New York Journal of Mathematics

New York J. Math. 6 (2000) 153—-225.

Green’s Functions for Elliptic and Parabolic
Equations with Random Coefficients

Joseph G. Conlon and Ali Naddaf

ABSTRACT. This paper is concerned with linear uniformly elliptic and par-
abolic partial differential equations in divergence form. It is assumed that
the coefficients of the equations are random variables, constant in time. The
Green’s functions for the equations are then random variables. Regularity
properties for expectation values of Green’s functions are obtained. In par-
ticular, it is shown that the expectation value is a continuously differentiable
function whose derivatives are bounded by the corresponding derivatives of
the heat equation. Similar results are obtained for the related finite difference

equations.
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1. Introduction

Let (Q,F, 1) be a probability space and a : Q — RHd+1)/2 he a bounded mea-
surable function from 2 to the space of symmetric d x d matrices. We assume that
there are positive constants A, A such that

(1.1) My < a(w) <Al we,

in the sense of quadratic forms, where I is the identity matrix in d dimensions. We
assume that R? acts on €2 by translation operators 7, : Q — Q, x € R, which are
measure preserving and satisfy the properties 7,7, = o4y, 7o = identity, z,y € R,
We assume also that the function from R? x Q to Q defined by (z,w) — T,w,
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r € RY, w € Q, is measurable. It follows that with probability 1 the function
a(z,w) = a(r,w), r € R, is a Lebesgue measurable function from R¢ to d x d
matrices.

Consider now for w € 2 such that a(z,w) is a measurable function of z € R?,
the parabolic equation

ou 4 0 0
(1.2) = i; s {aw(x,w) ju(m,t,w)} , t€R® t>0,

u(z,0,w) = f(z,w), xecR

It is well known that the solution of this initial value problem can be written as
u(etw) = [ Galopiti) vy
R

where G,(z,y,t,w) is the Green’s function, and G, is measurable in (z,y,t,w).
Evidently G is a positive function which satisfies

(1.3) Ga(z,y,t,w)dy = 1.

Rd
It also follows from the work of Aronson [1] (see also [5]) that there is a constant
C(d, A\, A) depending only on dimension d and the uniform ellipticity constants A\, A
of (1.1) such that

_ _ 2
(1.4) 0< Gala,y, tw) < SLEAY) [ 2 =yl ]

td/2 C(d, \, At

In this paper we shall be concerned with the expectation value of G, over €.
Denoting expectation value on Q by < > we define the function Ga(z,t), = €
R?, ¢t >0 by

@%m&nszgaw.

Using the fact that 7,7 = Tp4y, 2,y € R?, we see from the uniqueness of solutions
o (1.2) that

Ga(z,y,t,w) = Ga(z — y,0,t, Tyw),
whence the measure preserving property of the operator 7, yields the identity,
(Gal@,y,t.9)) = Galw —,1)
From (1.3), (1.4) we have

Ga(z,t)dx =1, t>0,

R
d,\, A —|z|?
(1.5) 0 < Ga(z,t) < C(t;l/; )exp {C(d TA)J , zeRY t>0.

In general one cannot say anything about the smoothness properties of the function
Ga(z,y,t,w). We shall, however, be able to prove here that G,(x,t) is a C* function
of (z,t), z€RL t>0.
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Theorem 1.1. Gu(x,t) is a C' function of (x,t), x € RY, t > 0. There is a
constant C'(d, X\, \), depending only on d, \, A such that

0Ga C(d, M A) —|af?

Lra <

‘87& (x’t)’ S Tzt O [C(d,A,A)t ’
C(d, M\ A)

0Ga < —|z|?
‘ O (x’t)’ R [Ow,xA)J '

The Aronson inequality (1.5) shows us that G,(z,t) is bounded by the kernel
of the heat equation. Theorem 1.1 proves that corresponding inequalities hold for
the first derivatives of Ga(z,t). We cannot use our methods to prove existence of
second derivatives of Ga(x,t) in the space variable x. In fact we are inclined to
believe that second space derivatives do not in general exist in a pointwise sense.

As well as the parabolic problem (1.2) we also consider the corresponding elliptic
problem,

d
(1.6) — Z aixz {aw(x,w)aa‘:j(x,w)] = f(z,w), z€R™

ij=1

If d > 3 then the solution of (1.6) can be written as

u(l‘vw) = i Ga(m,y,w)f(y,w)dy,

where G, (z,y,w) is the Green’s function and is measurable in (z,y,w). It follows
again by Aronson’s work that there is a constant C(d, A, A), depending only on
d, A\, A, such that

(1.7) 0 < Ga(z,y,w) < C(d, A\, A)/|z —y|*2, d>3.

Again we consider the expectation of the Green’s function, Ga(x), defined by

<Ga(xa Y, )> = Ga(x - y)
It follows from (1.7) that
0 < Galz) < C(d,\A)/]z|*2, d>3.

Theorem 1.2. Suppose d > 3. Then Ga(x) is a C* function of x for x # 0. There
is a constant C(d, \,A) depending only on d, \, A, such that

9Ga C(d, A, A)
< — " .
T < Sz k0

We can also derive estimates on the Fourier transforms of G,(z,t) and Ga(z).
For a function f : R — C we define its Fourier transform f by

f&)= [ fl@)e™dx, ¢ecR
]Rd

Evidently from the equation before (1.5) we have that |Ga(€,2)] <1
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Theorem 1.3. The function éa(f, t) is continuous for ¢ € R%, t > 0, and differen-
tiable with respect to t. Let ¢ satisfy 0 < § < 1. Then there is a constant C(0, A, A)
depending only on 5, \, A, such that

. C(8,\A)

|Ga(&,t)] < W7
G C(3, )\ A)|¢?
I e

where €| denotes the Buclidean norm of &€ € R%.

Remark 1.1. Note that the dimension d does not enter in the constant C(d, A, A).
Also, our method of proof breaks down if we take § — 1.

