+1 = (τ−1 − τ)ambm
∗,

cm+1 = −(τ−1 − τ)cmdm
∗,

dm+1 = τ−1dmam
∗ − τcmbm

∗,

bm+1cm+1
∗ = −(τ−1 − τ)2(1 + bmcm

∗)bmcm
∗.

Let f : [0,+∞) −→ [0,+∞) be defined by

f(x) = x(1 + x)(τ−1 − τ)2.

Let r = (τ−1 − τ)−2 − 1. It is obvious that f(x) is an increasing function
on [0,+∞) such that f(x) ≤ x on [0, r]. It follows from (3.2) that |bc| < r.
The above facts and relations (3.3) show that

|bm+1cm+1
∗| ≤ f(|bmcm

∗|) ≤ · · · ≤ fm+1(|bc∗|) ≤ |bc∗|,
|bm+1cm+1

∗| ≤ (τ−1 − τ)2(1 + |bmcm
∗|)|bmcm

∗|
≤ (τ−1 − τ)2(1 + |bc∗|)|bmcm

∗| = κ|bmcm
∗|,

|bm+1cm+1
∗| ≤ κm+1|bc|.

So
lim

m→∞
bmcm

∗ = 0, lim
m→∞

amdm
∗ = 1.

The above relation and (3.3) imply that

lim
m→∞

am = τ, lim
m→∞

dm = τ−1.

Now
|b−1

m bm+1| = |(τ−1 − τ)am
∗| → |τ(τ−1 − τ)| <

√
κτ.

So for sufficiently large m, we have∣∣∣∣ bm+1

τm+1

∣∣∣∣ ≤ √
κ

∣∣∣∣ bm

τm

∣∣∣∣ .

It follows that ∣∣∣∣ bm

τm

∣∣∣∣ → 0.

In a very similar way, we get that

lim
m→∞

cmτm = 0.

It follows that
lim

m→∞
f−mg2mfm = f.

Since 〈f, g〉 is discrete, we must have g2m = f for some m. By Lemma 2.7,
〈f, g〉 must be elementary, which violates the assumption. The contradiction
shows that κ cannot be less than 1. �
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Remark 3.2. Theorem 3.1 is a generalization of Theorem B in [4] and the
corresponding result in [11].

4. An application

For fr =
(

ar br

cr dr

)
, where ar, br, cr, dr ∈ Γ ∪ {0} and r = 1, 2, define

‖fr‖ =
√
|ar|2 + |br|2 + |cr|2 + |dr|2,

‖f1 − f2‖ =
√
|a1 − a2|2 + |b1 − b2|2 + |c1 − c2|2 + |d1 − d2|2.

Then

Lemma 4.1 ([7]). For any U =
(

a b
−b′ a′

)
∈ SL(Γ) (U is called unitary),

g =
(

α β
γ δ

)
, we have ‖g‖ = ‖gU‖ = ‖Ug‖, where α, β, γ, δ ∈ Γ ∪ {0}.

Lemma 4.2. Let f ∈ SL(Γ) be hyperbolic. Then

‖f − I‖2 ≥ 1
2
|tr2(f)− 4|.

Proof. Since ‖f − I‖ and tr2(f) are invariant under conjugation by unitary
transformations by Lemmas 2.3, 2.4, 2.5 and 4.1, without loss of generality,
we may assume that

f =
(

u 0
0 u−1

)
,

where u > 1. By a simple computation, the conclusion follows. �

Lemma 4.3. Let f, g ∈ SL(Γ) be hyperbolic such that [f, g] is vectorial.
Then

‖f − I‖2 · ‖g − I‖2 ≥ |tr([f, g])− 2|.

Proof. Since the two sides of the above inequality are invariant under con-
jugation by unitary transformations, we may assume that

f =
(

u 0
0 u−1

)
, g =

(
a b
c d

)
,

where u > 1. By computation, we see that

[f, g] =
(

ad∗ − u2bc∗ (u2 − 1)ab∗

(u−2 − 1)cd∗ da∗ − u−2cb∗

)
, |tr([f, g])− 2| = (u− u−1)2|bc∗|,

‖f − I‖2 · ‖g − I‖2 = [(u− 1)2 + (u−1 − 1)2][|a− 1|2 + |b|2 + |c|2 + |d− 1|2].
Therefore, we have

‖f − I‖2 · ‖g − I‖2 ≥ (u− u−1)2|bc| = |tr([f, g])− 2|. �

We will use Theorem 3.1 to prove
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Theorem 4.4. Let f, g ∈ SL(Γ) be hyperbolic such that [f, g] and [g, f ] are
vectorial. If 〈f, g〉 is discrete and nonelementary, then

‖f − I‖ · ‖g − I‖ ≥
√

2− 1.

Proof. Let x = min{|tr2(f)− 4|, |tr2(g)− 4|}.
We first suppose that x ≤ 2

√
2− 2. By assumptions and Theorem 3.1,

|tr2(f)− 4|+ |tr([f, g])− 2| ≥ 1, |tr2(g)− 4|+ |tr([g, f ])− 2| ≥ 1.

Therefore, by Lemma 4.3, we have that

‖f − I‖2 · ‖g − I‖2 ≥ |tr([f, g])− 2| ≥ 1− |tr2(f)− 4|,
and

‖g − I‖2 · ‖f − I‖2 ≥ |tr([g, f ])− 2| ≥ 1− |tr2(g)− 4|.
Thus,

‖f − I‖2 · ‖g − I‖2 ≥ 1− (2
√

2− 2) = (
√

2− 1)2.
Now we suppose that x ≥ 2

√
2− 2. By Lemma 4.2, we have

‖f − I‖2 ≥ 1
2
|tr2(f)− 4|, ‖g − I‖2 ≥ 1

2
|tr2(g)− 4|.

We hence know that

‖f − I‖2 · ‖g − I‖2 ≥ 1
4
|tr2(f)− 4||tr2(g)− 4| ≥ (

√
2− 1)2. �
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