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ABSTRACT. A small geometric invariant is a nonnegative integer invari-
ant associated with a 3-manifold whose value is bounded above by the
Heegaard genus of the manifold.

Craggs has studied techniques to detect for a given 3-manifold M3,
whether the double 2M = Bd(M, x [—1, 1]) bounds a 4-manifold N that
has the same 3-deformation type as the complement of the interior of a 3-
ball in M and has a handle presentation with, in some sense, a minimal
number of 1-handles. Here, M, is obtained from M by removing an
open ball. He exhibits a pair of surgery obstructions, whose vanishing
is sufficient for the existence of this type of 4-manifold N and minimal
handle presentation.

We show that for the double of one of the Boileau—Zieschang mani-
folds, there is a certain handle presentation which, in the absence of the
obstructions studied by Craggs, is reducible to this minimal number of
1-handles and we provide an explicit construction. For this case, the
question of the existence of a minimal handle presentation is reduced to
a study of the obstructions defined by Craggs.
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1. Introduction

A geometric invariant of a 3-manifold is a geometrically defined measure
which remains the same across the homeomorphism class of a manifold. The
Heegaard genus of a manifold is one such example.

Craggs [3] studies a geometric invariant for 3-manifolds M defined by
considering certain 4-manifolds N bounded by the double 2M of M. He
looks at handle presentations of N with handles of index at most 2, and
takes the minimum number of 1-handles over all such presentations. This
minimum number is bounded above by the Heegaard genus of M and so is
a small geometric invariant.

It is known that the rank of the fundamental group of an arbitrary 3-
manifold M3 and its associated Heegaard genus do not always agree. In
particular, the manifolds of Boileau and Zieschang [2] make up a collec-
tion of 3-manifolds for which the Heegaard genus is 3, but the rank of the
fundamental group is 2. See also Schultens and Weideman [11].

There have been efforts to show that for a given 3-manifold M, the 4
manifold N = M, x [—1,1] has a minimal 2-handle presentation, where the
number of 1-handles is determined by the formal 3-deformation properties
of M,. Here M, is the result of removing the interior of a 3-ball from M.

Craggs [3] uses the extended Nielsen genus en(M) of the base manifold
M as a measure of the potential minimum number of 1-handles in any
handle presentation associated with an appropriate 4-manifold N bounded
by 2M. The extended Nielsen genus of a 3-manifold is bounded above by the
Heegaard genus of the 3-manifold, and in the case of the Boileau—Zieschang
manifolds it is less than the Heegaard genus. Thus, the extended Nielsen
genus is a small geometric invariant that is sometimes less than Heegaard
genus.

Craggs defines handle presentations for certain 4-manifolds bounded by
the double 2M of M to be minimal if the number of 1-handles is equal
to the extended Nielsen genus en(M) of M. The geometric realization of
en(M) as the number of 1-handles in a minimal handle presentation for M
associates in a natural way a pair of framed surgery obstructions {£, 7} in
a cube with handles. If these obstructions are always trivial, then minimal
handle presentations always exist, and they provide a new small geometric
invariant that is generally not equal to Heegaard genus.

We examine the thesis that one member of the Boileau—Zieschang family
bounds a 4-manifold with a minimal handle presentation. In this paper,
we construct a 4-manifold of the form M, x [—1, 1] whose associated handle
presentation exhibits an algebraic simplicity which agrees with the extended
Nielsen genus of M.
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Some of the material here is taken from the author’s Ph.D. thesis at
the University of Illinois, Urbana-Champaign. The author wishes to thank
Professor Robert Craggs for his help in directing the thesis and to a referee
for numerous helpful comments on a previous version of this paper.

1.1. Notation and conventions. Let K = [, e, be a finite connected
CW complex with characteristic maps ¢, : D" — K. Here D" is a topo-
logical ball of dimension n such that ¢, | Int(D™) is a homeomorphism onto
€a, With ¢o(Bd(D™)) € K" 1, where K" = |J{eq | dim e, < n} denotes
the n-skeleton of K.

An elementary n-expansion K ' L is defined for L = K Uy D", where f
attaches to K all of the boundary of D", except one open (n — 1)-cell. An
elementary n-collapse is the inverse of an elementary n-expansion, denoted
as K\ L.

We work in the PL category. For a piecewise linear 3-manifold M3, a
Heegaard decomposition of M3of genus n is a triple, (M; H,.J), where M =
H U J and H and J are handlebodies of genus n with H NJ = Bd(H) =
Bd(J). The genus of the decomposition is the genus of the handlebody J.
The Heegaard genus of M3, hg(M?3), is the minimum value of n obtained
over all Heegaard decompositions of M?3.

The manifold M3 exhibits the structure of a CW complex with cells iden-
tified with the piecewise linear cells of M in a piecewise linear cell decom-
position of M. Every cellular decomposition of M? with one O-cell and one
3-cell defines a Heegaard decomposition of M3. Taking M \ N where N is a
regular neighborhood of the 1-skeleton of M results in a handlebody whose
genus is the number of 1-cells in the decomposition.

The cell complex obtained from a Heegaard decomposition of genus n
provides a handle decomposition of the form

M3 =n"U [Oh} U [Oh?] Uk
i=1 j=1

where hfn is a three dimensional handle of index [, [ = 0,...,3 and n is the
genus of J.

3
If K is a 2-complex, a formal 3-deformation of K, denoted K "\, L, is a
sequence of polyhedra K = Kg — K; — -+ — K, = L, where K; — K;
results from an expansion () or collapse (Y\,) of a piecewise linear cell of
dimension at most three. A complex K is collapsible if K \, {x} where {x}
denotes a O-cell of K.

1.2. Presentations and extended Nielsen equivalence. Let X be a
finite set and R a set of words on X. A group G is defined by the sets X
and R if G = F/N, where F is the free group on X and N is the normal
subgroup of F' normally generated by R. A presentation P = (X | R) for
G consists of the ordered sets X = {z! | i = 1,...,m}, the generators
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of P, and R = {r1,r9,...,m,}, the defining relators of P. A presentation
P = (X | R) presents a group G if G is isomorphic to the quotient group,
F/N where F is the free group on the generators x1,xa,...,2Zm,, and N C F
is the smallest normal subgroup containing R. The group presented by P
is said to be finitely presented if there exists a presentation in which both
X and R are finite sets. The rank of the group G presented by P, rk(G), is
the minimum number of generators m for X = {z1, z,..., 2y} required to
present G.
For a 3-manifold M3, let K = K2 in M3\ B3 be defined by

n P
K=¢"U [Ue}] U [U 6?]
i=1 j=1
in which e® is a k-cell for k = 0,1,2 with characteristic maps ¢~ : D¥ — K.
Associated with K is a group presentation of the form
Py = (x1,22,...,2n | T1,72,...,7p)
where each generator z; is obtained from a 1-cell of K in K\ T(K) for

some chosen maximal tree T'(K). For each relator r; there is a 2-cell e? and

a characteristic map (ﬁ? : D? - K where qﬁ? | 0D? reads a word rj in the
symbols x1,x2,...,%,.
A geometric presentation associated with K is a presentation

Py = (z1,22,...,20 | 1,72,...,7p)
where r; reads the attaching map ¢;(Bd(e?)) C K. The reduced presentation
for P = (x1,29,...,2y | T1,72,...,7p) is defined to be

|P| = (z1,22,...,2Zn | S1,52,...,5p)

where P is a presentation and s; = |r;|, where |r;| denotes the freely reduced
form of r;. The reduced presentation associated with K is defined to be

|Pr| = (x1,22,..., 25 | 51,52,...,5p)

where Pk is the geometric presentation associated with K and s; = |ril,
where |r;| denotes the freely reduced form of r;. In this case, we will also
write |Px | = (x1,22,...,2pn | |r1],|72],- -+ ,|7p|) to denote the corresponding
abstract presentation with freely reduced relators.

Given a presentation P = (z1,x2,...,%,|r1,72,...,7p), ONe May con-
struct a presentation P’ obtained from P by a finite sequence of elementary
extended Nielsen operations:

(1) For some 1 < j < p, add or delete the trivial relator zz~! or z~ 'z
in r;, leaving 71, unchanged for k # j.
or some 1 < j < p, replace r; with r; ", leaving 7, unchanged for
2) F 1<j< lace 7 with 7!, leavi hanged f
k+#j.
(3) For some 1 < j < p and some 1 < k < p, replace r; with r;rj, where
k # j, leaving r; unchanged for ¢ # j.



ON SMALL GEOMETRIC INVARIANTS OF 3-MANIFOLDS 387

(4) For some 1 < j < p, replace r; with w_lrjw, where w is an element

in F(x1,x9,...,zy,), leaving r; unchanged for k # j.
(5) For an automorphism, « : F(z1,22,...,2,) — F(x1,29,...,25),
replace rj with a(r;) for j =1,...,p.

(6) Add z,41 to the set of generators and rp;1 = zp41 to the set of
defining relators.

(7) Remove x,, from the set of generators and the relator ry = z,, from
the set of defining relators, when both occur and z,, appears exactly
once among the relators.