In this paper we shall be mostly concerned with a discrete version of the parabolic
and elliptic problems (1.2), (1.6). Then Theorems 1.1, 1.2, 1.3 can be obtained as
a continuum limit of our results on the discrete problem. In the discrete problem
we assume Z? acts on by translation operators 7, : Q@ — Q, x € Z% which
are measure preserving and satisfy the properties 7,7, = Ty4,, 7o = identity. For
functions ¢ : Z¢ — R we define the discrete derivative V;g of ¢ in the i th direction
to be

Vig(a) = g(x +e;) —g(x), =z €L
where e; € Z? is the element with entry 1 in the i th position and 0 in other
positions. The formal adjoint of V; is given by V7, where

Vig(x) = g(x —e;) —g(z), xeZ
The discrete version of the problem (1.2) that we shall be interested in is given by

(1.8) % =— Mil Vi [aij(Tow)Viu(z, t,w)], = €Z% t>0,
u(z,0,w) = f(z,w), xcZ%
The solution of (1.8) can be written as
u(z, t,w) = Z Ga(z,y,t,w) f(y,w),

yeZ4

where Ga(z,y,t,w) is the discrete Green’s function. As in the continuous case, G
is a positive function which satisfies

Z Ga($7 y) t7w) = 1'
yeZ4

It also follows from the work of Carlen et al [3] that there is a constant C(d, A, A)
depending only on d, A\, A such that

C(d,\,A) ~ min{fz —y|, |z — y|?/t}
11z % C(d,\,A)

Now let Ga(z,t), = € Z, t > 0, be the expectation of the Green’s function,

(1.9) <Ga(x,y,t, )> = Ga(z —y,t).

0 < Ga(z,y,t,w) <
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Then we have

> Galw,t)=1, t>0,

zE€Z
A i 2
(1.10) Gal(z,t) < %exp [_W} Ceezd 150,

The discrete version of Theorem 1.1 which we shall prove is given by the following:

Theorem 1.4. G,(x,t), x € Z%, t > 0 is differentiable in t. There is a constant
C(d, N\, A), depending only on d, A\, A such that

0Ga

L A min{|a], [2]*/t}
5 (x,t)] < Tz r1 [_ C(d,\,A) ’
C(d, A\ A) min{|z], [z]?/t}
, < ot v I
|lea($)t)‘ = 1+td/2+1/2 ex |: C(d, )\7A)

Let § satisfy 0 < § < 1. Then there is a constant C(6,d, A, A) depending only on

d,d, \, A\ such that
A ; 2
111)  |ViV,Ga(a )] < COEAMN) {_ mm{lﬂf||f|/f}]

1+ ((@r1+0)/2 C(d, M)

Remark 1.2. As in Theorem 1.1, Theorem 1.4 shows that first derivatives of
Ga(z,t) are bounded by corresponding heat equation quantities. It also shows
that second space derivatives are almost similarly bounded. We cannot put § = 1
in (1.11) since the constant C(d,d, A\, A) diverges as § — 1.

The elliptic problem corresponding to (1.8) is given by

d
(1.12) > Vi faij(rew)Viu(z,w)] = f(z,w), = €L

ig=1
If d > 3 then the solution of (1.12) can be written as

u(m,w) = Z Ga(x,y,w)f(y,w),

A

where Ga(z,y,w) is the discrete Green’s function. It follows from Carlen et al [3]
that there is a constant C'(d, A\, A) depending only on d, A, A such that

(1.13) 0 < Ga(z,y,0) < C(dA\A) /L + |z —y[*72), d>3.
Letting Ga(z) be the expectation of the Green’s function,

(Galw,9.)) = Gala—y),
it follows from (1.13) that
(1.14) 0 < Ga(z) < C(d, N\, N)/[1 4 |z]|972], d>3.
We shall prove a discrete version of Theorem 1.2 as follows:

Theorem 1.5. Suppose d > 3. Then there is a constant C(d, A\, A), depending only
on d, \, A such that

IViGa(z)| < C(d,\A)/[1+|2["Y], zez
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Let § satisfy 0 < § < 1. Then there is a constant C(6,d, A, A) depending only on
6,d, \, A such that

|ViV;Galz)] < C(0,d, N\ A)/[1+ 2|77 1], 2 ez

Remark 1.3. Asin Theorem 1.4 our estimates on the second derivatives of G ()
diverge as 0 — 1.

Next we turn to the discrete version of Theorem 1.3. For a function f : Z¢ — C
we define its Fourier transform f by

f©) = fl@e™, ¢erd

zE€Z

For 1 <k <d, £ € R let ep(§) = 1 — €€ and e(€) be the vector e(€) =
(e1(€),...,ea(§)). Let Ga(&,t) be the Fourier transform of the function Ga(x,t), = €
7 t > 0, defined by (1.9). From the equation before (1.10) it is clear that
Gale )] < 1.

Theorem 1.6. The function éa(g,t) is continuous for & € R? and differentiable
fort > 0. Let § satisfy 0 < § < 1. Then there is a constant C(J, A\, A) depending
only on 6, \, A, such that

|Ga(§vt)‘ = [1—|—|€(£)‘2t]6 ’
9Ga C(O, A M)le(©)?
o O = R

where |e(€)| denotes the Euclidean norm of e(€¢) € C2.

In order to prove Theorems 1.1-1.6 we use a representation for the Fourier trans-
form of the expectation of the Green’s function for the elliptic problem (1.12), which
was obtained in [4] . This in turn gives us a formula for the Laplace transform of the
function Ga(&,t) of Theorem 1.6. We can prove Theorem 1.6 then by estimating
the inverse Laplace transform. In order to prove Theorems 1.4, 1.5 we need to use
interpolation theory, in particular the Hunt Interpolation Theorem [10]. Thus we
prove that Ga(g ,t) is in a weak LP space which will then imply pointwise bounds
on the Fourier inverse. We shall prove here Theorems 1.4-1.6 in detail. In the
final section we shall show how to generalize the proof of Theorem 1.5 to prove
Theorem 1.2. The proofs of Theorems 1.1 and 1.3 are left to the interested reader.
We would like to thank Jana Bjorn and Vladimir Maz’ya for help with the proof of
Lemma 2.6.

