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Abstract. We consider the question of the existence of a nontrivial continu-
ous homomorphism from (βN,+) into N∗ = βN\N. This problem is known to
be equivalent to the existence of distinct p and q in N∗ satisfying the equations
p + p = q = q + q = q + p = p + q. We obtain certain restrictions on possible
values of p and q in these equations and show that the existence of such p and
q implies the existence of p, q, and r satisfying the equations above and the
additional equations r = r + r, p = p + r = r + p, and q = q + r = r + q. We
show that the existence of solutions to these equations implies the existence
of triples of subsets of N satisfying an unusual Ramsey Theoretic property.
In particular, they imply the existence of a subset A with the property that
whenever it is finitely colored, there is a sequence in the complement of A, all
of whose sums two or more terms at a time are monochrome. Finally we show
that there do exist sets satisfying finite approximations to this latter property.
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1. Introduction

In 1979, van Douwen asked (in [5], published much later) whether there are topo-
logical and algebraic copies of the right topological semigroup (βN,+) contained
in N∗ = βN\N. This question was answered in [15], where it was in fact estab-
lished that if ϕ is a continuous homomorphism from βN to N∗, then ϕ[βN] is finite.
Whether one can have such a continuous homomorphism with |ϕ[βN]| > 1 is a
difficult open question which we address in this paper.
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Another old and difficult problem in the algebra of βN was solved in 1996 by E.
Zelenuk [16] who showed that there are no nontrivial finite groups contained in N∗.
(See [10, Section 7.1] for a presentation of this proof.) Using Zelenuk’s Theorem,
it is not hard to show that there is a nontrivial continuous homomorphism from
βN to N∗ if and only if there exist distinct p and q in N∗ such that p + p = q =
q + q = q + p = p + q. (See [10, Corollary 10.20].) It is in this guise that we shall
be investigating the continuous homomorphism problem.
The question of which finite semigroups can exist in N∗ has implications for

a large class of semigroups of the form βS. It is not hard to prove that any
finite semigroup in N∗ is contained in H =

⋂
n∈N

clβN(2nN). Now if S is any
infinite discrete semigroup which is right cancellative and weakly left cancellative,
S∗ contains copies of H [10, Theorem 6.32]. Thus a finite semigroup which occurs
in N∗ also occurs in S∗, if S is any semigroup of this kind.
The conjecture that N∗ contains no elements of finite order, other than idem-

potents, has implications about the nature of possible continuous homomorphisms
from βS into N∗, where S is any semigroup at all. If C is any compact subsemigroup
of N∗, its topological center Λ(C) = {x ∈ C : λx : C → C is continuous} contains
only elements of finite order[12, Corollary 6.8]. It follows that, if this conjecture
is true, then any continuous homomorphism from βS into N∗ must map all the
elements of S to idempotents.
We write N for the positive integers and ω for the nonnegative integers. Given

a set X, Pf (X) is the set of finite nonempty subsets of X. The points of βN

are the ultrafilters on N and the topology of βN is defined by choosing the sets
of the form A = {p ∈ βN : A ∈ p}, where A ⊆ N, as a basis for the open sets.
Then each set A is clopen in βN and A = clβNA. The operation + on βN is
the extension of ordinary addition on N making (βN,+) into a right topological
semigroup (meaning that for all p ∈ βN, the operation ρp : βN → βN defined by
ρp(q) = q+p is continuous) with N as its topological center (which is the set of points
x such that the function λx : βN → βN defined by λx(q) = x + q is continuous).
Given p, q ∈ βN and A ⊆ N, A ∈ p + q if and only if {x ∈ N : −x + A ∈ q} ∈ p,
where −x + A = {y ∈ N : x + y ∈ A}. See [10] for an elementary introduction to
the compact right topological semigroup (βN,+).
In Section 2 we present some restrictions on possible values of p and q solving

the equations p + p = q = q + q = q + p = p + q. We further establish that the
existence of such a two element semigroup in N∗ implies the existence of a three
element semigroup {p, q, r} where p + p = q = q + q = q + p = p + q, r + r = r,
p = p + r = r + p, and q = q + r = r + q (and consequently, the existence of a
nontrivial continuous homomorphism from βN to N∗ implies the existence of such
a semigroup).
In Section 3 we show that the existence of the three element semigroup described

above implies the existence of a triple of disjoint subsets of N satisfying a strong
infinitary Ramsey Theoretic property. A simpler consequence of this property is
the following assertion. If there is a nontrivial continuous homomorphism from βN

into N∗, then there is a subset A of N with the property that, whenever A is finitely
colored, there must exist a sequence 〈xn〉∞n=1 in N\A such that

{
∑
t∈F

xt : F ∈ Pf (N) and |F | ≥ 2}
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is a monochrome subset of A. (When we refer to a “k-coloring” of a set X we mean
a function φ : X → {1, 2, . . . , k}. The assertion that a set B is “monochrome” is
the assertion that φ is constant on B.)
We concentrate on this simple assertion for the remainder of the paper. While

it is not known whether any set satisfying such a property exists, we hope to
popularize the search for a set satisfying that property (or the search for a proof
that no such set exists). We do establish that certain classes of sets do not have
that property.
In Section 4, we show that sets satisfying arbitrary finite approximations to this

simpler Ramsey Theoretic property do exist.

2. Special Two and Three Element Subsemigroups of βN

Given idempotents r and s in N∗, one says that r ≤R s if and only if r = s+r, r ≤L s
if and only if r = r+ s, and r ≤ s if and only if r = s+ r = r+ s. If k ∈ N and one
has distinct idempotents r1 ≤ r2 ≤ . . . ≤ rk (which exist by [10, Theorem 9.23]),
then {r1, r2, . . . , rk} is a k element subsemigroup of N∗. However, by [10, Corollary
10.20], the existence of a nontrivial continuous homomorphism from βN to N∗ is
equivalent to the existence of a finite subsemigroup of N∗ whose elements are not
all idempotents, and also equivalent to the existence of a two element subsemigroup
of N∗ whose elements are not all idempotents. Such a subsemigroup is necessarily
of the form {p, q}, where p + p = q = q + q = q + p = p + q. Curiously, Zelenuk’s
Theorem implies that if p+ p = q, then one of the equations p+ q = q, q + p = q,
or q + q = q implies the others.