Two presentations P and P’ which are related by a finite sequence of
extended Nielsen operations are said to be extended Nielsen equivalent,
P = P'. Tt is well known that if P ~ P’ then P and P’ present the same
group. The extended Nielsen operations can be shown to generate a subset
of the Tietze transformations for groups that accounts for all Tietze II oper-
ations. The extended Nielsen genus of a presentation P, denoted en(P), is
defined to be the minimum number of generators in any presentation which
is extended Nielsen equivalent to P.

If K is a 2-complex, the extended Nielsen genus of K, en(K), is defined
to be en(Pk), where P is the standard reading of a presentation from a
2-complex K. For a 3-manifold M3, the extended Nielsen genus of M3,
en(M?3)is the extended Nielsen genus of any 2-spine of M3. See Brown [1],
Kreher and Metzler [8], Young [15] and Wright [14] on the equivalence of ex-
tended Nielsen equivalence and formal 3-deformation in both the polyhedral
and the CW categories. These results imply that en(M?3) is well-defined.

1.3. Historical remarks. Suppose that M3 is a 3-manifold with 2-com-
plex spine K, having a geometric presentation Pg. It is known that

rk(M) < en(M) < hg(M).

Haken [6] and Waldhausen [12] conjecture that rk(M) = hg(M) for all
3-manifolds M. M. Boileau and H. Zieschang [2] exhibit a collection of
Seifert 3-manifolds for which 2 = rk(m (M)) < hg(M) = 3, providing a
counterexample to the conjectures of Waldhausen and Haken.

In an explicit calculation, Montesinos [9] exhibits an extended Nielsen
equivalence between a geometric presentation for (M, *) and a presenta-
tion P| that has 2 generators and 2 relators establishing that en(M;) < 2.
Here, M; is one of the family of manifolds exhibited by Boileau and Zi-
eschang. That en(M;) > 1 follows from the the fact that rk(m(M;)) <
en(M;) . Therefore, when combined with the previous results we have that

2 =en(M;) =rk(M;) < hg(M;) = 3.

The following definitions come from Craggs [4]. Given a sequence of
polyhedra K = Ky - Ky — --- — K, = L, where K; — K;y; is an
expansion or collapse of a piecewise linear cell, if there is some polyhedron
X (usually a manifold) such that K (i) C X for each ¢, then one says K
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deforms to L in X. If M is a manifold and K and L are in the interior
of M, then K deforms to L in M means that K and L have isotopically
embedded regular neighborhoods.

Craggs [4] studies the question, for which 2-complexes K in a 3-manifold
M do the corresponding 2-complexes K x {0} € M x [0,1] 3-deform in
M x [0, 1], keeping 1-skeletons fixed, to a 2-complex L C M x [0, 1] so that
the associated presentation Pj is obtained from the presentation Pg by
freely reducing relator words? He addresses the following: If M, 3-deforms
in M, x [—1,1] to a 2-spine complex L such that |Pr| has m 1-cells and k
2-cells reading generators, does L 3-deform in M x [—1,1] to a 2-complex
with m — k 1-cells?

A related question as to whether the 2-complex K x {0} C M, x [—1,1]
3-deforms in M, x [—1, 1] to a 2-complex L having at most en(K) 1-cells has
been addressed by Craggs [4] concerning the family of manifolds {M,}7 ;.

Material necessary for later calculations is contained in the following sec-
tions. Section 1.4 describes the basic objects involved, the singular disk sys-
tems. Section 1.5 reviews material on singular systems with an admissibility
requirement on the collection of singular disks in the system. Admissible
systems provide a connection between modifications of singular systems and
3-deformations in M, x [—1,1].

1.4. Singular disk systems. The definitions and results which follow con-
cerning singular and admissible disk systems are due to Craggs.

Definition 1.1. A singular disk system in H is a pair (D, g) where

n
D:Um
=1

is a finite disjoint union of disks and g : D — H is a proper map such that:
(1) g~ (BA((H))) C BA(D).
(2) The singular set of g is a finite collection of proper disjoint arcs
U{Ai,, Ai, } such that each pair corresponds to a transverse double
arc intersection.

A singular system is said to be ordinary if g is nonsingular.

Figure 1 illustrates a singular disk system consisting of the 2-cells D =
Dy U Dy. The map g : D — H identifies the arcs A; C Dy and Ay C D5 in
the image.

1.5. Admissible disk systems.

Definition 1.2. A singular system (D, g) in H is said to be an admissible
system if there exists a continuous map € : D — {—1,0,1} such that:
(1) The map (g,¢) : D — H x [—1,1] defined by (g,¢)(z) = (g(z), €(x))
is an embedding.
(2) If a given disk D; € D contains a singular arc, then e(D;) # 0.
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(DA)<ij> A

o 9(A)=0(A) .

w(y S
Bd(H) e

FIGURE 1. Singular disk system.

The quantity €(D;) is called the label of the disk D;. We will write
¢i = €(D;) and place D' = (g(D;),e(D;)). In particular, if a singular disk
system (D, g) becomes an admissible disk system with the addition of some
map € : D — {—1,0,1}, then the admissible system will be denoted by the
triple (D, g, €).

In an admissible disk system (D, g,€) in H, there is a natural partition
of the 2-manifold D into three disjoint submanifolds: D%, D~ and D°,
corresponding to those disks in D for which € = 41, —1, 0 respectively.

Suppose (M; H,J) is a decomposition where (D, g,¢) and (D', ¢’,€') are
two admissible singular disk systems on H. Then (D', ¢, €') results from
(D, g,€) by an admissible sequence of operations if (D' ¢',€') is obtained
from (D, g,€) by a finite sequence of the following operations and their in-
verses:

(1) (Bookkeeping): Replace (D, g,€) with the system (D', ¢, €¢') where
h : M — M is a homeomorphism that takes H onto itself and
g =goh.

(2) (Lewvel Switch): For Df = (g(D;),e(D;)) where g | D; is nonsingular,
replace €(D;) by ¢ (D;) € {-1,0,1}.

(3) (Full Isotopy): Let hy : Hx I — H be an isotopy such that hg = 1.
Replace (D, g, €) with the system (D', ¢, €) where ¢ = hj o g.

(4) (Split Isotopy): Replace (D,g,€) with the system (D', ¢’,€) where
for some isotopy hy : H x I — H and n € {—1,1} the following
condition holds:

g | Di=(h1og)| D;if e(D;) =nand ¢ | D; = g|D; for e(D;) # .

(5) (Admissible Disk Slide): Replace (D, g, €) with the system (D', ¢', €’)
by sliding g(D;) over g(Dy) along an arc /3 where, considered as a
singular system, (D', ¢’) results from (D, g) by a slide of g(D;) over
g(Dy) and either €; = € or at least one of these quantities is 0.

(6) (Stabilization): Replace (D, g,¢€) with the system (D”,g",€”) where
D C D" and g = ¢” | D. In this operation, D"\ D = B? is a
nonsingular disk containing a properly embedded arc 8. Let N be
a regular neighborhood of § in H C (M;H,J) and delete one of
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the two components of B2\ 8 to produce the system (D", ¢",€") on
(M; H',J"), where the genus (H') = genus(J’) = genus(J + 1).
There is a natural association via Craggs [4] between admissible systems
and 2-complexes in M, x [—1, 1], in which each admissible operation induces
an extended Nielsen transformation of the corresponding 2-complex group
presentation.

2. Algebraic co-k-collapsibility

In this section, a property of the words {rq,r2,...,7,} which are associ-
ated with a presentation of a collapsible complex K is examined. A form
for the relators associated with a collapsible complex is presented in terms
of the associated presentation.

The remainder of this section is taken from Whitehead [13]. In what
follows, G = F(x1,x9,...,2,) is a free group, W (x1,xa,...,x,) is a word
on the symbols X = {z1,22,...,2,} U {a:l_l,xgl, ...,x;1} and 2 and y are
elements of X.

Definition 2.1. An elementary transformation on a word
W =W(xy,x2,...,2,)

is either an insertion into W or a deletion from W of a pair of successive
letters of the form zx~! for x € X.
Definition 2.2. A simple transformation of the first type on a set of words
{W1,..., W} in G is a replacement of the form z — zy and =1 — y =1z}
for each occurrence of x or 27! in {Wy,...,Wi}. A simple transformation
of the second type on a set of words {Wy,..., Wi} C G is an elementary
transformation applied to some word in {W1,..., Wy}.

A simple transformation on a set of words {W1,..., Wy} C G is either a
simple transformation of the first or second type.

Definition 2.3. A simple set of words is a set {Wh,..., Wy} of distinct
words derived from an independent set of generators {xi,x2,...,2,} by a
sequence of simple transformations.

The following results on simple sets and simple transformations will be
used in later sections.

Lemma 2.4. If {Wy,..., Wy} is a simple set of words on X, then every
subset is also a simple set. Also, if k < n, any simple set {W1,..., Wi} may
be extended to a simple set {Wy,..., Wy}.

Given a simple transformation, say x; — x;x; of the first type, there is
an associated automorphism of G. For fixed i, j, 1 <4, 5 < n, ¢ # j and for
all k # i define the map «;; : G — G by

aij(zi) = ix;

aij(zg) =z, k#1
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For a word W = z{'z? ...z in G, extend a;; to W € G by defining

i1 %o 1
ij(W) 2 aijj(wi,) " oy (2i,)? - oo ()

Associating the simple transformations with automorphisms of G applied to
the set of words {W7,..., Wi} in this way yields the following result.