There is already a large body of literature on the problem of homogenization of
solutions of elliptic and parabolic equations with random coefficients, [4] [6] [7] [8]
[11]. These results prove in a certain sense that, asympotically, the lowest frequency
components of the functions Ga(x) and Ga(z,t) are the same as the corresponding
quantities for a constant coefficient equation. The constant depends on the random
matrix a(-). The problem of homogenization in a periodic medium has also been
studied [2] [11], and similar results been obtained.
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2. Proof of Theorem 1.6

Let Ga(&,1), € € R%, ¢ > 0, be the function in Theorem 1.6. Our first goal will
be to obtain a formula for the Laplace transform of G‘a(g ,t), which we denote by

Gal&,m),
C;’a(ﬁ,n) = /OO dt e_"té’a(f,t) , Re(n)>0.
0

It is evident that éa(f ,n) is the Fourier transform of the expectation of the Green’s
function for the elliptic problem,

d
(2.1) nu(x,w) + Z Vi [aij(Tow)Vju(z,w)] = f(z,w), z€Z%.
i,j=1
In [4] we derived a formula for this. To do that we defined operators 9;, 1 < i < d,
on functions ¥ : Q@ — C by 9;¥(w) = ¥(7e,w) — ¥ (w), with corresponding adjoint
operators 07, 1 < i < d, defined by 9} (w) = ¥(7_e,w) — 1(w). Hence for £ € R?
we may define an operator L¢ on functions ¢ : 2 — C by

d
Lep(w) =P Y ) [0 4 e;(—0)] aij(w) [9; + €;(&)] ¥(w) ,

4,j=1

where P is the projection orthogonal to the constant function and e;(§) is defined
just before the statement of Theorem 1.6. Note that L, takes a function ¥ to a
function L¢tp satisfying (Leyp) = 0. Now for 1 < k < d, £ € R%, Re(n) > 0, let
Yi(€,m,w) be the solution to the equation,

(2.2)  [Le+nlpw(&n,w) + Z €' [05 + ¢;(=6)] [arj(w) — {ar ()] = 0.

Then we may define a d x d matrix ¢(§,n) by,
23)  aew(En) = < w0+ Zam ~ie5€ [0 1 e5(6)] s (6,1, ->> .

The function G‘a(f ,m) is then given by the formula,

1
n+e(€)q(§,n)e(=¢)’

We actually established the formula (2.4) in [4] when 7 is real and positive. In that
case ¢(&,n) is a d X d Hermitian matrix bounded below in the quadratic form sense
by Al;. It follows that Ga(é,n) is finite for all positive 7. We wish to establish
this for all n satisfying Re(n) > 0. We can in fact argue this from (2.1). Suppose
the function on the RHS of (2.1) is a function of x only, f(z,w) = f(x). Then the
Fourier transform @(£,w) of the solution to (2.1) satisfies the equation,

(a(,-)) = Gal&, ) f(€), €E€R™

(2.4) Ga(&m) = ¢eRY Re(n) >0.
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If we multiply (2.1) by u(x,w), and sum with respect to z, we have by the Plancherel

Theorem,
Inf? / (e, w)[2de < L/ FO)de

[77"’71']61 [77"’71'](1

Since f(€) is an arbitrary function it follows that |Ga(&,7)| < 1/|n]. We improve
this inequality in the following:

Lemma 2.1. Suppose Re(n) >0 and ¢ € R%. Let p = (p1,...,pq) € CL. Then

(2.5) Re[nn + pa(&m)p] > Re(n) + Alpl?,
(2.6) Im(n)Im[pq(§, n)p] = 0.
Proof. From (2.2), (2.3) we have that
d
qk, k' (ga 77) = < Z aiJ(') [6k,i + eieif[ai + ei(_f)]wk(_§7 m, )]

[6’?'7]' + e_iejf[aj + ej(f)Wk’ (§7 m, )] > + 77<¢k(—fa m, ')¢k’ (§7 m, )>

Thus we have

d
@7) pa&mp={ D ai;() [pi+ 0 + e (=€,

4,j=1

where

(28) § nv Zpkwk g m, ) .

Evidently we have that

(2.9)  [Le +nlp(&n,0 +Zpkze’eJ 105 + ¢ (=] [an,;(w) = (ar;(-N] =0

It follows from the last equation that

whence

(210) [Ef + Re(n)][<ﬁ(§a n, ) - 90(67 7, )] =—i Im(n)[@(& n, ) + 50(53 m, )] :

Hence

@11)  ([p(€ ) = ¢(& 7, VL + Re(m)llp(€n.) — p(&7.)])

Observe that since the LHS of (2.11) is real, the quantity

([, ) = P& Nilem, ) + (&, 1,)])

is pure imaginary.
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Next for 1 < j < d, let us put
) 1
Aj = Py + eilej.g[aj + €; (E)]i{(p(ga 7, ) + 90(57 7_77 )}7
) 1
Bj = eizefg[aj + €; (5)]5{@(57 m, ) - 90(57 ﬁa )}
Then

pa&mp=( Y ai; (VA = BilA; + Bj]) + n( o€ 7 )w(€m,0))-

We can decompose this sum into real and imaginary parts. Thus

< Xd: ai,j()[Ai — Bi][4; +Bj]> = < Zd: ai,j(')f_liAj> - < zd: ai,j(')BiBj>

i,7=1 i,j=1 3,7=1
d
i,j=1

Evidently the first two terms on the RHS of the last equation are real while the
third term is pure imaginary. We also have that

)

<90(£7777 ')Qp(fvrh )
T FET )+ 5En N+ bEm ) - &)
T

<
<

¥ 57 m, ) + 50(57 Ut )} + [90(5, m ) - 90(57 7, )]} >

e )+ ol&m ) ) = 1{ lotem) -~ wle )

where we have used (2.11). Observe that the first two terms on the RHS of the last
equation are real while the third term is pure imaginary. Hence

77<90(£,77,') (5,77,‘)> =

4 < (&) )\2> Rein)@ (&m7) = (&)
+ 5 {[P&m - P& NlLe + Retnllote,n, ) — w(67)] )
Im(n) m(n)

1 <|s0(£,77, ) + (&, )|2>*Z‘T<|90(§,777')*80(5,777‘)|2>

TRl [feEm ) - A€ e + Retlloleon. ) — o6 )] )
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We conclude then from the last four equations that

(2.12)
d d
Re[ pa(€mpl = (D ais()Aid;) = (Y ais()BiB;)
i,j=1 ij=1

+ 2D (e ) + o) - P fo(en, ) - olem o))

+ 5 {[PEm T~ &7 e + Rellpen ) — w(6,7.)] )
(2.13)

d

tmpa(€,me) =2 1 (Y 0y VA8, )+ T {fo(e ) + 06,7,

- Im477) <‘<P(§7777 ) - W(&ﬁ? )|2> - 21%12(17(7;) :

([ m ) =o€ NIee + Re)llp(€n.) = o€ 7)) )-

We can simplify the expression on the RHS of (2.12) by observing that

d

(S ey ()B:B;) = 3 (BlEm ) ~ P& Nelo(€ ) — o€ 7))

ij=1

Hence we obtain the expression,

d
(219) Refpa(e el = (3 0,044 + 0D (e, ) + (6.7

4,j=1

+ 3([0lEn,) ~ 2E 7, TMice + Re(mlple,m, ) — ol&,7,)]):