Lemma 2.1. Let p and q be elements of N∗. If p + p = q and any one of p + q,
q + p, or q + q is equal to q, then p+ p = q = q + q = p+ q = q + p.

Proof. If p = q, then the conclusion is trivial, so assume that p �= q. Note that
q+p = p+p+p = p+ q. If q = q+p, then q+ q = q+p+p = q+p = q. So assume
that q = q + q. Then {q, q + p} is a subgroup of N∗, so by Zelenuk’s Theorem [10,
Theorem 7.17], q = q + p. �

Next we show that the existence of such a two element subsemigroup of N∗

implies the existence of a particular three element subsemigroup of N∗, exactly two
of whose members are idempotents. The existence of this semigroup yields the sets
with the strong Ramsey Theoretic property that we have discussed. To say that an
idempotent r is ≤R-maximal means that whenever r ≤R s, one also has s ≤R r.)

Theorem 2.2. Let p and q be distinct elements of N∗ such that p + p = q =
q + q = p + q = q + p. Then there exist distinct p′, q′, and r′ in N∗ such that
p′ + p′ = q′ = q′ + q′ = p′ + q′ = q′ + p′, r′ + r′ = r′, p′ + r′ = r′ + p′ = p′, and
q′ + r′ = r′ + q′ = q′. Further, the idempotent r′ can be chosen to be ≤R-maximal
in Z∗ = βZ\Z.
Proof. We observe that it suffices to produce distinct p′, q′, and r′ in Z∗, with r′

≤R-maximal in Z∗, satisfying the specified equations. To see this notice that by
[10, Exercise 4.3.5], both N∗ and −N∗ are left ideals of βZ. Thus, either p′, q′, and
r′ are all in N∗ as desired, or they are all in −N∗. In the latter event, let p′′ = −p′,
q′′ = −q′, and r′′ = −r′. Then p′′, q′′, and r′′ are distinct members of N∗ and, by
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[10, Lemma 13.1], they satisfy the specified equations. It is easy to verify that r′′

is also ≤R-maximal in Z∗.
Since q + p = p + p we have that p is not right cancelable in βZ so by [10,

Theorem 8.18], there is an idempotent r ∈ Z∗ such that r+ p = p. Notice that if s
is any idempotent with r ≤R s, then s+ p = s+ r + p = r + p = p.
We consider first the possibility that there is some ≤R-maximal idempotent

s ≥R r in Z∗ such that p+ s = p. Then s+ p = p, s+ q = s+ p+ q = p+ q = q,
and q+ s = q+ p+ s = q+ p = q. Further, since s+ p = p, s �= p and s �= q. Thus,
letting r′ = s, p′ = p, and q′ = q, we are done.
Now assume that for every ≤R-maximal idempotent s ≥R r in Z∗, p + s �= p.

Pick by [10, Theorem 2.12], a ≤R-maximal idempotent r′ such that r ≤R r′. Then,
as noted above, r′ + p = p. Let p′ = p+ r′ and let q′ = q + r′. Then immediately
p′ + r′ = p′ and q′ + r′ = q′. Also r′ + p′ = r′ + p + r′ = p + r′ = p′ and
r′ + q′ = r′ + q + r′ = r′ + p + q + r′ = p + q + r′ = q + r′ = q′. Further
p′ + p′ = p + r′ + p + r′ = p + p + r′ = q + r′ = q′ and q′ + p′ = q + r′ + p + r′ =
q + p+ r′ = q + r′ = q′. Consequently, by Lemma 2.1, p′ + q′ = q′ + q′ = q′.
To complete the proof we need to show that p′, q′, and r′ are all distinct. For

this, it suffices to show that p′ �= q′. (For then r′ + p′ = p′, p′ + p′ = q′, and
q′ + p′ = q′ so r′ �= q′ and r′ �= p′.) So suppose instead that p′ = q′, that is,
p+ r′ = q + r′. Then by [10, Theorem 9.4 and Lemma 9.5] there is an idempotent
s ≥R r′, necessarily ≤R-maximal, such that either p = q+ s or q = p+ s. If we had
q+ s = p, then we would have q+ p = q+ q+ s = q+ s = p, a contradiction. Thus
q = p+ s and so p+ p = p+ s.
Now, by [10, Corollary 6.20] there is some x ∈ βZ such that p = x+s or s = x+p.

Suppose first that p = x+ s. Then p+ s = x+ s+ s = x+ s = p, a contradiction
since s ≥R r′ and we are assuming that for every ≤R-maximal idempotent s ≥R r′,
p+ s �= p. Thus, s = x+ p so, since r ≤R s, p = s+ p = x+ p+ p = x+ q and so
p+ q = x+ q + q = x+ q = p, a contradiction. �
Theorem 2.3. Let p and q be distinct elements of N∗ such that p+p = q = q+q =
p+ q = q + p. Then p is not a member of any subgroup of βN. In particular, p is
not a member of the smallest ideal K(βN) of βN.

Proof. Suppose that p is a member of a subgroup G of N∗ with identity r. Then
q is an idempotent in G and so q = r and thus q + p = p, a contradiction. For
the “in particular” conclusion, recall that the smallest ideal of any compact right
topological semigroup is the union of groups [10, Theorems 2.7 and 2.8]. �
We have not been able to show that q /∈ K(βN). However, it is not even known

whether there is any p ∈ βN\K(βN) with p + p ∈ K(βN). See [9] for information
about the question of whether K(βN) is prime or semiprime.
In [1, Theorem 2.2] it was shown that if p ∈ N∗ and p generated a finite sub-

semigroup of N∗, then p could not be distinguished from an idempotent by means
of a continuous homomorphism into a compact topological group. In the current
context we have a stronger, yet very simple, result. Notice for example that the
requirement that “every idempotent is a right identity” is satisfied by any minimal
left ideal [10, Lemma 1.30].