Theorem 2.5. The collection {Wy,..., Wy} is a simple set of words on
the generating set X if and only if the elements of W correspond to an
independent set of generators in some automorphism of G.

2.1. Algebraic collapsibility. Consider the 2-complex K

K=y [Ull U [O;]

i=1 j=1
in which ef is a k-cell for k = 0, 1,2 together with the characteristic maps

[¢]

¢k . DF — K where ¢F | D¥ is a homeomorphism onto €.

For i = 1,...,n let x; be the generator associated with eil. Then for
7 =1,...,p, the attaching map associated with the 2-cell ejz yields a word
r; on the symbols X = {z1,22,...,2,} U {:cl_l,xgl, el o

Let Px = (x1,%2,...,%pn | 71,72,...,7p) be the geometric presentation
associated with K and suppose that K collapses to a 2-complex K (1) by an

e

elementary collapse. In particular, suppose that K \, K (1) by a collapse
across the 1-cell e} which removes the 2-cell e whose associated reading is
given by r;. Denote the resulting geometric presentation associated with
K (1) in terms of Px by writing

PK(l) = <§71,$2,. RN 79 ’ fl,?”g,. . .’I”p>

where 7 indicates the removal of quantity x.
Corresponding to the elementary collapse K N\, K (1) across the 1-cell e},
the set of words {ry,r2,...,7r,} in Pk has the following properties:

(1) The symbol ;1 or ;! occurs exactly once in the relator r;.
(2) For 2 <j <p, no rj contains an occurrence of x1 or xl_l.

In the case where K N, {x} the set of words {ri,r2,...,7,} in Px will be
called an algebraically collapsible set of words. In Section 2.2, the case where
K L for a subcomplex L C K is examined.

To formalize this situation, we introduce the following terminology.

Let W be a collection of words on {x1,x9,...,2,} U {xl_l,xgl, R el S
For each 1 <i <mn, let v; : W — Z be the function defined by setting v;(r)
equal to the number of occurrences of {x;ﬂ} inreWw.

We will use the following subscript notation for a nonempty set of words
{ri,ra,...,rp} on the set X. For A: {1,...,p} = {1,...,p} an element of
the symmetric group S, let (j) denote the image under A of the element
Jj € {1,...,p}. That is, define (j) = A(j) for A € S,. For the set of
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generators {z1,x2,...,xp} and for i € {1,...,n} let [i]| = T'(i) for T € S,
be the image of ¢ under I'.

With these conventions, the notation v};(r(;)) refers to the number of
occurrences of the generator z}; in the word r(;) under some pair of permu-
tations A and I' as defined above.

Definition 2.6. An ordered collection of words {ry,rs,...,7,} on
X ={z1,22,...,2,} U {xl_l,a:Q_l,...,a:le

is called algebraically collapsible if after free reduction, there exist permuta-
tions I' € S,, and A € §,, such that

1 fori=yj
vl (r(j)) = {

0 fori < j.

A presentation P = (z1,29,...,&y | r1,72,...,7y) is called algebraically
collapsible if {r1,re,...,r,} is an algebraically collapsible collection of words
on X.

In general, we will assume that when given a collection {ri,ra,...,7r,}

of words, any free reduction is performed prior to testing the collection by
Definition 2.6.

Example 2.7. The collection of words {ri, 72,73} on generators {1, x2, 3}

given by the assignments r1 = 1, ro = l'l_liﬁg.%'% and r3 = .%'2.1‘1_1 is alge-

braically collapsible. Let I' = (1 3) € S3 and A = (1 2 3) € S3. Then

vpy(ray) =1, vpy(re) = vp)(re) =0

Vi (r2)) =1, vy(rs) =0

I/[3] (T(g)) =1.
Theorem 2.8. Let {r1,r9,...,r} be a collection of words on the alphabet
X. Then {ri,ro,...,rn} is algebraically collapsible if and only if there exist
I'e S, and A € S, where I'(j§) = [j], A(i) = (i) such that

TG = uix[iﬂlfui 1<i<n

where U; = ui(m[iJ’,l}, oo 7517[71}) and V; = vi(x[i+l], ‘e ,x[n])

Proof. Suppose {ry,re,...,r,} is algebraically collapsible. Then there exist
I'e S, and A € S, so that

1 i=j .
() = 1<i,j<n.
l/[z](r(])) {0 Z<j SLJsn
For 1 < i < n, y(ry)) = 1 so that r(;) is of the form 7 = uﬂ:[i]ilvi
where U; = ui(x[l], .. .,f[i], e ,:c[n]) and V; = ’Ui(xm, ey ,SAU[Z-], e ,a:[n])
Since v, (rg)) = 0 for m = 1,...,i — 1 then w; = ui(z}j41),--.,7},)) and
Vi = Ui(x[i+l]7 s 73:[71])
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(<) Suppose {ri,ra,...,rn} is given along with A € S,, and I € S, so

that r;) = ui:z:[ji:]lvi for u; = wi(wpq1y, ..., Tp) and v = V(@] -, T
1 <4 < n. Apply the counting function v, for i =1,...,n to obtain

L i=y .
’/[i](’“(j)):{o i< 1<i, j<n.

This implies {ry,...,r,} is algebraically collapsible on {x1,z2,...,2,}. O

In general, I' and A are not unique. For example, the collection of words
{r1,...,m,} on the set of generators {z1,x2,...,2,} where r; = z; for j =
1,...,n is algebraically collapsible for every I' = A € S,,.

Let F(z1,x2,...,xy,) be the free group on {z1,x2,...,z,}. Suppose that
{r1,7r2,...,m} is a collection of distinct words on F. Recall from Theo-
rem 2.5 that {ry,r,...,r,} is a simple set of words if each word r; corre-
sponds to a generator x; under some automorphism o : F' — F . In the nota-
tion of Definition 2.6 this is equivalent to the statement that {ry,rs,...,r,}
is a simple set of words if there exist I' € S, and A € S, so that o(x;)) = r(;
fori, 5=1,...,n.

Lemma 2.9. Suppose that r is a word on X of the form r = ux{v where u
and v are words on the set of generators X \ {x;, x; *Yand ¢ = £1. Then
there exists an automorphism o : F — F such that

u_lxgv_l j=1 .
o(z;) = . j=1...,n.
j J# i
Proof. Let r = uz;v where u and v are words on X \ {z; Uz; '}. Suppose
that .
_ Cs s ROPRU
u=z; 7 "ty
€r €p €ry_ Er
V=Tt et T Xt
For £ = 1,...,s, consider the simple transformation of the first type

defined by x; — acl_:l’“ x;. By the remarks following Theorem 2.4 there is an
associated automorphism \;, : F' — F where

ey, L
N () = 4 e 7T =1
xj Jj#Ei
Define A\, = A, oA\, , 0--- 0\, 0\,. By construction,
U Ty j=1t .
Ap(zjy) = . g=1,...,n.
/ xj jFEi

Similarly, for £ = 1,...,t, the simple transformation of the first type
defined by xz; — xi:z:;,:r’“ may be associated with the automorphism

Pry B = F
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where
Ty, j=1i .
p?”k(x]): Tk . . ]Zla'”an-
xj jFEi
Define pp = Pry © Prg OO Pry. Then
—1 . .
TV ji=i .
pr(z;) = . g=1,...,n.
/ {xj j#Ei
Finally, define 0 = Ap, o pg, so that
—1...—1 N
o(z;) = vy ] Z j=1,...,n.
xj jFEi

In the case r = ux; v where u and v are words on the set of generators
X\ {z; U x;l}, apply the preceding construction to the word v~lz;u™! to
obtain an automorphism o : ' — F' such that

o(x;) = vt J=i j=1 n
j . I Yo,

Then o(z; 1) = (o))" = u e oL O

Theorem 2.10. Suppose that {r1,re,...,r} is an algebraically collapsible
set of words on X. Then there exists an automorphism o : F — F such that
o(wy) = 1) for 1 <i<n.

In particular, if {ri,re,...,mn} s an algebraically collapsible set then
{r1,72,...,r} is a simple set of words.

Proof. Let {ri,r2,...,r,} be an algebraically collapsible set on X. By
Theorem 2.8 there exists I' € S,, and A € S, where (j) = A(j) and
[i] = T'(4), so that r;) = uja:[j;]lvj for each j € {1,...n} where

Uj; = Uj(l'[j+1], v ,l’[n])

Uj = Uj(l’[j+1], . ,l’[n]).

For each i = 1,...n, let 0; : FF — F be the automorphism of Lemma 2.9
defined by

1

uflx['] v Jj=1
oilzp) =4 ¢+ W o jedl,...,n}.
/ {l’m j#i

Define 0 =0, 0---007.
Claim: o(r(;)) = xp;) for j =1,...,n.
Let r(j)y = u;x[jv;, where
uj = uj(Tjq1] - T));

’Uj = Uj(l’[j+1], . ,l‘[n]).
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By construction, o;(u;) = u; and also o;(vj) = v; for ¢ = 1...j. Therefore,
o(r)) =0ono---00j41 0050 001(ujTp V)
=0p 00011005 (ujzpvy)
—=0g,0- -0 JjH(uj(u;lme;l)vj)

=0po0-- OUj+1($[j])

= 2
Then the automorphism o~ ! : {zapy - 2mt = {r@)s- -7y} exhibits
{r@y,--->7n)} as images of the generators {z,..., 7, }. By Theorem 2.5
T(1) -5 r(n)} forms a simple set of words. O
Corollary 2.11. If P = (x1,29,...,Zpn | T1,72,...,74) is an algebraically

collapsible presentation then P is extended Nielsen equivalent to the empty
presentation.