Now all the terms on the RHS of the last expression are nonnegative, and from
Jensen’s inequality,

d

(S 0 (VAA) = Aol

i,j=1

The inequality in (2.5) follows from this.
To prove the inequality (2.6) we need to rewrite the RHS of (2.13). We have
now

< zd: ai,j(-)/L-Bj> = < Ed: ai,j(‘)ﬁiBj>
ij=1 ij=1

+ i< [[v)(&n, )+ (&1, )| Lelp(Em, ) — (&1, ~)} >
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From (2.10) we have that

([&n ) +eE ] Lelolen ) - w(&,,] )
n,-

= —i Im(n) (|lp(&,n,-) + @(&7,)1)
—Ram<k@m» A&, lp(€,n, ) = (& m,)])
=—ilmn)<|<ﬂ(€ 1) + e 7,)%)
?<¢§,f €7, (e + Re()] [p(6..) — o(&.7, 1)

where we have used (2.11). We also have that

< zd: ai,j(')ﬁiBj>

ij=1

<{§; o€ [0+ e;(=)] aig () } lpl&m, ) — 9(&7, )] )

= — (T oE ) + e+ MoE T lelEm ) — o(67.])
= — 1 (T R lE ) + 2 & 7 M o€ m ) — (6,7, ])
+ 5 Tml) (Jo(€.m, ) — 967, )1%)
= — 1 ([PE@m )+ 5] 1e + Re(m]ole )~ o(6,7,])
+§ m(n) (I (& m,7) ~ #(& 7))
= 1 Im(n) [(lo(&m,-) + (&)%) + (o€ n, ) — (& 7,)%)] -

It follows now from (2.13) and the last three identities that

(215) tmlpa(€,n)p) = § Tm(n) (1 (6 m,) + 9(6,7, )P

+ 1 Il (Jol€m, ) — 9(6.7, %)
The inequality (2.6) follows. O

Let us denote by G a(€,t), t > 0 the inverse Laplace transform of Ga(f, n). Thus
from (2.4) we have
216 Guen=gm o [ e dllm(y)
2.16 t)= lim — m(7n)|.

N—oo 2m J_n 1+ e(§)q(&;m)e(=E)

It follows from Lemma 2.1 that, provided Re(n) > 0, the integral in (2.16) over the
finite interval —N < Im(n) < N exists for all N. We need then to show that the
limit as N — oo in (2.16) exists.

Lemma 2.2. Suppose Re(n) >0 and &€ € RY. Then the limit in (2.16) as N — oo
exists and is independent of Re(n) > 0.



164 Joseph G. Conlon and Ali Naddaf

Proof. We first note that for any p € C%, pq(&,n)p and pg(€,7)p are complex
conjugates. This follows easily from (2.7). We conclude from this that

(2.17)

1 [y ent 1 N ent
3 | Tre@e ey =1 [ R e g )
N

N
— explRe(al{ [ A(en) coslim@naltm(m)] + [ k(€ n) sinlm(n)tldltmn)]

0 0

where

(2.18) h(&n) = Re[n+e(€a(&ne(=E)]/In+ e(€a(&,n)e(=E)?,
k(&,m) = Im [n+e(€)q(&,ne(=E)]/In+ e(€)q(€, n)e(—¢)[>.

We show there is a constant Cj 5, depending only on A, A such that

(2.19) AmmmeMmmn<cum Re(n) > 0

To see this, observe from (2.14), (2.15) that

e(n)+6
(220 M = (7 g

(S jmraisOAA;) + % ([¢lE ) — &, Le lp(€n, ) — (€ 7,)])
1+ % (€ m ) + 96,77, )12) + 3 (e m, ) = (& 7))

where

@:

and the quantity {-} in the first line of (2.20) is the same as the one in the second.
It is easy to see that

(2.21)

(fij»4A> 1 ([P = %E7 ] £elote.n) = o€ ) 2 Ne©) .

©,j=1

We can also obtain an upper bound using the fact that

< Zd: ai,j(')AiAj> + % <[<P(£ﬂ7, ) = (&1, ~)} Le [p(&,m,-) — (&7, ’)]>

<o 3 ai;(eil@es(©)) + 5 { [pEm ) +2E 7)) Le [p(m, ) + o(6,n, 1)

[@577, (&1, -

< } o(&n,-) — e(&,7,- )]>
< 20je(9)[* + Q<am>+
(P& )t

>} elo(€m )+ 067, )])
< (&7, ) Lo (8,1, - )>-

(&
1
2\%
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We see from (2.9) that

<s0 ) Lep(E,m, - )> < Ale(€)]?,
(P& Lep(& 7)) < Ale(©),
< [so(é“, n,+) + (&7, -)} ¢lp(&m, ) + @&, -)]>

Hence we obtain an upper bound
(2.22)

<fjmxwh4> 1 ([PE&n =97 e le(n ) — 0.7, )]) < 4Ale(€) 2

1,j=1

< 4Ale(9)P*.

Observe that the upper and lower bounds (2.21), (2.22) are comparable for all
Re(n) >0, £ € R™
Next we need to find upper and lower bounds on the quantity,

1 (0€m, )+ 9lE 1 )P) + 7 (l9l€m, ) = ol&m,)P)
= S (elEn )Y + 5 (lelem )P

Evidently zero is a trivial lower bound. To get an upper bound we use (2.9) again.
We have from (2.9) that

|77| <|90(§7 , )|2> < <90(§7 , )Q@(& m, ')>1/2
©)" < AP,

<§§auoe@wj

whence
(lp(&,m, )17 < Ale(©)/Inl.
‘We conclude then that
(223) 7 (0(Em )+ 0l& 7)) + 1 (196 m) = 967, )7) < Al /Il

We use this last inequality together with (2.21), (2.22) to prove (2.19). First
note from (2.5) that

[h(€ml < 1/ [Re(n) + Me(©)] . Re(n) >0, ¢eR"
We also have using (2.20),(2.21), (2.22),(2.23) that
(229)  [h(E )| < {Reln) +4AJe()*} / [Imn)? + {Relo) + 1 Me(©)?}’],

Re(n) >0, [n| > Ale(§)]?, ¢ eR™
We then have

N N©OF  glim(p)]
| ey < [ p O

- Re(n) + 4A]e(€))?
+/0 Im(n)? + [Re(n) + %Me(fﬂz]gdﬂm(n)] < Cia,
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where C) o depends only on A, A, whence (2.19) follows.
Next we wish to show that the function k(&,n) of (2.18) satisfies

(2.25) |0k (€, m)/0[tm(n)]| < 1/[Im(n)[*, Re(n) >0, € € R”.