Lemma 2.4. Let p and q be distinct elements of N∗ such that p+ p = q = q+ q =
p + q = q + p and let (T, ·) be a semigroup in which every idempotent is a left
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identity or every idempotent is a right identity. If ϕ is a homomorphism from any
semigroup containing {p, q} to T , then ϕ(p) = ϕ(q).

Proof. Assume without loss of generality that every idempotent in T is a right
identity of T . Then ϕ(p) = ϕ(p) · ϕ(q) = ϕ(p+ q) = ϕ(q). �

3. Ramsey Theoretic Consequences

We show in this section that the existence of a continuous homomorphism from βN

to N∗ implies the existence of disjoint subsets of N satisfying a strong infinitary
Ramsey Theoretic property.

Definitions 3.1. Let 〈xn〉∞n=1 be a sequence in N, then
(1) FS(〈xn〉∞n=1) = {∑n∈F xn : F ∈ Pf (N)}.
(2) FS≥2(〈xn〉∞n=1) = {∑n∈F xn : F ∈ Pf (N) and |F | ≥ 2}.
(3) If k ∈ N, FSk(〈xn〉∞n=1) = {∑n∈F xn : F ∈ Pf (N) and |F | = k}.
Similarly, if 〈xt〉mt=1 is a finite sequence, we shall let

FS≥2(〈xt〉mt=1) = {
∑
t∈F

xt : ∅ �= F ⊆ {1, 2, . . . ,m} and |F | ≥ 2}.

Recall [10, Theorem 5.12] that a set A ⊆ N is a member of some idempotent in
βN if and only if there is some sequence 〈xn〉∞n=1 with FS(〈xn〉∞n=1) ⊆ A. Part of
this assertion is imitated in the following theorem.

Theorem 3.2. Let p, q, and r be elements of N∗ such that p + p = q = q + q =
q + p = p + q, r + r = r, r + p = p + r = p, and q + r = r + q = q. Let A ∈ q,
B ∈ r, and C ∈ p. Then there exist sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 in N such that
(1) FS(〈yn〉∞n=1) ⊆ B,
(2) for all n ∈ N and all z ∈ FS(〈yn〉∞n=1) ∪ {0}, xn + z ∈ C (and in particular

{xn : n ∈ N} ⊆ C ), and
(3) for all w ∈ FS≥2(〈xn〉∞n=1) and all z ∈ FS(〈yn〉∞n=1) ∪ {0}, w + z ∈ A (and

in particular FS≥2(〈xn〉∞n=1) ⊆ A).

Proof. Let

Â = {a ∈ A : −a+A ∈ p ∩ q ∩ r} ,

B̂ = {b ∈ B : −b+A ∈ q , −b+B ∈ r, and − b+ C ∈ p}, and
Ĉ = {c ∈ C : −c+A ∈ p ∩ q and − c+ C ∈ r} .

Since q = q + p = q + q = q + r, we have that Â ∈ q. Since q = r + q, r = r + r,
and p = r+ p, we have that B̂ ∈ r. Since q = p+ p = p+ q and p = p+ r, we have
that Ĉ ∈ p. Next we claim that

if a ∈ Â, then −a+ Â ∈ p ∩ r ;
if b ∈ B̂, then −b+ Ĉ ∈ p and −b+ B̂ ∈ r ; and
if c ∈ Ĉ, then −c+ Â ∈ p and −c+ Ĉ ∈ r .

We verify the second of these assertions, the other two being similar.
Let b ∈ B̂. Given x ∈ N, x ∈ −b+Ĉ if and only if b+x ∈ C, −(b+x)+A ∈ p∩q,

and −(b+ x) + C ∈ r. That is

−b+ Ĉ = −b+ C ∩ {x : −x+ (−b+A) ∈ p ∩ q} ∩ {x : −x+ (−b+ C) ∈ r} .
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Now −b+ C ∈ p. Also, −b+A ∈ q = p+ q = p+ p, so that

{x : −x+ (−b+A) ∈ p ∩ q} ∈ p.

And −b+ C ∈ p = p+ r, so that {x : −x+ (−b+ C) ∈ r} ∈ p.
Similarly −b+B̂ = −b+B∩{x : −x+(−b+A) ∈ q}∩{x : −x+(−b+B) ∈ r}∩{x :

−x+ (−b+ C) ∈ p}. We have that −b+B ∈ r. Also {x : −x+ (−b+A) ∈ q} ∈ r
because −b+A ∈ q = r+q; {x : −x+(−b+B) ∈ r} ∈ r because −b+B ∈ r = r+r;
and {x : −x+ (−b+ C) ∈ p} ∈ r because −b+ C ∈ p = r + p.
We now construct the sequences 〈xn〉∞n=1 and 〈yn〉∞n=1. Choose x1 ∈ Ĉ. Then

−x1 + Ĉ ∈ r so choose y1 ∈ B̂ ∩ (−x1 + Ĉ). Inductively, let m ∈ N and assume
that we have chosen 〈xt〉mt=1 and 〈yt〉mt=1 so that

(i) for each n ∈ {1, 2, . . . ,m}, xn ∈ Ĉ,
(ii) for each F ⊆ {1, 2, . . . ,m} with |F | ≥ 2,

∑
n∈F xn ∈ Â,

(iii) for ∅ �= G ⊆ {1, 2, . . . ,m}, ∑
t∈G yt ∈ B̂,

(iv) for each n ∈ {1, 2, . . . ,m} and ∅ �= G ⊆ {1, 2, . . . ,m}, xn +
∑

t∈G yt ∈ Ĉ,
(v) for ∅ �= F,G ⊆ {1, 2, . . . ,m} with |F | ≥ 2,

∑
t∈F xt +

∑
t∈G yt ∈ Â.