Proof. Let P = (z1,22,...,2y | 71,72,...,7) be an algebraically collapsi-
ble presentation. Then there exists I' € S, and A € S, with vp(r(;)) =1
if i = j and v} (r(;)) = 0 where i < j for 1 <, j <n.

Since P is algebraically collapsible, Lemma 2.10 implies there exists an

automorphism o : F(x1,z2,...,2,) = F(z1,29,...,2,) where o(zy) =ra)
for 1 <i<n.
Then
P={(xy,x9,...,2n | T1,72, ..., n)
< <xm, oo 7'7;[71] ’ 7“(1), e ,T’(n)>
< (Tpps oo Ty L 2ags -5 Tpw)
(|-, 0

2.2. Algebraic co-k-collapsibility. As in the previous section, let

n P
0 1 2
K=eU [U e; | U U ej]
i=1 j=1
and let Px = (x1,22,...,2yn | 71,72,...,7p) be the geometric presenta-

tion associated with K. Suppose that L C K is a subcomplex of K for
which K \, L. In this case, if the corresponding elementary collapses are

across the 1-cells {e},ed, ..., e}pfk} for some k > 0 which remove the 2-cells
{e2,e3,..., eg_ .}, then the corresponding presentation associated with L is
PL = <i‘1,.. .,.ﬁ'p_k,...,l'n | ?31,. . 'af'p—kwrp—k‘-i-l ce ,’I”p>

where k£ < n.

Definition 2.12. A collection of words {rq,72,...7¢} for 0 < k < ¢ on

the letters {x1,z2,...,2,} U {xl_l,xg_l,...,mfbl} for 0 < ¢ < n is called
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algebraically co-k-collapsible if after free reduction, there exists I' € S, and
A € 54 such that
! v=J 1<y, 7 < k
V[Z](T(J))_{O Z<] =1%,)>4—R.

A presentation P = (x1,z2,...,2, | 71,72,...,7p) for p < n is said
to be algebraically co-k-collapsible if {ri,...,7,} is an algebraically co-k-
collapsible collection of words on X.

Lemma 2.13. If {ri,rs,...,rp} is algebraically co-k-collapsible, 0 < k < p,
then there exists a subset of cardinality p — k which forms an algebraically
collapsible set.

Proof. Let {r1,72,...,7,} be algebraically co-k-collapsible with 0 < k < p.
Then there exists I' € S,, and A € S, such that
! 1=J 1<, < k
%Wwﬂ—{o i< <i,j<p—k
From Definition 2.6 it follows directly that {r(,...,7p_k)} is algebraically
collapsible on X. O

Lemma 2.14. Let {ry,r2,...,rp} for p < n be a collection of words on
the generating set X. Then {r1,rs,...,rp} is algebraically co-k-collapsible if
and only if there existI' € S,, and A € S, where I'(j) = [j], A(2) = (i) such
that

TG = uixﬁlvi 1<i<p-—k

where u; = wi(Ti41), - - Tp)) and v; = Vi(Tfq]s -5 Tpn))-

Proof. (=) Let {ry,rs,...,7,} be algebraically co-k-collapsible. Then Lem-
ma 2.13 implies there exists I' € S, and A € S, and an algebraically col-
lapsible subset {r(l), e ,r(p,k)}. Theorem 2.8 applied to this subset implies
the result.

(<) Suppose given {ri,r2,...,7p}, A € S, and I' € S, so that 7 =

uia:[iﬂlvi for u; = ui(xit1), - -, Tpy) and v; = vi(Tga), -5 TY)), 1 <0 < p—k.
Apply the counting function v to obtain
! 1=J 1<4,9< k
%Wﬁﬂ—{o i< <i,j<p—k
Then {rqy,...,7p-ry} C {r1,...,7rp} is algebraically collapsible so that
{r1,...,rp} is an algebraically co-k-collapsible set on X. O
Lemma 2.15. Suppose that P = (x1,22,...,Tpn | T1,72,...,7p) forp <n is

algebraically-co-k collapsible. Then P is extended Nielsen equivalent to
P = (Tlp—g1]s -+ > Tpn) | TZp—k-i-l)’ e ’TEP)>

forT' €S, A €Sy, and words {r’(p_k+1), e rép)} ON AL p—kt1]s -+ - > Tn) } -
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Proof. Let P = (z1,x2,...,2y | 71,72,...,7p) for p < n be algebraically
co-k-collapsible. Then there exists I' € S, and A € S, with vy(r;)) = 1 if
i =j and vp;(r(;)) = 0 where i < j for 1 <4, j <p—k.

By Lemma 2.10 there exists an automorphism o : F' — F where o(r(;) =
() for1<i<p-—k. ForI' € S5, as above we have

(1) P={(x1,22,...,2n | T1,72,...,Tp)

~ (T[] -+ s Tl k]s Tkt 1]s - T | T(1)s -5 T(p—k)s - - - T(p))

R[], - Ty Tlpkit 1] - - -5 )

’ $[1], e ,x[p_k], O—(T(p—k’—i-l))? ce ,J(T'(p)».
Claim
@[)s -5 Tpi), (T ptt1))s - - - (T ()
ST Tk Tl )

where rzi) = réi)(fc[p_kﬂ], s xpy) forp—k+1<4<p.

Proof. We argue by induction on the number of words & in the set

{o(rp—is1)), o))}

If £ =0, then {r,r2,...,7p} is algebraically collapsible on X. Corol-
lary 2.11 implies that Equation (1) is extended Nielsen equivalent to the
presentation

<$[p+1]7 <5 L] |_>

For k > 0, choose o(r(;)) € {0(7(p—k+1)),---,0(r(p)} for some j, where

p—k+1<j<p. For some ac{l,...,p— k} suppose that x, is the first

occurrence in o (r(;)) of a member of {xy, ..., 2k} Then o(ry;)) = uryv
where u = u(2p_j41), - - -, T[p))- From Equation (1) we obtain

@y s @lags s 2], O ptrn))s -, (1)) -, 0 (1))

B (x[l], CTg]y ,x[p_k],a(r(p_k+1)) -5 UT o]V ,0(7‘ ))

< (1’[1],...x[a],...,x[p,k],U(T’(p,kJrl)) a:[a ,0(7“ )

en

~ (T Ty s Tlpek] O (T (k1) )y« + o5 UV, - ,U(T(p))).

Then the number of occurrences of elements of {z[y, ..., z,—x} has been

reduced by one in the word o(r(;)). Continuing for a finite number of such
occurrences results in a word 7"} = 'r;- (x[p_k+1], . ,iL'[n]), which reduces k

by 1. The induction hypothesis then implies the existence of the extended
Nielsen equivalent presentation,

<$[1], .. 'm[pfk]vx[pkarl}? “oey x[n} ‘ xm, e ,x[p,k],r2p7k+1), e ’sz)>

which in turn is equivalent to

en

~ <x[p—k’+1}7 cen ,x[n} ‘ T2p7k+l)7 ce 7T(p)>
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such that {sz—k;—i—l)’ ... ,rEp)} are words on {Zp,_g41];- - - ) }- O

3. Computation of the 2-handle presentation

We adopt the following terminology concerning minimal handle presenta-
tions [3].

Definition 3.1. Let M? be a 3-manifold and let N be a 4-manifold with
Bd(N) =2M. A minimal handle structure for N (relative to the boundary
2M) is a handle presentation for N of the form

en(M) q
—_ 10 1 2
H=h"uU |J hulJh,
i=1 j=1

where:

(1) H has one 0-handle and en(M) 1-handles.
(2) If Ky is a 2-complex associated with #, then Ky formally 3-deforms
to M,.

We establish a partial result in support of the following conjecture:

Conjecture 3.2 ([3]). Let M be a 3-manifold. Then there exists a 4-man-
ifold N with boundary 2M, and there is a minimal handle presentation for

N.

Details concerning the manifold M; are discussed in the following section.

Recall that en(K) is the minimum number of generators on the presen-
tation Px which is achievable by formal three deformations on K, whereas
en(M3) is the minimum number of generators in any 2-complex L which 3-
deforms to a 2-complex spine K of M?3. Here, en(Px) = en(K) = en(M?3).
We consider the problem of reducing the number of 1-handles in M, x[—1, 1],
to obtain a handle presentation of M, x [—1,1] for which the number of
1-handles is strictly less than hg(M?)for one of a family of manifolds intro-
duced by Boileau-Zieschang.

4. The manifolds of Boileau—Zieschang

Recall that a presentation P for a three manifold group 71 (M) is said to
be geometric if there is a 2-spine K of M,, so that P is the presentation
given by

P=Pg=(x1,29,...,20 | 71,72, ,Tn)

where r; reads the attaching map ¢;(Bd(e?)) C K. The Heegaard genus of
a 3-manifold M? is defined as the minimum number of 1-handles geometri-
cally realizable in any Heegaard decomposition of M?3. For each 1-handle in
a Heegaard decomposition, there is a free generator in a geometric presenta-
tion for 71 (M). This implies that a lower bound for the number of 1-handles
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in M3 in any Heegaard decomposition is given by rk(m(M)). That is, if
M3 is a 3-manifold, then

(2) rk(mi (M?)) < hg((M)).