In view of the analyticity in 7 of ¢(&,n) we have

0 1

on n+e(€)aq(&,ne(—
L+ e(§)[0q(€,m) /Onle(—
[+ e(§)a(€,me(—E)]?

Let us denote now by (&, n,w) the function ¢(§,n,w) of (2.8) with p = e(=£). It
is easy to see then from (2.9) that

(226) 90(57773"‘}) - 7/’(*577%@) :
It follows now from (2.7) and (2.9) that
e(€)[0q(&,n)/One(—&) = (¥ (=& n,)¥(&n,))

Ok(&;m)/0llm(n)] = —Re - ¢

)
= Re f)

sz;(f,nw»

n

<w( £m,)Le a% 1)) + (G- Leven. )
<8j (=& m,) £g+n §n7>
<

Y(=€,m,) Eg+77 §n7>

= (Y(=&n, (& n, )
Hence,
L+ ($(=¢n,)¢(E ;) 1
(2.27) |0k (&, m)/0Im(n)]| < I+ e(€)g (5 Ne(—OF | = Tmn)?’
from (2.15).

We can use (2.19), (2.27) to show the limit in (2.16) exists. In fact from (2.19)
it follows that
N

Jim [ A(E, ) cos[Tm(n)t]d[Im(n)]
—o0 Jo

exists. We also have that
N . _ 1 Yok n)
| e msinmdim) = - [ S5

+ % k(¢, Re(n) +iN){1 — cos[Nt]}.

{1 = cosltm(m)t] fdftm(n)

From (2.6) we have that
|k(&, Re(n) +iN){1 — cos[Nt]}| <2/N.



Green’s Functions for Equations with Random Coefficients 167

From (2.27) we have that

L [%] 0k(&,m)
2.28 — —=| 1= 1 t] pd|l <C
(2:28) D[ {1~ cosftmt bt < c.
for some universal constant C'. Hence the limit,

N
Jim [ k(€ n) sinfTm(n)e)d[im ()]
— 00 0

exists, whence the result holds. ([

Lemma 2.3. Let Go(€,t) be defined by (2.16). Then Ga(&,t) is a continuous
bounded function. Furthermore, for any §, 0 < & < 1, there is a constant C(J, A\, A),
depending only on §, \, A, such that

(2.29) (Gal&,8)] < CEAA) /1 + le(©)PH

Proof. Consider the integral on the LHS of (2.28). We can obtain an improvement
on the estimate of (2.28) by improving the estimate of (2.27). We have now from
(2.27), (2.14), (2.15), and (2.23) that

L Ale(©)/lnl
le()[* + [Tm(n)[?
Assume now that |e(£)|?t > 2 and write the integral on the LHS of (2.28) as a sum,

1 /1/75 1 le(€)]? 1 oo
L / 41 / .
t Jo tJie t Jie)

We have now from (2.28), (2.30) that for 0 < 6 < 1,

IAE [we(lsﬂ??m(n)r & _ﬁ({:;mmré i)

RS S 2476
<o [T s | dm) < c@ e,

for some constant C(d, A, A) depending only on 6, A, A. Next we have

1 /6(5)2 1 /|€(E)2 14+ A
- < - ————5—— d|Im(n
i STl Re@Pim 0

(2.30) [0k (€, m)/0m(n)]| < 5

LA loglle(©)?
X elP

L1 dmpy] 1
t /e<s>|2 =1 /|e<5)2 Im(n)? ~ e@P ¢t

We conclude therefore that the integral on the LHS of (2.28) is bounded by
C,\A)
[1+le(©)> t]°

Finally, we have
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for any §, 0 <6 < 1.
Next we need to estimate as N — oo the integral

N N
/0 h(&,m) cos[Im(n)t] d[Im(n)] = — % . g&fﬁ&;))]

+ % h(&, Re(n) +iN)sin[Nt].

sin[Im(n)t] d[Im(n)]

It is clear from (2.6) that limy_. h(&¢, Re(n) +iN) = 0. We have now that

oh(Em) _ 0 1
9lIm(n)] I n+e(€)qléme(=¢
o L e©)[04(&,m)/nle(=£)
[0+ e(©a(&me(=9)*

Hence the estimates (2.27), (2.30) on the derivative k(£,n) apply equally to the
derivative of h. We therefore write the integral

(2.32)

T [ vomomammon =1 [+ [ 2 [

as a sum just as before. We have now from (2.30),

1 1/t 1 1/t ]_-|—A )
Y| b%@mehmmmwmmm
< Caa/lle©)Pd,

where C)\ o depends only on A,A. The other integrals on the RHS of (2.32) are
estimated just as for the corresponding integrals in k. We conclude that

(2.31)

AmmamwﬁmmemmwschAvu+wa&ﬁ

for any 4, 0 < § < 1. It follows now from (2.17) that (2.29) holds for any ¢, 0 <
d < 1. O

Lemma 2.4. The function Ga(€, 1),
d, 0 <0 <1, there is a constant C(9,

aéa (57 t)
ot

R? is t differentiable for t > 0. For any

¢ e
A, A) depending only on 0, A, A such that

C(3, )\, A)
t1+ le(§)2t]5”

t> 0.

Proof. From Lemma 2.2 we have that

(2.33)  mwexp[—Re(n)t]Gal£, 1) /OOO h(€,n) cos[Im(n)t]d[Tm(n)]

B UL — cos[Im m
£y Bty 1 costimt}dimGn)l
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We consider the first term on the RHS of (2.33). Evidently, for finite NV, we have
(2.34)
a N

5 | e costmmadimmn] = = [ (e (o) sinfin(o)dfin(o)

1N 9
1 [ g (et} {1 — cosfimn))} dfa)]

1
= A& Re(n) +iN)N{1 — cos[N1]}.
It is clear from the inequality (2.24) that
A}im h(§, Re(n) +iN)N = 0.

We have already seen from (2.24) that

(2.35) / " (e m)ldlIm(m)] < Cha.

0
for some constant C\ o depending only on A, A. We shall show now that we also

have
< 0on,n)
(2:36) L |otmey

To see this we use (2.31) to obtain

] [Em(n)]d[m(n)] < Cy.a .

2.37 =1 .
(230 omtn)] " Tt el@ate. mel P
For any complex number a + ¢b it is clear that

Im 1 _ —2ab

(a+ib)? (a2 +b2)2’

< 1 2|a
min | —, ——|.

