| |
|
Peter A. Linnell and Michael J. Puls
Zero Divisors and Lp(G), II
|
|
Published: |
June 4, 2001
|
Keywords: |
zero divisor, free group, Fourier transform, radial function, free abelian group |
Subject: |
Primary: 43A15; Secondary: 43A25, 42B99 |
|
|
Abstract
Let G be a discrete group, let p ≧ 1,
and let Lp(G) denote the
Banach space {∑g∈ G ag g
| ∑g∈ G |ag|p < ∞}. The following problem will
be studied: Given 0 ≠ α ∈ CG and
0 ≠ β ∈ Lp(G), is α * β ≠ 0? We will
concentrate on the case G is a free abelian or
free group.
|
|
Author information
Peter A. Linnell:
Math, VPI, Blacksburg, VA 24061-0123
linnell@math.vt.edu
http://www.math.vt.edu/people/linnell/
Michael J. Puls:
New Jersey City University, Jersey City, NJ 07305-1597
mpuls@njcu.edu
http://ellserver3.njcu.edu/math/puls/Puls.htm
|
|