Boileau and Zieschang [2] exhibit a family of manifolds {A/;}:°; for which
the inequality (2) is strict, that is

Theorem 4.1 ([2]). There exists a family of 3-manifolds {M;}5°, such that
foralli>1,
2 = 1rk(m(M;)) < hg(M;) = 3.
The proof of the theorem proceeds by exhibiting particular Heegaard
decompositions of genus 3 and reducing the number of generators to 2 by
algebraic techniques. A discussion of this occurs in Montesinos [10].

One member of this family will be denoted throughout the rest of this
paper as M;. A geometric presentation for Mj is given by Montesinos as

(3)  Pap = (w1, 20,73 | x3z1230] ", woxy taow ) (w3mexy b3 (o h)?).
Using the given presentation for 7; (M), the following theorem [10] verifies
that the extended Nielsen genus of M5 is 2, so

(4) 2 =rk(m (M1)) = en(M;) < hg(M,;) = 3.

The derivation following the statement of the next theorem is included for
reference. It is referenced in Section 5 to calculate a handle presentation for
M, x [-1,1] whose associated presentation is algebraically co-2-collapsible.

Theorem 4.2 ([10]). Let M; be the manifold of Boileau—Zieschang with
presentation Py, as given above. Then the extended Nielsen genus of Pyr,
15 2.
Proof. Let r = xgwlxgxl_l and r9 = xgxflxgxfg. Then,
(r1, 79, (w3waay ') (wazy 1)?)
“13(T1’T2»($3$2$f1)3($2$f1)2($2$f1) “%a})

1.1 -
1,72, L3T2X] ajg(x3 T3 T )Tal] aﬁgxgxl)

28

-1 1, .13
1,72, L3T2T3 $1 xo(xy "wixy " y)T] $3x2x1)

1
1,72, L3T2T3 w2 :1:12:3(:63 x] x3 xl)mxl)

08 8

8

1,72, T3T2Ts a;2 xgxlxl(xlxg a:lxz ):cgajl)

28

3, -1 -3 1\, 4
71,72, T3TaT5 Ty wa3Tire (207 :UQ:L‘I )z7)

28

~
(
(
(r1,72, x3T25 :E2 1x1m3 (mgmf XT3T1)T1T2T1)
(
(
(r1,79, T3T223 Ty :1:33:21‘%(3;1 Toxy xgxl D)
(

28

1,72, 2] (T2320m5 Tyt 1323)).
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Substituting into Py, , we obtain

Pur, = (w1, 29, 73 | m3ziazseyt, moy wea?, (x3waxy 1)3 (wax)?)

en -1 -1, -3 -1 —1,.—1,. . 2y—1
~ (T, @2, 3 | X3T1T3X] T, XXy ToT] ", T]  (XoT3ToTs Ty T3T3) )

~ (9, x3 | wg(xgnggxglxz_lmgxg)*1w3(x2w3x2x§1x51x3x§),
xg(xgxgxg:zglx;lxgz:g)@(x2x3x2x§1x51x3x§)3>.

So, the extended Nielsen genus of Py, is at most 2. Since the genus must
be at least the rank of the group, it must be equal to 2. O

When inequality (2) is strict for a manifold M3, it follows that no cell
decomposition of M? can result in a 2-spine K having exactly one 0-cell,
k(1 (M3)) 1-cells and rk(m(M3)) 2-cells. From such a spine, a Heegaard
decomposition could be constructed with genus rk(mi(M3)).

Thus, for the Boileau—Zieschang manifold Mf’, Theorem 4.2 yields that

en(M}) = 2 < hg(M)

so that no handle decomposition consisting of exactly one 0-handle, two
1-handles, two 2-handles and one 3-handle exists.

5. A handle presentation for a 4-manifold bounded by 2M,

To obtain information about minimal handle structures for 4-manifolds N
bounded by 2M, we examine handle decompositions of Mj, x [—1, 1] using
a handle calculus for handle presentations with no handles of index greater
than 2.

A handle presentation H is normal if the attaching spheres for the 2-
handles are contained in (9J) x {—0.75,0.75}.

See Craggs [3] for a treatment of normal handle presentations, and Craggs
[4, 5] for material concerning algebraic cancellation, linking obstructions and
the free reduction problems.

Definition 5.1. A normal handle presentation H for a 4-manifold N with
boundary 2M, is algebraically minimal (relative to the boundary 2M.,) pro-
vided:

(1) The handle presentation ‘H has no handles of index greater than 2.
(2) All but en(M,) of the 1-handles can be canceled algebraically.

3
(3) If Ky is a 2-complex naturally associated with #H, then M, ™\, K.

Note that if H is a handle presentation for Mj« x [—1,1] which is alge-
braically minimal, then in the absence of any linking obstructions, Theorem
A, Craggs [5] implies that A is reducible to a minimal handle structure for
M.

The remainder of this section is devoted to establishing an explicit de-
scription of an algebraically minimal handle presentation.
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Theorem 5.2. There exists an algebraically minimal normal handle pre-
sentation H for a 4-manifold N with boundary 2M .

We calculate a handle presentation H whose associated presentation is
algebraically co-2-collapsible. This will imply that H is an algebraically
minimal handle presentation.

Unless stated otherwise, all handle presentations for M, x [—1,1] are
assumed to have handles of index at most two.

We introduce a sequence of admissible operations that will be used ex-
tensively in what follows. Suppose that (D, g) is a singular system with
members including D; and D;. If a push is performed on D; along an arc
B which encounters D; the resulting system may be modeled by an appro-
priately chosen admissible system. Figure 2 illustrates one such possibility.
Here, the arc 3, and the relator paths rp = Bd(Dy) N Bd(J) for k =1, j are
illustrated.

To describe the corresponding operations as an admissible sequence of op-
erations, we introduce the following notation: Let (7;,¢;) denote the relator
curve within an admissible system (D, g, €), that is, let

(ri,€;) = Bd(g(D;, €;)) N Bd(J)

where €¢; € {—1,0, 1} is the label associated with g(D;). Let (r;,€;) — (ri, €})
denote a change of label corresponding to a level change, and denote an
admissible slide of g(D;, €;) over g(Dj, €;) by the notation (75, €) ~ (1}, €;).

The next lemma states that the configuration of Figure 2 may be obtained
entirely within an admissible context.

Lemma 5.3. Suppose that A is an admissible system having (r;, €;) and
(rj,€5) as relators. Let B be an arc joining a point of (r;,€;) with a point
of (rj,€j) and let N be a regular neighborhood of B in Bd(J) which fails
to intersect the other arcs of the system. Then there exists an admissible
system A’ and a sequence of admissible operations taking A to A’ which
result in the configuration given by Figure 2.

Proof. The result consists of calculating a suitable sequence of admissible
operations. Let (1, €;), (1;,€;) and B be given for some admissible system
A.

Begin by stabilizing as indicated in Figure 3 to obtain relators (r,0) and
(r7,0) on the generators y; and ys respectively. Then the label changes

(7’170) — (rhej)u (rk,O) — (rkaei)
allow the nonsingular slides,
(Tj,ﬁj) m (T[,Ej), (Ti,ei) m (rk,ei).

Since the sliding operations leave their respective targets nonsingular, we
may adjust labels again resulting in the pair

(’I"l,Ej) — (7“1,0), (rk,ei) — (Tk,()).
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N ,
\ /
.
1 \

A N

(ri,&)

FI1GURE 2. A singular push as an admissible system.

This situation forms the basis for Step 2, indicated in the upper right hand
corner of Figure 3.

Stabilizing again, we obtain relators (r,,0) and (r,,,0) on the generating
symbols y3 and y4. Set (rg,0) — (rk,€r), where €, # 0 is some choice of
label, and set (r;,0) — (r;, —€x), performing a feeler push along the arc .



ON SMALL GEOMETRIC INVARIANTS OF 3-MANIFOLDS 403

(r,0)

(rj. &)
F1GURE 3. Admissible operations to obtain a singular feeler push.

This allows the following sequence of admissible moves:
(rn,0) = (rn, €x)y (rm,0) = (rim, —€x)
(i, €k) ™ (s €x), (11, —€x) N~ (T, —€k)
(rn,ex) = (10, 0), (rm, —€k) = (rm, 0).

The resulting configuration is illustrated in the lower section of Figure 3
which is the desired result. O

Lemma 5.4. There exists an admissible system A', having the following
properties:

(1) Al is admissibly equivalent to the geometric presentation Py, .

(2) Pyr = (w1, 22, 23,Y1,---,Y92 | T1,72,...,795), where r; is given in
Table 1.

(3) Py is extended Nielsen equivalent to P(My).