1 8A6(£)|2]
Ale(©)* 7 [m(n)* |

whence

I 1
‘ CERIE
We conclude then that
1
[+ e(§)a(§, ne(—E))?

R

Smin[

It follows that
(2.38)
o 1

R e
We also have that
(W& n, ) (=&m,))
1+ e(§)a(& n)e(—&)]?
We conclude that

> <¢(£a773 )d’(*fﬂ]a))
(2.39) / tm{n) ' T e©)alE Me(—OF

le(®)]? 00
d[Im(n)] §/ +/ < Cha-
0

le(©)1?

A AI6(€)|2]
A2le(§)[*[Tm(n)| * [Tm(n)[? |

Smin{

d[Im(n)] < Cxa.
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The inequality (2.36) follows from (2.38), (2.39). It follows from (2.34), (2.35),
(2.36) that the first integral on the RHS of (2.33) is differentiable with respect to ¢
for t > 0 and

240) g [ e cosltmuridim(ny] =

1 [ 0
EA iy (&) 1)} [1 = cos[imn)] [ dltm().

Furthermore, there is the inequality,

a o0
o [ nemeostimtndman] < /e
Next we wish to improve this inequality to
(2.41) 9 / h h(&,n) cos[Im(n)t]d[Im(n)]| < __Ouas
' a Jy "7 ! V= A+ Je@ P

To do this we integrate by parts on the RHS of (2.40) to obtain

242) g [ hem costimtaltmr)

1/ {23}1(5,77)
> Jo | O[lm(n)]
We have already seen in Lemma 2.3 that
1/” Oh(&,m) Crns
t Jo |0[Im(n)] (le(€)[?]°

for any §, 0 < § < 1, where we assume |e(¢)|> ¢t > 1. The inequality (2.41) will
follow therefore if we can show that

(2.43)

+ Im(n) g[I}rLrE(i;ﬁ)Q } sin[Im () ¢]d[Im(n)].

| sin[Tm(n)#]|d[Tm(n)] <

! < | 92h(Em) m sin{Im m Orao e(6)?
D[ |G o) stmOdtmen)] < X (P> 1.0 <6< 1.
To prove this we use the fact that
Ph&m) | _|9* 1
(2.44) (| = | a7 0 T e me(—8) |
82 1 i 1+ W(—fﬂ%)ﬂ)(&ﬂv»

o n+e(§)a(§,me(=§) I [n+e(©)a& ne(=E))?
_2{1+ (W(=&m )Y (&)}
[t el©alg me(=g)?
(09 (=& n, ) /One(&:m, ) + (D(=E,m, ) [0U(E, . -)/On))]
[+ e(€)q(&, me(=E)]?
Observe now that similarly to (2.27), (2.30) we have that

L+ @En )& [ 1 2 o
n+e(@a(€me(=OF = LImm)P " A%e(©)° A€l ]

(2.45)
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We can conclude from this last inequality just like we argued in Lemma 2.3 that

1/00 |1 + <1/}(7€7777>7/)(£a777)> ‘2
t Jo I+ e(§)q(& me(=¢)

for 0 <6 <1, |e(&)]*t > 1.
Next from (2.9) we see that 0y(§,n,-)/On satisfies the equation,

(2.46) e+ n 2SR 4y =0

From this equation and the Schwarz inequality we easily conclude that

(0w (&, m,)/oml*) < Inl~> (Jw(&n,)?) .
It follows then that

| <1/)(—5»777)[3¢(5777,)/577]> |2 min 1 A
(247) Tt e@aEmeOF =" | mmP * Me@Fme

Since this inequality is similar to (2.45) we conclude that (2.43) holds.

We have proved now that (2.41) holds. To complete the proof of the lemma we
need to obtain a similar estimate for the second integral on the RHS of (2.33). To
see this observe that we can readily conclude that the integral is differentiable in ¢
and

Crns

[le(€)[?e]°”

[T ()| sin[Im () ¢]|d[Tm ()] <

(48) 02 me{l—cos[Im(n)t]}d[Im(n)]

2 [ 0k(Em) )
=2/, 3] {1 — cos[Im(n)t]} d[Im(n)]
> k(& n)

T . O[m(n)2 Im(n) {1 — cos[Im(n)t]} d[Im(n)].

We have already seen in Lemma 2.3 that

L[] 0k(&n) Caas

= ——2 {1 — cos[Im(n)t] }d[Im(n)] < ——=22——

7 ) || 0~ eslimidimo) <

for any §, 0 < § < 1. Hence we need to concern ourselves with the second integral
on the RHS of (2.48). Now it is clear that §%k(£,7n)/0[Im(n)]? satisfies the same
estimates we have just established for 82h(&,7n)/0[Im(n)]?. It follows in particular
that

i e i1~ cosfmatl o)
1 [°°1— cos[Im(n)t C
<q [ o) < 5.
for some universal constant C'. Arguing as in Lemma 2.3 we also have that
o | St 1.~ cosfnot o)

Ut le©  poo o
[ e
/o 1/t e)z ~ tlle(§)?t)°
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for 0 <6 <1, le(¢)]* t > 1. The last three inequalities then give us the same
estimate on the derivative of the second integral on the RHS of (2.33) as we have
already obtained for the first integral. O

The estimate for G4 (¢,t)/0t in Lemma 2.4 diverges as t — 0. We rectify this
in the following:

Lemma 2.5. There is a constant Cy 5 depending only on A\, A such that

8éa(§a t)
ot -

e(), €¢eRYt>0.

Proof. To bound the derivative of the first integral on the RHS of (2.33) it is
sufficient to show that

(2.49) P [ el (- cosltm@n)} dtm(n)] < Cuale(©P

E/0 ‘ghgn‘ﬂ )| {1 — cos[Im(n)t]} d[Im(n)] < Cx.ale(€)*.

We have now from (2.24) that
[h(€, m)] < 4Ale(€)]*/Itm(n)[*,  Re(n) =0,
and from the inequalities before (2.39) that
|01 (&, m)/0[tm(n)]| < 9AJe(©)*/Mm(n)[*, Re(n) = 0.

The inequalities (2.49) follow from these last two inequalities.
The derivative of the second integral is given by the RHS of (2.48). Using the
identity

1 20k(Em) oo PRED] -
ﬂA [[@m+1<>ﬂmwmh1 [T (7)) T (7))

=Ak@mmmwwmwmwmm

0k(&, Re(n) +1iN) } {1 — cos[Nt]}
O[Im(n)] t?