All hypotheses are satisfied for m = 1, (ii) and (v) vacuously.
Now, given z ∈ FS(〈xt〉mt=1) we have that either z ∈ Ĉ or z ∈ Â, and so −z+Â ∈

p. Given w ∈ FS(〈yt〉mt=1), w ∈ B̂ so that −w + Ĉ ∈ p. Given z ∈ FS(〈xt〉mt=1)
and w ∈ FS(〈yt〉mt=1), we have that either z + w ∈ Ĉ or z + w ∈ Â, and so
−(z + w) + Â ∈ p. Thus we may choose

xm+1 ∈ Ĉ ∩ ⋂
z∈FS(〈xt〉m

t=1)
(−z + Â)

∩⋂
w∈FS(〈yt〉m

t=1)
(−w + Ĉ)

∩⋂
z∈FS(〈xt〉m

t=1)

⋂
w∈FS(〈yt〉m

t=1)
(−(z + w) + Â) .

Given n ∈ {1, 2, . . . ,m + 1}, we have xn ∈ Ĉ, and so −xn + Ĉ ∈ r. Given
w ∈ FS(〈yt〉mt=1), we have w ∈ B̂ and so −w + B̂ ∈ r. Given n ∈ {1, 2, . . . ,m+ 1}
and w ∈ FS(〈yt〉mt=1) we have that xn + w ∈ Ĉ and so −(xn + w) + Ĉ ∈ r.
Given z ∈ FS≥2(〈xt〉m+1

t=1 ) and w ∈ FS(〈yt〉mt=1) we have that z + w ∈ Â and so
−(z + w) + Â ∈ r. Thus we may choose

ym+1 ∈ B̂ ∩ ⋂m+1
n=1 (−xn + Ĉ) ∩ ⋂

w∈FS(〈yt〉m
t=1)

(−w + B̂)
∩⋂m+1

n=1

⋂
w∈FS(〈yt〉m

t=1)
(−(xn + w) + Ĉ)

∩⋂
z∈FS≥2(〈xt〉m+1

t=1 )

⋂
w∈FS(〈yt〉m

t=1)
(−(z + w) + Â) .

All induction hypotheses can be easily verified. �

The following is the strong Ramsey Theoretic property which we have discussed.

Corollary 3.3. Assume that there is a continuous homomorphism from βN to N∗.
Then there exist disjoint subsets A, B, and C of N such that, whenever F is a finite
partition of A, G is a finite partition of B, and H is a finite partition of C, there
exist F ∈ F , G ∈ G, and H ∈ H, and sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 in N such
that
(1) FS(〈yn〉∞n=1) ⊆ G,
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(2) for all n ∈ N and all z ∈ FS(〈yn〉∞n=1) ∪ {0}, xn + z ∈ H (and in particular
{xn : n ∈ N} ⊆ H), and

(3) for all w ∈ FS≥2(〈xn〉∞n=1) and all z ∈ FS(〈yn〉∞n=1) ∪ {0}, w + z ∈ F (and
in particular FS≥2(〈xn〉∞n=1) ⊆ F ).

Proof. Assume that there is a continuous homomorphism from βN to N∗. Then
by [10, Corollary 10.20] and Theorem 2.2, we may pick distinct p, q, and r in N∗

such that p + p = q = q + q = q + p = p + q, r + r = r, r + p = p + r = p, and
q + r = r + q = q. Pick pairwise disjoint A ∈ q, B ∈ r, and C ∈ p. Let F be a
finite partition of A, let G be a finite partition of B, and let H be a finite partition
of C. Pick F ∈ F , G ∈ G, and H ∈ H such that F ∈ q, G ∈ r, and H ∈ p. Apply
Theorem 3.2. �

We now consider a much simpler consequence of the statement in Corollary 3.3.

Definitions 3.4. For A ⊆ N, let Ψ(A) be the statement: “For each k ∈ N, when-
ever A is k-colored, there exists an increasing sequence 〈xn〉∞n=1 in N\A such that
FS≥2(〈xn〉∞n=1) is monochrome.”

Notice that any set A satisfying Ψ is automatically an IP set. That is, there is
a sequence 〈yn〉∞n=1 such that FS(〈yn〉∞n=1) ⊆ A. To see this note that, given any
sequence 〈xn〉∞n=1, if yn = x2n + x2n+1, then FS(〈yn〉∞n=1) ⊆ FS≥2(〈xn〉∞n=1).

Corollary 3.5. If there exist distinct p and q in N∗ such that q = p+ p = p+ q =
q + p = q + q, then there is a set A ⊆ N such that Ψ(A).

Proof. This is an immediate consequence of Corollary 3.3 and [10, Corollary 10.20].
�

One could define a statement Γ(A) to be the statement: “For each k ∈ N,
whenever A and N\A are k-colored, there exists a monochrome increasing sequence
〈xn〉∞n=1 in N\A such that FS≥2(〈xn〉∞n=1) is monochrome.” The existence of a set
A satisfying Γ also follows immediately from Corollary 3.3. However, this is not
really a stronger conclusion, because Γ(A) follows trivially from Ψ(A) by applying
the pigeon hole principle.
We have already noted that a point p ∈ N∗ is an idempotent if and only if there

is a sequence 〈xn〉∞n=1 such that FS(〈xn〉∞n=1) ∈ p. We doubt that the existence of
a set A satisfying Ψ can be shown to imply that there exist p, q ∈ βN such that
A ∈ q, N\A ∈ p, and p + p = q = q + q = p + q = q + p in any way short of
proving that no such set A exists. We do have the following partial converse to
Corollary 3.5.

Lemma 3.6. Let A ⊆ N. If Ψ(A), then there exists r ∈ A with the property that
for every B ∈ r, there exist p ∈ N∗\A and q = q+ q ∈ B such that, whenever k ≥ 2
and u1, u2, . . . , uk ∈ {p, q}, one has u1 + u2 + . . .+ uk ∈ B.