Proof. Section 6 contains a derivation of the admissible system A;. Geo-
metric readings are presented at intermediate stages ending in an explicit list
of the relators of the corresponding presentation P4:. Table 1 represents the
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reduced form of this final entry. Each admissible operation induces an ex-
tended Nielsen transformation of the original presentation Pps,. Therefore,

the third part of the lemma follows immediately. O
Table 1: P41 with relators {ry,ra,...,r95}.
0 _ —1
T = T3l fs Lg9 Tq
T% = X9xy Toy
TE = Yi10Ys ?1J1 Ys Yy y171
Ty = Y y317 Y3 Yst Y73 Y1
7’50 = Y ?1J2
e = Yy ) Ya .
0 . — —_
T T gl
s = Ys ) 3/181 Ys .
7“5) = Y22 Y7 Ys5UYs3
Io = Ys
et R | 1
T (g]) = Yo Y7 Ys5Ys3
7"%]0 = Ys )
oz
T2 = Yun 3/91 L .
T3 = Yrr¥Yss Y12 T3 Yq1 Y25 Y10
rd, =
(1]4 3/121 )
715 = 3/151 Y11
e = Y13 ZJ151 .
7"67 = Ya5 T3 Y14 Y16
7%8 = Yuu
9 = T3Y13
¥ 21
Too = Y26 Y19 Y17
7’%1 = Ty Yoo Ys1Ysg Y18
Tao = Yoo
= | 1
Tgr?, = Yps Ys5 Y21 Y19
Toy = 3/231 Yo1 .
T(Q)5 = Yoq T2Ygg Ys1 Yoo
T(2]6 = You .
7“37 = T3Yo3
Tog = 9281 Ya6
7"%9 = Yo7 Y25
T%o = Yo
7111 = Yso Yag
T3 = Y3z Ys3o
7‘?0)3 = Y31 Y29
T34 = Y31

Continued on next page
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Table 1 (continued)

s = Ya Uso
7‘:;% = Y36 Y34
7"%?7 = Y35 YUs3
3g = Yss

o = Vs Y
"o = Yio Yss
ngl = Y39 Y37
Tga = Yszg

7"23 = Ys2 Y40
o= Y U
Tys = Va3 Ya1
7“26 = Y3

7"27 = Yas Yaa
+ _ 4

Tag = y4_81 Yae
49 = Yar Yss
Tgo = Yur

= Y Uss
7";5 = ?/5_21 Y50
Tss = Ys1 Yag
7’%4 = Y5

s = Ysi Uso
7‘;% = Yse Ysa
7"56_7 = Yss Us3
Tsg = Yss

S = Vs Use
rdo = Yeo Yss
7”(51 = Ys9 Ys7
Te2 = Ys

T(G)B = Y2 Y60
i = Yo Yeo
= -1

Tes = Ye3 Ye1
7"86 = Ye3

7“87 = Yo6 Y64
7’(_;8 = Yes Yoo
Teo = Yor Y65
7“90 = Yer

T = Y70 Yes
" = Y1 Yno
T3 = Y71 Yeo
7’94 = Yn

s = Y7i Yr

Continued on next page
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Table 1 (continued)

T;_G = y7_61 Yra
7‘5? = Y75 Y13
s = Yrs

T(7)9 = Y8 Y76
i = Yso Urs
Ts1 = Yr9 Y77
TgQ = Yr9

™83 = Yo Yso
7"34 = Y4 YUs2
Tss = Ys3 Ysi
TgG = Ys3

rey = Yse Ysa
res = ?/§81 Yse
Tsg = Ys7 Yss
7“80 = Yg7

roy = yg_oi Yss
oy = y§21 Y90
ngg = Yg1 Ysg
o4 = Yo1

rls = Iy 371_1 T2 Yo2

Lemma 5.5. The presentation P41y, presents an algebraically co-2-col-
lapsible complex.

Proof. Given Pji(y,) as presented in Lemma 5.4, we claim that the subset
{rs,...,ro5} is algebraically collapsible on {z1, z2,x3,y1,...,Y92}.

To see this, examine Table 2 which presents the relators from Table 1
according to the following convention: The general entry,

(D)7 = varaee e
corresponds to the permutations I' € So5 and A € Sgz so A(i) = (i),
I'(z) = [i]. In addition, inspection of Table 2 demonstrates that u; =
Ui (Z(iq1]s - - -5 Tlo5)) and v; = vi(T[iqq]s -+ -, Tpe5)) for all i = 1,...,93. Lem-
ma 2.14 then directly implies that {ry,...,r95} forms an algebraically co-2-
collapsible set on {1, 2, x3,y1,...,Yo5}- O

Theorem 5.2. Given Mj, x [—1,1], Lemma 5.4 implies that there exists
an admissible system A! representing My, x [—1,1] whose presentation is
given by Py = (x1,x9,23,Y1,...,Y92 | T1,72,...,795). By Theorem 4.2, the
extended Nielsen genus of Pyy, is 2. Therefore, Lemma 5.5 implies that Py:
presents an algebraically co-en(Mj)-collapsible presentation.

From Lemma 2.15 there is an automorphism o : ' — F where o(r(;)) =
x[;], where z[;) is an element of the ordered collection (1, T2, T3, Y1,y .-, Y92)
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for 1 <14 <93, so that

Py = (@1,22,23,Y1,---,Y92 | 71,725 - - T95)
R (@), - xps) | o(r1),0(r2),0(r)), - -, 0(re3)))
~ <95[1]7 - - T[o5] | 7"1#“’2733[1]7 e 733[93]>-

There exists an admissible system A2 for My, x [~1,1] and a sequence of
admissible systems which take A! to A2 having a presentation

Py = <9U[1]7---3?[95] | 7’/1a7“/2733[1],~--733[93]>-

Table 2: Sequence of collapses in order by relator number
and generator.

(1) 7"85 = Iy 971_1 L2 Y92 [21]
(2) rg = Yo Yoo [Y92]
(3) T = Yoo Yss [Y90]
(4) 95 = Yss Use [yss]
(5) 18 = Ugg Usa [yse]
(6) 741 = Yt Yso [ysa]
(7) 95 = Ysa Yso [ys2]
(8) 7”5—;0 = 98_01 Y7 [ys0]
9) 99 = Y Yo [yzs]
(10) 7"7+6 = Y6 Y74 [y76)
(11) 7"(7)5 = Yrs Yr2 [y74]
(12) 755 = Yz Yoo [y72]
(13) 791 = W Yes [y70]
(14) 78 = Yes Yes [Y6s]
(15) 18 = Ygq Yeu [Y6e]
(16) 741 = Yot Yo [Y64]
(A7) 185 = Y Yeo [Y62]
(18) rdy = Yo Yss [Y60]
(19) 18 = Usg Use [Y5s]
(20) 73 = Wsg Usa [ys6]
(21) 185 = w54 Uso [y54]
(22) "’3_2 = Ysa Y50 [ys2]
(23) 8 = W50 Yas [Ys0]
(24) 73z = Vi Yas [y48]
(25) 197 = Wis Yu [Yae]
(26) 7 = Y Vi [Ya4]
27) s = Y Yao [Y42]
(28) iy = Wi Uss [Y40]
(29) ng = ?J?;sl Yae [y3s

Continued on next page
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Table 2 (continued)

(30) 795 = Y36 Yaa [y36)
(31) 795 = s Us [Y34]
(32) 3 = W Uso [y32]
(33) ™ = s Vas [Y30]
(34) 7133 = Wag Yog [y28]
(35) Ty = WYas¥io Y17 [y26]
(36) 7§ = wWioUs Y1 Vs Vs Uiz [y17]
(37) i3 = Yrr¥ss Yz T3 Yar¥as Yo [Y1o0]
(38) To9 = Yoy Yos [y2s]
(39) Tgo = Yor [y27]
(40) 1y = Yiz Un [y41]
(41) ""26 = Ys3 [Y43]
(42) 7’?4 = Y2 [y12]
(43) Ter = Yss Yss [Y53]
(44) 7"(5)8 = Ys5 [ys5)
(45) 11 = Yrg Y77 [y77]
(46) TgQ = Y9 [y79]
47) 8 = s vis Us [ys]
(48) 1y = 952_1 y2_o1 Y61 1'46_91 Y18 [y18]
(49) r3 = Y7 Yeo [Y69]
(50) 7"94 = Yn [y71]
(51) rgy = 96’_31 Y61 [y61]
(52) 78 = Yes [Y63]
(53) 19y = Wy [Y20]
(54) My = s [ys]
(55) 7§ = Yoo Usr YsYsy U3 UL [y1]
(56) T3 = Ys' Yoo [y20]
(57) ng; = Y [y31]
(58) Ty = Ysg Ysr [y37]
(59) 7’22 = Y39 [y30]
(60) 2 = ygus' (3]
(61) r7 = w5 ¥3 Y14 Yie [Y16]
(62) 1y = Yy [Y14]
(63) 749 = Y7 Yss [ya5]
(64) "’go = Y1 [ya7]
(65) T = Uso Ysy [y57]
(66) 7”82 = Ys9 [ys9]
(67) ror = Yrs Yr3 [y73]
(68) ""98 = Yrs [y7s)
(69) 19 = Y Y7 Y3y [ys]
(70) o5 = 92_41 L9 Ygg y8_11 Ya2 [y22]

Continued on next page
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Table 2 (continued)

(71) "’(2)6 = Yu [y24]
(72) 745 = Yo1 Vso [yso]
(73) 7’84 = Yo [yo1]
(74) res = Ys3 Ust [ys1]
(75) 796 = Yss [ys3]
(76) 1 = y! [y7]
(77) i = U35 Yss [yss)
(78) 18 = wuss [y35]
(79) 15 = Yy [y4]
(80) 1§ = yg s [y2]
B1) rh = i v [yo]
(82) 105 = wis Ui [y11]
(83) s = Y3 vis [v15)
(84) 7”?9 = T3Yi3 [y13]
(85) 195 = Yes Yss Ya1 Yio [Y19]
(86) Too = Yot Yos [¥65)
(87) 7"90 = Yer [ye7]
(88) rgg = ?J8_71 Yss [yss]
(89) "’(9)0 = UYsr [ys7]
(90) 733 = Uas U [y21]
(91) 7"(2)7 = Ty 9531 [923]
(92) 753 = Y5 Yag [Y49]
(93) Tg4 = Ys1 [ys51]

Let ‘H be the handle presentation for My, x [—1,1] whose associated pre-
sentation is given by P42. Then with 2 = en(Py1) = en(Py2), and for
3 < j < 95 where r; = r(_g), 7; freely reduces to z; after the change of
basis, so that H is algebraically minimal. O

6. Derivation of an admissible system for M,

This section details a calculation of a 2-complex spine and corresponding
2-handle presentation for My, x[—1, 1] following the derivation of Montesinos
presented in Theorem 4.2. The calculation consists of generating a series of
admissible systems to produce a 2-complex whose associated presentation
is algebraically co-2-collapsible. Plate B1 shows the 2-spine presentation
given by the first equation of Theorem 4.2, and commences by performing
a nonsingular slide. The corresponding reading is recorded below it.