+ {k(g, Re(n) +iN) + N
~ NE(E, Re(n) 4+ iN)sin Nt
t )
we see that the derivative of the second integral on the RHS of (2.33) is also given
by the formula

m/t

(2.50) lim k(&;m) Tm(n) cos[Tm(n)t]d[Im (n)],

m—00 0
where the limit in (2.50) is taken for integer m — oco. Writing n+e(£)q(§,n)e(—¢) =
a(n) +ib(n) we see from (2.18) that

~ Im(pb(n) Im(p) [ a(n)?
BOOMEN) = b~ b 1wl + o2
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Observe now that just as before we have

* ()| a(n)? < aw?
/0 [b(n)] a(n)? + b(n)? d[Im(n)] S/o a2 + ()2 d[Im(n)]

le(&)? 00 )
< / + / < Caale(§)7,
0 le(§)?

for a constant C o depending only on A, A. We also have from (2.15) that
I 1 1
2D ay i et aP) + 5 (g )]
% <|1/1(€77), )|2> + % <W)(_§,na )|2> )
+ 3 (& n,)2) + 3 V(=& n,)?)

It follows therefore from (2.50) that the result will be complete if we can show that

(2.51) / (&, m, ) ?) dlm(n)] < Cxale(€) 2,

with a similar inequality for ¢)(—&,n,-). Note that (2.51) does not follow from the
bound {[¢(&,n,-)[*) < Ale(€)[?/|n| which we have already established. In view of
(2.8) the inequality (2.51) is a consequence of the following lemma. O

Lemma 2.6. Let p(&,1n,-) be the function defined by (2.8). Then there is the in-
equality,

/0 T {lo(€n, )P dim(n)] < 27Alof?.

Proof. Let ¢(t,£,-), t > 0, be the solution to the initial value problem,

(2.52) Qﬂ%§2+ﬁwmaqza t>0,

d d
P(0,6,)+ D ok 05 + (=] 7 a5 () — (an ()] = 0.
k=1 j=1
It is clear that
p€n )= [ et it Rela) > 0
0
Hence the Plancherel Theorem yields

/ (€ n, )P diim(n)] < 2 / T ot e )P dt
0 0

We can estimate the RHS of this last equation by defining a function ®(¢, €, ), ¢t > 0,
which satisfies the equation,

‘qu)(tvfa ) = C)O(t7 5, ')7
Hence (2.52) yields

(2.53) (@678 | ote Py =0, t>0
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Observe next that

<<1>(t,e;.) %> - %% <<I>(t,§,~)£§<1>(t,§, -)>.

Integrating (2.53) w.r. to ¢t and using the positivity of £ we conclude that for
any 0 > 0, there is the inequality,

>0 1
| tetteop)a < g (3 Eecisg ).
We have now from (2.52) that

(900.€,7£c0(0.€,)) < Alpl.

The result follows now on letting § — 0. d

3. Proof of Theorem 1.5

For 7 real and positive, let (£, 7n) be the d x d matrix defined in (2.3). We shall
show that the function Ga(z) of Theorem 1.5 is given by,

! / dee™ € Je(€)q(€, m)e(—€), = € T .
[~ ]

(1) Gale) = limy 55

In view of the fact that ¢(&,n) > A4, we see from the following lemma that the
limit (3.1) exists if d > 3.

Lemma 3.1. The limit lim, 0 q(&,7) exists for all £ € R%.
Proof. Forn > 0,z € Z%, let G () be the Green’s function satisfying the equation
Zv V.G (x) +nG,(z) = 6(x), x €2,

where 6(z) is the Kronecker § function. Now for ¢ € L?(Q) there is a unique
solution 1 € L?(2) to the equation,

d
Z 07 + ei(= 0 + ei( O] (W) + Y (w) = p(w), we,

which can be written as
(3.2) Z Gy(z)e " p(t,w), we Q.
r€Za

Observe the RHS of (3.2) is square integrable since G, () decreases exponentially
as |z| — oo. Now for 1 < k, k" < d we define operators Ty i/ e by T n.e(p) =
e~k 8[0) + ex(€)]1h, where 1 is the solution to the equation,

d
) Y107+ =] [0+ ()] 9lw) + )

= e[ + e (—6)] p(w), we.
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From (3.2) we see that

(3.4) Tkt e P(w Z ViV G T lp(Tew), w € Q.

YA

Since V;V /Gy (x) is exponentially decreasing as |z| — oo it follows that Ty i/ ¢
is a bounded operator on L?(€2). Observe that the projection operator P on L?(£2)
orthogonal to the constant function commutes with Ty xr ,¢. It follows from (3.3)
that ||Tk k¢l < 1, independent of n as 1 — 0. We wish to show that there is an
operator Ty j.0,¢ on L*(Q) with || Tk x,0.]| <1 such that

(35) lim [T = Tl =0, € L.

We follow the argument used to prove the von Neumann Ergodic Theorem [9].
Thus if ¢ € L?() satisfies [0}, + ex (—€)]¢ = 0, then Ty g = 0. Thus we set
Tk 0,60 = 0 for ¢ in the null space of [0}, +-er/(—&)]. Now the range of [O +ep(£)]
is dense in the subspace of L?(£2) orthogonal to the null space of [0}, + ey (—¢)]. If
© = e " [0 + g (€)1 with ¥ € L?(Q) then

Thprmep(w) = > Vi ViV Gy(z)e " S(rw), w e Q.
FIsyAS
It is clear from this representation that if we take

Tk 1% 05(p Z Vk,VkaIGO( ) W'f,(/}(TwUJ), w e N s

T€ZA

then Ty i 0.6(p) € L*(Q) and (3.5) holds. Thus Tk s 0, is defined on a dense
subspace of L*(Q) and ||Tj k0|l < 1. If follows easily that one can extend the
definition of Ty x/ 0.¢ to all of L?(Q) and (3.5) holds.

Suppose now b : Q — R4 4+1/2 i5 a bounded measurable function from § to the
space of symmetric d x d matrices. We define ||b|| to be

||b||—sup{|zb,] PN veal.
=1

7,7=1

Next let H(Q2) = {¢ = (1,...,04) : pi € L*(Q),1 < i < d} be the Hilbert space
with norm (o[ = [l1[|* + - + [lpall®,¢ = (¢1,...,pa). We define an operator
Tbﬂlvﬁ on H(Q) b

[To.n.e0()] ZT’H,WE (e ()], 1<k <d.