Proof. Let B = {B ⊆ A : there is an increasing sequence 〈xn〉∞n=1 in N\A such that
FS≥2(〈xn〉∞n=1) ⊆ B}. Since Ψ(A), we have that whenever F is a finite partition
of A, one must have F ∩ B �= ∅. Thus, by [10, Theorem 5.7], there exists r ∈ A
with B ⊆ r. Let B ∈ r and pick an increasing sequence 〈xn〉∞n=1 in N\A such that
FS≥2(〈xn〉∞n=1) ⊆ B}.
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By [10, Theorem 4.20],
⋂∞

m=1 FS≥2(〈xn〉∞n=m) is a subsemigroup of βN so pick
by [10, Theorem 2.5] an idempotent q ∈ ⋂∞

m=1 FS≥2(〈xn〉∞n=m). Pick p ∈ N∗ with
{xn : n ∈ N} ∈ p.
To complete the proof it suffices to show
(1) FS≥2(〈xn〉∞n=1) ∈ p+ p and
(2) if u ∈ βN and FS≥2(〈xn〉∞n=1) ∈ u, then FS≥2(〈xn〉∞n=1) ∈ u + p and

FS≥2(〈xn〉∞n=1) ∈ u+ q.
To establish (1), we show that

{xn : n ∈ N} ⊆ {y ∈ N : −y + FS≥2(〈xn〉∞n=1) ∈ p}.
Let m ∈ N. Then {xn : n ∈ N and n > m} ⊆ −y + FS≥2(〈xn〉∞n=1).
To establish (2), assume that FS≥2(〈xn〉∞n=1) ∈ u. We show that

FS≥2(〈xn〉∞n=1) ⊆ {y ∈ N : −y + FS≥2(〈xn〉∞n=1) ∈ p} and
FS≥2(〈xn〉∞n=1) ⊆ {y ∈ N : −y + FS≥2(〈xn〉∞n=1) ∈ q} .

So let y ∈ FS≥2(〈xn〉∞n=1) and pick F ∈ Pf (N) with |F | > 1 such that y =∑
n∈F xn. Let m = maxF . Then {xn : n ∈ N and n > m} ⊆ −y+FS≥2(〈xn〉∞n=1)

and FS≥2(〈xn〉∞n=m+1) ⊆ −y + FS≥2(〈xn〉∞n=1). �

Some of us would conjecture strongly that no set A ⊆ N satisfying Ψ(A) exists.
(At least one author disagrees.) In fact, we shall introduce a property Θ weaker
than Ψ. We do not even know of a set A ⊆ N for which Θ holds. We shall give
several examples of sets A for which Θ fails. These are, of course, examples for
which Ψ fails as well.

Definitions 3.7. For each A ⊆ N, Θ(A) is the statement: “For every finite coloring
of A, there exists an infinite sequence 〈xn〉∞n=1 in N\A such that FS2(〈xn〉∞n=1) ∪
FS3(〈xn〉∞n=1) is monochrome.”

Theorem 3.8. Let 〈an〉∞n=1 be an increasing sequence in N such that lim
n→∞(an+1 −

an) =∞ and let A = N\{an : n ∈ N}. Then ¬Θ(A). (In fact there is a counterex-
ample using two colors.)

Proof. Let B = {am + an : m < n and an+1 − an > am} and let C = {ar +
as + at : r < s < t , as+1 − as > ar, and at+1 − at > ar + as}. We claim that
B∩C = ∅. To see this, suppose that am+an = ar+as+at, where an+1−an > am,
as+1 − as > ar and at+1 − at > ar + as. Then an = at, because n > t implies that
an −at ≥ at+1−at > ar+as, and t > n implies that at −an ≥ an+1−an > am. So
am = ar+as and thus m > s. Therefore am−as ≥ as+1−as > ar, a contradiction.
In a similar fashion, one can show that (B ∪ C) ⊆ A. Suppose that one has an

infinite sequence 〈xn〉∞n=1 in N\A such that either FS2(〈xn〉∞n=1)∪FS3(〈xn〉∞n=1) ⊆
B or FS2(〈xn〉∞n=1) ∪ FS3(〈xn〉∞n=1) ⊆ A\B. Since FS2(〈xn〉∞n=1) ∩ B �= ∅ and
FS3(〈xn〉∞n=1) ∩ C �= ∅, we have a contradiction. �

In the following theorem, we give another simple example of a family of sets A
for which Θ(A) fails.

Theorem 3.9. Let B ⊆ N be an infinite set with the property that, for some k ∈ N,
either kN ∩B is finite or kN\B is finite. If A = N\B, then Θ(A) fails.
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Proof. For each i ∈ {0, 1, 2, · · · , k− 1}, let Ai = {a ∈ A : a ≡ i(mod k)}. Suppose
that there is an infinite sequence 〈xn〉∞n=1 in B and i ∈ {0, 1, 2, · · · , k − 1} for
which FS2(〈xn〉∞n=1) ∪ FS3(〈xn〉∞n=1) ⊆ Ai. We may suppose that there exists
j ∈ {0, 1, 2, · · · , k−1} such that xn ≡ j(mod k) for every n ∈ N, because this could
be achieved by replacing 〈xn〉∞n=1 by a subsequence. Note that j �= 0. (If j = 0,
then {xn : n ∈ N} ⊆ kN and FS2(〈xn〉∞n=1) ⊆ kN.) Then FS2(〈xn〉∞n=1) ⊆ {a ∈
A : a ≡ 2j(mod k)} and FS3(〈xn〉∞n=1) ⊆ {a ∈ A : a ≡ 3j(mod k)}. This is a
contradiction, because 2j �≡ 3j(mod k). �

Another natural candidate for a set satisfying Ψ is based on spectra of numbers.
These are sets of the form {�nα+ γ� : n ∈ N}, where α is a positive real number,
usually irrational, and 0 ≤ γ ≤ 1. These sets have been much studied. See for
example [2, 3, 4, 6, 13, 14].
For large irrational α, the set N\{�nα� : n ∈ N} seems as though it might satisfy

the statement Ψ. If 0 < γ < 1, it is immediate that N\{�nα+ γ� : n ∈ N} does not
satisfy Ψ. In fact, {�nα+ γ� : n ∈ N} is an IP* set ([3, Theorem 6.1] or see [10,
Theorem 16.42]). That is, for any sequence 〈xn〉∞n=1, FS(〈xn〉∞n=1) ∩ {�nα+ γ� :
n ∈ N} �= ∅. On the other hand [3, Theorem 6.2], for irrational α > 1, the sets
{�nα� : n ∈ N} and {�nα+ 1� : n ∈ N} are disjoint and each contain sets of the
form FS(〈xn〉∞n=1) so neither is an IP* set. (In fact, both of these sets are central.
For a description of some of the properties of central sets see [10, Chapter 14].)