The diagrams which follow Plate B1 represent the effect of the projection
maps

py  Jx{+1} - Jx {0} and
p— : Jx{-1} = J x {0}
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and are presented using an admissible representation. A high resolution
collection of plates is available at [7] in addition to those presented here.

Each diagram is accompanied by a table at each stage of the calculation
which corresponds to the relators of the complex whose presentation is given
by

PTL - <3317$273737yl73/27 <y Yn ‘ 1,72, . -Tn+3>-

where 71 = :nglwgznfl and ro = xgxlxgxfgare the relators of Py, as given
in Equation (3). The generating symbols corresponding to the 1-handles are
taken from the set {x1,x2,x3,91,¥2,...}, where the generators {x1,x9, x3}
correspond to the generators of 71 (M;) and {y1, 92, ...} are introduced by
repeated stabilizations as in Lemma 5.3.

To convey the information associated with the admissible system at each
stage, we adopt the following notational conventions:

(1) If r; corresponds to a 2-handle attachment in J x [$,1], it will be
recorded as rj . Similarly, a 2-handle attachment in J x [—1, —%]
will be recorded as r;” and those nonsingular members of the disk
system will be denoted as 7). In terms of the admissible disk system
structure this implies that rj = (r;,+1), r; = (ri,—1), and r? =
(7",‘, 0) .

(2) The basepoint of each relator curve r; is denoted as ;. This symbol
is located near the line segment denoting the starting position of the
associated reading (the initial segment of r;).

(3) For noninitial segments, the mth line segment of curve r; is labeled
i.m. If 7.k denotes the terminal segment of r;, additionally this
segment will contain the basepoint. When space is available, the
terminal segment may contain the symbols ¢.k and ¢.1 in addition
to the basepoint marker x,. However, the terminal segment and
the segment containing the basepoint are always assumed to be the
same.

(4) The admissible slide construction of Lemma 5.3 is used to realize
2-handle slides geometrically in My, x [—1,1]. Segments which cor-
respond to the demonstration of Theorem 4.2 are underlined as they
are first encountered in the derivation.

The plates which follow have been carefully checked for accuracy. How-
ever, it remains possible that a mislabeled segment or an out of sequence
segment numbering has been overlooked. In this case, the reader should
proceed with the logical indexing that the particular situation calls for.

Reading for Plate B1.
7"? = T3 T3 351_1
9 = a0 a it

) = (zgzpay ! P (agayt)?
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FIGURE 4. Plate B1.

Reading for Plate B2.

_ -1
Tl = T3%1T3Tq
3

ﬁ
o}
|

1 _
Ty $1 Ty $1

—1 —1 —1\—
T3 = (2329 7 )3(952331 )2(1’23311) 295%

Reading for Plate B3.

Ty = 2321 X3 351_1
Ty =g 951_1372 551_3

—142
r3 = (55’35”2551 ) Ty o Ty
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FIGURE 5. Plate B2.

Reading for Plate B4.

7"(1) = T3T T3 $f1
ry =y ay ! Tywy

0 _ -1 —1
T3 =X3TogXy T3lY1 Loy T3YyTgly

+ _ -1
Ty =Ys3Y
- _ -1
Ts =Yg Yy
0 __
e = Y2

0 -1 1 —1y, —1
7"7:(533 L1Tg Ty )2'43
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FIGURE 6. Plate B3.

Reading for Plate B5.

7’(1) = T3 T3 331_1
Tg = Tg wfl Lo xfg

1
T3 = T3 XL Y1 XXy T3YyTody

+_ -1 -1 -1
Ty, =T T3Tg TiY3lY
- -1
Ts =YgYy

0 _

Te = Y2

_o-1.-1 -1
T7 =3 1 Ys
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FIGURE 7. Plate B4.

Reading for Plate B6.
r? = 2X3% X3 xl_l
ry =wpay Ty’

0_ -1
T3 = T3ToYg Y1 Lo Ys Ty T3YyTo Ty

ri = ay ey wyz
TS =Ysys

7"8:3/2

7=y 2yl yy

rd =Yg Ys

Ty =Y7 Ys

10 = Ye

0 _ /.—1 —1_3y, —1
i = (5 @y 1 951)3/7
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FIGURE 8. Plate B5.

Reading for Plate B7.

0_ -1
TP = 321 T3 Xy

ry=myay !t wyay”

0
T3 = T3 ToYg Y1 Ys T3 Yy To Ty

rf =2 agagt wy !
Ts =Yy 312_1

7’8 = Y2

rp=a3t ey

TS =Y Us

rg =y Yy wpwy Yy my
7“(1)0 = Ys

1

0o _ 1.2 -1
11 = X1 Ly T1Yy
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72

72

FIGURE 9. Plate B6.

Reading for Plate BS8.

T3y T3

Tyxy wy )’
=T3Y10T2Ys Y1 Y5 T3Yy Lo Ty
:L‘f1 Ty :1,‘51 T1 Y3 yfl

Ya 3/2_1

3/971 Yo

1 x1—1 y3—1

ygl Ys

vyt yr gy ay ys

Ye

-1,2, -1
Ty Ty T1Yg

L3
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72 72

Fi1GURE 10. Plate B7.

+ 1

T12 = Y11 Yo
|

713 = Y12 Y10
0 _

T4 = Y12

0 _ /. —1 -1 -1 1
7"15—(953 L1 Tg Ty )y

Reading for Plate B9.

r{ = XT3T; T3 :L"fl

Tg = T 951_1 Lo 951_3

T3 = Y102 Yg Y1 Y5 Y4 L2 Ty
=z xiys ;!

_ 1. -1
Ts =YsT1Ty Yo

o_ ,—1
Te =Yg Yo
o_ _—1_ -1
7"7 = .%'3 y3
+_ -1
s =Yg Ys
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13
152
311

Ficure 11. Plate BS.

- -2 -1 -1 -1 2
Tg =%y Y7 Ty TaZy T1Ys5Ty
0 _

10 = Ys

0o _ -1
11 = 29

—1
1Y
o1
12 = Y11 Yo
o111
T3 = Y12 T3 T3 T1Y10
0 _
T14 = Y12

0o _ -1 -1
15 = T3 T1Y11

Reading for Plate B10.

7"(1) =T3T T3 lfl
ry = zpay wywy®
0 _
T3 = Y1022 Yg Y1 Y5 Yy Lo T

-2 2 -1

Ty =21 21Y3Y;
_ -1 -1
Ts =YsT1 Ty Yo

o_ -1
Te =Yg Yo
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152

FI1GURE 12. Plate B9.

0o_ -1 -1 -1
7T =3 Y16 Y3
+ 1

s =Yg Ys

_ =2, -1_-1 -1 2
’r9 =T Yy Ty Toloy TqY5Ty

7"(1)0 = Ys

=y wyyr!

TB = ?J1_11 Yo

i3 =Y T3 T T Y
7“?4 = Y12

s = a3 Y15 21y

+ _ -1
16 = Y13 Y15

- —1
17 = Y14 Y16
0
718 = Y14
0 —1
Ti9 = (T3 T371)Y13
Reading for Plate B11.

7”? = T3x T3 «731_1
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FiGURE 13. Plate B10.

ry = Tyay ! Ty ay”

Tg =Y10Ys Y1 Y5 Y4 T2 Ty
= a2t gyt

Ts =Ygy $1_1 ?Jz_l

7’8 = yg_l Y2

7 =23 Y Yy

r$ =Y 7 s

9 = 351_2 97_1 xfl L1Ys CU?
T?o = Ys

=y wyyr!

7"?2 = iU1_11 Yo

i3 =Y T3 T T i
7“?4 = Y12

0o _ -1 -1
15 = Y15 T1 Y11
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.
134 '
o OOIO O O—=
.
g
:

:
#t &

167,
04
72
194

i3 13

FIGURE 14. Plate B11.

+ _ -1 —1
Ti6 = T3 T3Y13 Y15

- _ -1

17 = Y14 Y16
0 _

18 = Y14

0 _ -1
T19 = T T3%1Y13

Reading for Plate B12.

T(l) =T3%1 T3 3”1_1
ry = zywy wywy
0 _
s = Y10Ys Y1 Ys Y4 Y17 T2 Ty
+_ —2.2 -1
Ty =1 T1Y3H
- 1 -1
Ts =YsT1 2y Yo
0 1
Te = Yo Yo
0_ -1 -1 -1
7 =3 Y16 Y3

1 -1, -1
TS =Yg Ty Y18 U

_ —2,-1_-1 2
Ty =Ty Yy Ty XY



422

PAUL J. KAPITZA

@2

104
T

FIGURE 15. Plate B12.

7’?0 =Ye

W =ay ayyr!
=it v

i3 =Y T3 T T g
7"?4 = Y12

s =y 2y up

= 23" T3y15 Ui
i = Y14 Y16

7"(1)8 = Y14

o = a1 w33y 3
30 = V1o Y17

o = Yoo Yis

7’32 = Y20

0o _ 1.3 -1\ —1
7"23—(431932 L1y )ylg
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.
p— e ®©

2

15
152
22

FIGURE 16. Plate B13.

Reading for Plate B13.

7’? = T3 T3 *731_1
rS = Tq ml_l To ml_3
0 _
T3 = Y10Ys Y1 Y5 Y4 Y17 X1

rf = atysyt
s :y4$1$flygl
e =Yy Yy
= Y6 Y3
re =Y Yig Us

=3, -1, -1 3
Tg =T Yy Ty T1Ys27

1

10 = Ys
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FIGURE 17. Plate B14.

™1 = xz_l y7_1

=y v

iy = Uip T3 T Yo
14 = Y12

7"?5 = ZU1_51 Ty ZU1_11

e = yis Y15

ry=ay ey Y vie
T?S = Y14

7"?9 = T3T1 Y13

3 = Yig Y7

U |
To1 = T2 Y0 Y18
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FIGURE 19. Plate B16.
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0 __
T22 = Y20

0 _ -1,3, -1
T3 = T1 Ty T1Yqg

Reading for Plate B14.

7”(1) = Z3%1 T3 xfl

7“8 =29 acl_l To ac1_3

Tg =Y10Ys Y1 Y5 Y1 Y1721
=z’ gy !

_ -1 -1
Ts =Yg T1T1 Yo

7"8 = y§1 Yo

) =y vs

s =y Uis Us

re =27 Yon Y7 Lyt ay ys 4t
7"(1)0 = Ys

7“(1)1 = 332_1 ?J7_1

T2 = yﬁl Yo

T3 = 3/1_21 95:;1 9'31_2 37% Y10
7’(1]4 = Y12

s = Y15 1Y

ris = Y13 Yis

rr =0 may yg v
7”(1]8 = Y14

7“(1]9 = T3T1 Y13

"3 = Yig Y17

To1 = 37; ?/i)l Y18

7”(2]2 = Y20

s = oy 25 Yo 3 Yig
T5r4 = yz_:),l Y21

To5 = 342_41 Yoo

7"36 = Y24

0o _ -3 —1y, —1
7“27—(952% Lo Ty )?Jzzs
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Reading for Plate B15.
r) =31 7y xfl
ry =, 3«"1_1 ) 331_3

0
s = Y10Ys Y1 Y5 Y4 Y1721

ri‘ = 331_3 :v:f Ys xl_B x‘;’ yl_l
vy =Yy
7’8 = yg_l Yo
=Y Uz |
+ -1

-3 1 1 -1 3
Tg =21 Yoo Y7 L1 T1Ys T

0 _

10 = Ys

0 _ —1 -1
1= %9 Yy
+ _ -1
12 = Y11 Yo

rs =@ ety 25 a2t
7’(1)4 = Y12

s = Y15 Yi1

e = vis Yis

rir = gy a g
7’?8 = Y14

T(1]9 = T3Y13

30 = Y19 Y17

o= Ty Yy T T T AT Y
T22 = Y20

ryy =2y @y Ty w0 Yoy 4T Uiy
i =T Yoy Yo

Tos = Yo To Ty T3 Ty Yoo

7"(2)6 = Y4

0 -1
To7 = T2 Y3

Reading for Plate B16.

0_ -1
Tl = T3%1 T3Yg9 Tq

= apa ay ey
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s = Y10Ys Y1 Y5 Y4 Y17 21

-2 -1 -1 2 -1 —2 2 1 -1
=21 Y91 T1Y37 L1Y3Ty Ys7 L1 T1Yr3 T1 Y1

Ty :y4y2_1

0o_ -1
Te =Yg Yo
R
7 = Y16 Y3
+ _

ro =1 Yo Y7 ar @y ys vy @

7“(1)0 = Ys

7"?1 = 5’52_1 y7_1

=y v

13 = Y77 951_2 x% ys_?,1 y1_21 33:;1 9”1_1 Yn 951_1 Ly ?J2_51 L1 Y10
7"?4 = Y12

7“?5 = 3/1751 yﬂl

16 = ?J1_31 Y15

T = a1 T Y T3 Y O T g

7’?8 = Y14

7“?9 = T3Y13

T30 = Y26 Y1o Y17

Ty =5 Yoo Ty T Y T T Yo T T Ui
7‘82 = Y20

s = ] ygs Ty 2] T Ty Lo ] Yss T Yo1 TF YUg.
= 951_1 L 92_31 Ya1

Tys = Yai T Y Yso T T Ygy' Ty Ty Yoo

7“86 = Y4

= T gy

3% = Yas Yag

T2 = Y37 Yos

Tgo = Yor

1 = Y30 Yas

rdh = Y32 Yso

. |
T33 = Ys1 Y29
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7"§4 = Ys1

s = Ysq Yz
36 = Y3 Yaa
T3 = s Y3z
Tgs = Yss

80 = Y3s Y36
i = Yio Uss
T = Yso Ysy
7“22 = Y39

s = Y Yao
7“14 = 9141 Ya2
T =Yg Yn
7"26 = Ya3

7"27 = yZﬁl Yga
iy = Yis Yas
T = Y7 Yas
7"20 = Yar

81 = Y50 Yag
T = Va2 Uso
T3 = Ys1 Yao
7“5?4 = Ys1

s = ysi Uso
7“;6 = 3/5_61 Y54
Ts7 = y5_51 Ys3
7"5?8 = Yss

99 = Uss Yse
rdo = Yo Yss
61 = Uso Us
7"82 = Ysg

783 = Y2 Yoo

+ _ -1
T64 = Ysa Y62

PAUL J. KAPITZA
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Te5 = y6_31 Y61
7"86 = Ye3

87 = Yoo Yo
Tds = Yes Yoo
Too = Yar Yo
7"90 = Yer

™ =970 Yes
i =y vno
7 = Y7 Yoo
7“94 =Yn

s = y7) o
T;rﬁ = 3/7_61 Y74
o = Y75 Y3
7"98 =Yrs

9 = Yrs Yr6
i = Yo Yrs
51 = Yrg Yrr
7"222 =Yg

ng = 98_21 Yso
7’;4 = y§41 Ys2
55 = Yss Ysi
Tgﬁ = Ys3

7"(8)7 = y&?ﬁl Ysa
iy = Yss Yse
"o = Vst Uss
7"80 = Ysr

0L = Yoo Yss
Tdy = Y2 Yoo
To3 = Yo' Uso

0 _
T94 = Yo1

0 _ (.—2 -1 —1
Tos = (] " Ty @] Ty Ty )Ygo

431
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Reading for Plate B17.

0_ -1
Ty = T3 L1 T3Yg9 Ty
ry = wpay mywy®

0
T3 = Y10 Y8 Y1 Y5 Y4 Y17

i =y 27 2 ys ys ysr a7 2t yns u !
rs =yivy

rg = Z/51 Yo

P =y vz

TS =Y Yis Ys

rg = af 2 Yoy yrta a ys ysy

7”?0 = Ys

7"?1 = y7_1

=y v

i3 = Urr 1 T Ys3 Yia T3 Y T 1 Yas Yio
7“(1)4 = Y12

Ti5 = yfsl yﬂl

Py = Y Ty Y T T Y
7“?8 = Y14

7“?9 = T3Y13

T30 = Y26 Yio Y17

oy =2yt a ey Yoy Ty Yo @1 @ Yo @1 27 Wi
7“82 = Y20

93 = Yos T30 @1 277 Yss Yoy Yig
= xfl L1 92731 Ya1

Tys = Yot ToYso T LY Yy Yoo

7”86 = You

r87 = Zo 92_31

Tog = y2_81 Yoe

rao = o1 25 Yo yas

0
T30 = Yo7
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7':[3)1
T
733
7":[3)4
7“??5
"3

T'37

T42
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.|
= Y30 Y28
1 -1
= Y3z T1%1 Yso
-4 4 1
=T T1Y31 Y29
= Y31

1

= Ysq Y32

o 1..-2 2
=Yz L1 L1Y34

3 3

— - 3
=r|T

-1 -3 -1
Ty T1T121 Yss5 Yz

= Y35

1

= Y33 Yse

1 -1

= Y40 T1%1 Y38

_ .-3.3.-4_4_-3.3 -1

=Ty X1l T1Ty TyYsg Yar

= Ysg

.|
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