Theorem 3.10. Let α be a positive real number and either let A = N\{�nα� : n ∈
N} or let A = N\{�nα+ 1� : n ∈ N}. Then ¬Θ(A).
Proof. We do the proof for the case A = N\{�nα� : n ∈ N}. (The other case can
be done in a similar way by using the mappingm �→ m−max{nα : n ∈ ω and nα ≤
m}.) Notice that if α ≤ 1, then A = ∅ so we may assume that α > 1.
For each m ∈ N, let f(m) = min{nα : n ∈ N and nα ≥ m} − m. Notice that

m ∈ A if and only if f(m) ≥ 1.
Let ε = min

{
1
8 ,

α−1
3

}
. Since [0, α] is covered by a finite number of intervals

of length ε, Θ(A) implies that there is an interval I of length ε and an infinite
sequence 〈xn〉∞n=1 in N\A such that FS2(〈xn〉∞n=1) ∪ FS3(〈xn〉∞n=1) ⊆ f−1[I] ∩ A.
Choose β ∈ I.
We may suppose that 〈f(xn)〉∞n=1 converges to a limit γ and that |f(xn)−γ| < ε

for every n ∈ N, because we can achieve this by replacing 〈xn〉∞n=1 by a subsequence.
Note that γ ≤ 1 since each xn /∈ A.
For any m,n, r ∈ N, with m < n < r, each of xm + γ, xn + xr + β and

xm+xn+xr+β is within ε of a number in Nα. It follows that |γ−tα| < 3ε for some
t ∈ Z. If t < 0, then γ−tα ≥ α > ε. If t > 0, we have |tα−γ| = tα−γ ≥ α−1 ≥ 3ε.
Thus t = 0 and hence |γ| < 3ε.
Thus we have xm ≤ kα < xm+γ+ε < xm+4ε and xn ≤ lα < xn+γ+ε < xn+4ε

for some k, l ∈ N. So xm + xn ≤ (k + l)α < xm + xn + 8ε ≤ xm + xn + 1 and thus
xm + xn /∈ A, a contradiction. �

4. A Finitary Ramsey Theoretic Approximation

We have seen that the existence of distinct p and q in N∗ satisfying the equations
p + p = q = q + q = p + q = q + p (equivalently the existence of a nontrivial
continuous homomorphism from βN into N∗) implies the existence of a set A ⊆ N
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such that whenever A is finitely colored, there must exist an increasing sequence
〈xn〉∞n=1 in N\A such that FS≥2(〈xn〉∞n=1) is monochrome. We have not been able
to show that no such set exists, and certainly have not been able to produce one.
In this section we produce a set C satisfying the weaker conclusion that when-

ever it is finitely colored, there exist arbitrarily large finite sequences in N\C with
all sums of the form

∑
t∈F xt with |F | > 1 monochrome. We remark that the

existence of such a set follows from Prömel’s Induced Graham-Rothschild theorem
[11]. However, the proof of Prömel’s result is rather long and difficult, so we include
here a relatively short proof of our result.
We shall use the Hales-Jewett Theorem. Given a finite alphabet A, a variable

word is a word over the alphabet A∪{v} in which v occurs, where v is a “variable”
which is not a member of A. Given a variable word w and a letter a ∈ A, the word
w(a) is the result of replacing each occurrence of v by a.

Theorem 4.1 (Hales-Jewett). Let k,m ∈ N. There exists some d ∈ N such that,
whenever A is an alphabet with m letters and the length d words over A are k-
colored, there exists a variable word w of length d such that {w(a) : a ∈ A} is
monochrome.

Proof. [8]. Or see [7, Section 2.2] or [10, Section 14.2]. �

Corollary 4.2. Let k,m ∈ N\{1}. There is some d ∈ N such that, whenever A is
an alphabet with m letters and the length d words over A are k-colored, there exists
a variable word w = l0l1 . . . ld−1 with each li ∈ A ∪ {v} so that:
(1) there exist i �= j such that li, lj ∈ A and li �= lj and
(2) {w(a) : a ∈ A} is monochrome.

Proof. Pick d as guaranteed by the Hales-Jewett Theorem for an alphabet of size
m and k+m colors. Assume without loss of generality that A = {1, 2, . . . ,m}. Let
φ : Ad → {1, 2, . . . , k} and define γ : Ad → {1, 2, . . . , k+m} by γ(w) = φ(w) unless
w is constant and γ(ii . . . i) = k+ i. Pick a variable word w such that γ is constant
on {w(i) : i ∈ A}. �

We let k ∈ N be fixed throughout the remainder of this section. We inductively
define for each m ∈ N numbers dm and em and sets Am, Bm, and Cm as follows.

d1 = e1 = 1, A1 = B1 = {1}, C1 = ∅ (or anything else – C1 is not used).
d2 = e2 = 2, A2 = {1, 2, 3}, and B2 = C2 = {3}. (Or, thinking in binary,
as is appropriate, A2 = {01, 10, 11} and B2 = C2 = {11}.)

Inductively, assume m ≥ 3 and we have defined numbers dm−1 and em−1 and
sets Am−1, Bm−1, and Cm−1. Pick by Corollary 4.2, a number dm so that whenever
the length dm words over the alphabet Am−1 are k-colored there is a variable word
w(v) = l0l1 . . . ldm−1 (where each li ∈ Am−1 ∪ {v}) such that
(1) there exist i, j ∈ {0, 1, . . . , dm − 1} with li, lj ∈ Am−1 and li �= lj and
(2) {w(a) : a ∈ Am−1} is monochrome.
Let em = dm · em−1 and let

Am = {1, 2, . . . , 2em − 1} (= {∑
t∈F 2t : ∅ �= F ⊆ {0, 1, . . . , em − 1}}) .
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Let

Bm = {∑dm−1
i=0 ai · 2i·em−1 : each ai ∈ Am−1}

= {∑t∈F 2t : F ⊆ {0, 1, . . . , em − 1} and for each i ∈ {0, 1, . . . , dm − 1},
F ∩ {i · em−1, i · em−1 + 1, . . . , (i+ 1) · em−1 − 1} �= ∅}.

Let

Cm = Bm ∪ {
w · ∑i∈F 2i·em−1 : w ∈ Cm−1 and ∅ �= F � {0, 1, . . . , dm − 1}}.

For sufficiently large m, the set Cm will be our desired set, so let us describe
how we can recognize members of Cm. We do this by induction, so we assume that
when a number is written in binary, you can recognize the members of Cm−1. Let
a number x be given. Since Cm ⊆ Am, if x /∈ Am we know x /∈ Cm. Thus assume
that x ∈ Am so x =

∑
t∈F 2t for some F ⊆ {0, 1, . . . , em − 1}. That is the length

of the binary expansion of x is at most em which we view as dm blocks of length
em−1. If there is a 1 in each such block, that is if for each i ∈ {0, 1, . . . , dm − 1},

F ∩ {i · em−1, i · em−1 + 1, . . . , (i+ 1) · em−1 − 1} �= ∅ ,

then x ∈ Bm so x ∈ Cm. So assume at least one such block has all 0’s. On the
other hand, x �= 0 so at least one such block has a 1. If two non-zero blocks look
different, then we know x /∈ Cm. So assume all non-zero blocks are the same and
let G be the set of non-zero blocks. Then there is some w ∈ Am−1 such that
x = w · ∑i∈G 2i·em−1 . If w ∈ Cm−1, then x ∈ Cm and if w /∈ Cm−1, then x /∈ Cm.

Lemma 4.3. Let m ∈ N with m ≥ 2 and let ψ : Cm → {1, 2, . . . , k}. Then
there exist x1, x2, . . . , xm in Am\Cm and ϕ : {2, 3, . . . ,m} → {1, 2, . . . , k} such
that whenever G ⊆ {1, 2, . . . ,m} and |G| > 1, one has

∑
t∈G xt ∈ Cm and

ψ(
∑

t∈G xt) = ϕ(maxG).

Proof. We proceed by induction, so first assume m = 2. Let x1 = 1, x2 = 2, and
let ϕ(2) = ψ(3).
Now assume m > 2 and the lemma is valid for m− 1. Let

ψ : Cm → {1, 2, . . . , k} .

Define a k-coloring γ of the length dm words over Am−1 as follows. Given u =
l0l1 . . . ldm−1 with each li ∈ Am−1, let γ(u) = ψ(

∑dm−1
i=0 li · 2i·em−1).

By the choice of dm, pick a variable word w(v) = l0l1 . . . ldm−1 and r ∈ {1, 2, . . . , k}
such that there exist i, j ∈ {0, 1, . . . , dm − 1} with li, lj ∈ Am−1 and li �= lj and for
each a ∈ Am−1, γ

(
w(a)

)
= r. Define ϕ(m) = r.

Let F = {i ∈ {0, 1, . . . , dm − 1} : li = v}. Let xm be the member of Am

corresponding to w(0). That is, xm =
∑

i∈{0,1,...,dm−1}\F li · 2i·em−1 . We claim
that xm /∈ Cm. Indeed pick i, j ∈ {0, 1, . . . , dm − 1} with li, lj ∈ Am−1 and li �= lj .
Since xm has some blocks of 0’s (corresponding to elements of F ) we have xm /∈
Bm. Since li �= lj , we have xm �= b · ∑

i∈G 2i·em−1 for any b ∈ Cm−1 and any
G ⊆ {0, 1, . . . , dm − 1}.
Now define a k-coloring µ of Cm−1 by letting µ(y) = ψ(y · ∑i∈F 2i·em−1). By

the induction hypothesis, pick y1, y2, . . . , ym−1 ∈ Am−1\Cm−1 and

δ : {2, 3, . . . ,m− 1} → {1, 2, . . . , k}
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such that whenever G ⊆ {1, 2, . . . ,m − 1} and |G| > 1,
∑

t∈G yt ∈ Cm−1 and
µ(

∑
t∈G yt) = δ(maxG). For t ∈ {2, 3, . . . ,m − 1}, let ϕ(t) = δ(t). For t ∈

{1, 2, . . . ,m− 1}, let xt = yt ·
∑

i∈F 2i·em−1 .
We claim that for each t ∈ {2, 3, . . . ,m − 1}, xt /∈ Cm. Indeed, since F �=

{0, 1, . . . , dm − 1} we have xt /∈ Bm and since yt /∈ Cm−1, we have xt �= b ·∑
i∈G 2i·em−1 for any b ∈ Cm−1 and any G ⊆ {0, 1, . . . , dm − 1}.
Now let G ⊆ {1, 2, . . . ,m} with |G| > 1 and let p = maxG. Assume first

that p < m. Then we have that
∑

t∈G yt ∈ Cm−1 and µ(
∑

t∈G yt) = δ(p) =
ϕ(p). Thus (

∑
t∈G yt) ·(

∑
i∈F 2i·em−1) ∈ Cm and ψ

(
(
∑

t∈G yt) ·(
∑

i∈F 2i·em−1)
)
=

µ(
∑

t∈G yt) = ϕ(p). Since

(
∑
t∈G

yt) · (
∑
i∈F

2i·em−1) =
∑
t∈G

(yt ·
∑
i∈F

2i·em−1)

=
∑
t∈G

xt ,

we have ψ(
∑

t∈G xt) = ϕ(p) as required.
Finally, assume maxG = m. Let H = G\{m}. Let z =

∑
t∈H yt and note that

z ∈ Am−1. (This is immediate if |H| = 1 and if |H| > 1, then z ∈ Cm−1 ⊆ Am−1.)
Now ∑

t∈G

xt = xm +
∑
t∈H

xt

= xm +
∑
t∈H

(yt ·
∑
i∈F

2i·em−1)

= xm + (
∑
t∈H

yt) · (
∑
i∈F

2i·em−1)

= xm + z ·
∑
i∈F

2i·em−1 .

Let w(z) = u0u1 . . . udm−1, where, recall, w(v) = l0l1 . . . ldm−1. Then

ui =

{
li if i /∈ F

z if i ∈ F .

So

γ
(
w(z)

)
= ψ(

dm−1∑
i=0

ui · 2i·em−1)

= ψ(
∑

i∈{0,1,...,dm−1}\F

li · 2i·em−1 +
∑
i∈F

z · 2i·em−1)

= ψ(xm + z ·
∑
i∈F

2i·em−1)

= ψ(
∑
t∈G

xt) .

Thus ψ(
∑

t∈G xt) = γ
(
w(z)

)
= ϕ(m). �
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Theorem 4.4. For each n ∈ N there exists m ∈ N such that whenever Cm is
k-colored, there exist z1, z2, . . . , zn in N\Cm such that

{
∑
t∈F

zt : F ⊆ {1, 2, . . . , n} and |F | > 1}

is contained in Cm and is monochrome.

Proof. Letm = (n−2)·k+2. Given a k-coloring ψ of Cm pick x1, x2, . . . , xm and ϕ
as guaranteed by Lemma 4.3. By the pigeon hole principle, pick G ⊆ {2, 3, . . . ,m}
with |G| = n− 1 and ϕ(i) = ϕ(j) for all i, j ∈ G. Let z1 = x1 and let z2, z3, . . . , zn

enumerate {xi : i ∈ G}. �
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[14] T. Skolem, Über einige Eigenschaften der Zahlenmengen [αn + β] bei irrationalem α mit
einleitenden Bemerkungen über einige kombinatorische probleme, Norske Vid. Selsk. Forh.
30 (1957), 42–49, MR 19,1159i, Zbl 084.04402.

[15] D. Strauss, N∗ does not contain an algebraic and topological copy of βN, J. London Math.
Soc. 46 (1992), 463–470, MR 93k:22002, Zbl 788.54045.

[16] E. Zelenuk, Finite groups in βN are trivial (Russian), Ukranian National Academy of Sciences
Institute of Mathematics, Preprint 96.3 (1996).

http://www.emis.de/cgi-bin/MATH-item?788.54045
http://www.ams.org/mathscinet-getitem?mr=93k:22002
http://www.emis.de/cgi-bin/MATH-item?084.04402
http://www.ams.org/mathscinet-getitem?mr=19:1159i
http://www.emis.de/cgi-bin/MATH-item?084.04304
http://www.ams.org/mathscinet-getitem?mr=19:1159g
http://www.emis.de/cgi-bin/MATH-item?638.05005
http://www.ams.org/mathscinet-getitem?mr=87g:05017
http://www.emis.de/cgi-bin/MATH-item?918.22001
http://www.ams.org/mathscinet-getitem?mr=99j:54001
http://www.emis.de/cgi-bin/MATH-item?867.22002
http://www.ams.org/mathscinet-getitem?mr=97c:54033
http://www.emis.de/cgi-bin/MATH-item?113.14802
http://www.ams.org/mathscinet-getitem?mr=26:1265
http://www.emis.de/cgi-bin/MATH-item?705.05061
http://www.ams.org/mathscinet-getitem?mr=90m:05003
http://www.emis.de/cgi-bin/MATH-item?391.10003
http://www.ams.org/mathscinet-getitem?mr=58:10808
http://www.emis.de/cgi-bin/MATH-item?758.54011
http://www.ams.org/mathscinet-getitem?mr=92g:54026
http://www.emis.de/cgi-bin/MATH-item?456.10005
http://www.ams.org/mathscinet-getitem?mr=82d:10077
http://www.emis.de/cgi-bin/MATH-item?855.05098
http://www.ams.org/mathscinet-getitem?mr=97b:03058
http://www.ams.org/journal-getitem?pii=S0002-9947-96-01533-4
http://www.ams.org/journal-getitem?pii=S0002-9947-96-01533-4
http://www.emis.de/cgi-bin/MATH-item?084.04401
http://www.ams.org/mathscinet-getitem?mr=19:1159h
http://www.emis.de/cgi-bin/MATH-item?811.22002
http://www.ams.org/mathscinet-getitem?mr=93m:22003


86 Davenport, Hindman, Leader, and Strauss

Department of Mathematics, Miami University, Oxford, OH 45056, USA
davenpde@casmail.muohio.edu

Department of Mathematics, Howard University, Washington, DC 20059, USA
nhindman@howard.edu, nhindman@aol.com, http://members.aol.com/nhindman/

Department of Mathematics, University College London, London WC1E6BT, UK
i.leader@ucl.ac.uk

Department of Pure Mathematics, University of Hull, Hull HU6 7RX, UK
d.strauss@maths.hull.ac.uk

This paper is available via http://nyjm.albany.edu:8000/j/2000/6-4.html.

http://nyjm.albany.edu:8000/j/2000/6-4.html
mailto:d.strauss@maths.hull.ac.uk
mailto:i.leader@ucl.ac.uk
http://members.aol.com/nhindman/
mailto:nhindman@aol.com
mailto:nhindman@howard.edu
mailto:davenpde@casmail.muohio.edu