1,5=1

Evidently,
[Tomeo()], = e 40 +en(Ew(), 1<k<d,

where 1(-) satisfies the equation,

d d
D10+ en(=9)][0r + en(©)]v(w) +mo(w) = D € E0; + ()] [bi i (), ()]
r=1

i,j=1
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If follows that T, ;¢ is a bounded operator on H(€2) with norm ||Ty , ¢|| < ||b]|. In
view of (3.5) there exists a bounded operator Ty g ¢ on H(Q2) such that || Tp 0| <
Ib]| and

71712% [Tone0 — Too,e0ll =0, ¢ €H(Q) .

Let us take now b(:) = [Al; — a(-)] /A, whence ||b|| < 1. Let 9%(&,n,-) be the
function satisfying (2.2). Define ¥ (&, 7,-) to be

\Ilk(§7 , ) = (e_iel'g[al + 61(6)]wk(€7 m, ')v s 7e_ied.€[ad + ed(g)h[]k(f? m, ))
Then U4 (§,7m,-) € H(2) and satisfies the equation

(3.6) Wi(&,m,w) = PTypmyn,eVi(§,nw AZ Tnsae [ang(w) = {a;(-))] =0,

where for 1 < j <d, T}, is a bounded operator from L?(Q) to H(Q) defined by
Tinele) = (T1jnep,-- - Tajnep). Writing
Wk(&) n, ) = (\I/k,l(f’ 7, ')7 ey \I’k,d(fv 7, ))7

we have from (2.3) that

(3.7) ke (§,m) = <ak " +Zak,j YW (&, 77f)> :

It is clear now that lim, o ¢(&,n) exists. |

Our next goal is to assert some differentiability properties of ¢(£,7n) in & which
are uniform as n — 0.

Lemma 3.2. Supposen >0, 1 <k <d, p € L*(Q) and b(-) a random symmetric
matriz satisfying ||b|| < 1. For £ € R? let (&, n,-) be the solution to the equation,

(3.8) (I = PTope)¥(&n, ) = Thmep().
Then WU(&,m,-), regarded as a function of & € R? to H(SY) is differentiable. The
derivative of U(E,n,-) is given by

(3.9)

22(5, )= (I = PType)" <6§ k n&)@( )

_ 0 _ ,
+ (I = Plone) 1(PagTb,n,5>(I — PTh,)  Thepe(), 1<j < d.
J

Proof. Consider first the &’ th component of T}, , ¢(+), which is
Tk K, §g0 Z vk/va ( ) zx'f(p(Tx_).
zeZ?

Since G, (z) decreases exponentially as |z| — oo it is clear that Ty i n.ep(:), re-
garded as a mapping from R? to L?(1) is differentiable and

0
Tk kng(p Z Zl'jvk/va ( ) v 5(,0(7':,0-).

(3.10) 85
€7
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We regard (3.10) as the definition of the operator 0/0&; T} iy, which is clearly a
bounded operator on L?(§2). Similarly we can define 8/9¢; Ty, ¢ by

(3.11) e Thactt)] - 3 5 Trime i ()

i,j'=1
= (Y1,...,%q) € H(Q), 1 < r < d. Again it is clear that 0/0¢;Ty ¢ is a
bounded operator on H(f2). From (3.8) ¥(&,n,-) is given by the Neumann series,

o0

V(En,) = D (PToune) " Timer(-),

n=0
which converges since ||b|| < 1. Formally the derivative of ¥(&,n,-) is given by

oo

0
(5 - ) - Z(PTb,n,f)naiéTk,n,écp(')
J

(3.12) a,g
J n=0

- n a m
+ ) (PTope) (PfagTb,n,s)(PTb,n,s) Tieme0(c)-
J

n,m=0

Since the RHS of (3.12) converges it is easy to see that ¥(&,n,-), regarded as a
mapping from R? to H(Q) is differentiable and the derivative is given by (3.12).
Finally observe that the RHS of (3.12) is the same as the RHS of (3.9). O

For 2 < p < oo let LP(2, [ — 71',77}(1) be the space of functions ¥(£,w), £ €
[— 7r,7r]d, w € Q such that ||¢||, < oo, where

el = /[ e (e

)

d . - . .
Suppose now f : [— 77,7r] — C is a smooth periodic function. The Fourier
transform f of f is given by

o 1 —ix-€ d
fo) = gy [ J@ e w et

Since fis rapidly decreasing we can define for ¢ € L?(Q) an operator T}, by

(3.13) Zf e~ T p(Tyw), fE[—TK‘,ﬂ']d, we.

zeZd
Evidently T,(f) € L=(Q, [ -, 7]%).

Lemma 3.3. Suppose 2 < p < 0o and ¢ € L*(2). Then the operator T, extends
to a bounded operator from Lp([ - 7T,7T}d) to LP(Q, [—m, 7)) and the norm of T,

satisfies | Ty || < lll|-

Proof. Now by Bochner’s Theorem [9] there is a positive measure du., on [—m,7]¢

such that

(et = [ o),
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whence
(3.14) (TPER) = [ 1#C-OPdnet)

Since f[fmr]d dpy(¢) = [lp||? the fact that || T, < ||¢| follows immediately from
(3.14) for p = 2, p = oo. The fact that | T,| < |l¢|| when 2 < p < oo can be
obtained by an application of Holder’s inequality. ([

Next for 2 < p < oo let HP(Q2, [—7, 7]¢) be the space of functions (&, w), € €
[—m, 74 with ¥(€, ) € H(Q) such that [|1]|, < oo, where

ol = [ delue )l

)

We define an operator for ¢ € L?(2), T, 1., by

(.15)  Topu(f)E) = S Fla)eoen [<><I PTone) Tineol)|.

z€Zd
It is clear that if f is smooth then T, v, ,,(f) is in H> (€2, [, ]?) provided ||b|| < 1.

Lemma 3.4. Suppose ||b|| < 1. Then,

(a) If ¢ € L3(Q), Ty, extends to a bounded operator from L>([—m,7|?) to
Ho(Q, [, 7]¢). The norm of T, b, satisfies

bl
1Tl < 7—
T (1= ibl)
(b) If ¢ € L>®(Q), Ty, extends to a bounded operator from L?([—m,7]¢) to
H2(Q, [, 7|Y). The norm of T, b, satisfies
Va|bllfllse

1T o,nl <
@bl

Proof. To prove (a) observe that (3.14) implies
1T b (N < 12O = PTope) ™ Thep ()1

< 115 Hb||2||80||2_
- (1=1bl)?
To prove (b) we consider the integral
(3.16)
/ de|l Y F(@)e# Ery () (PTo,ne) " Thmeel I* = (2m) Y 164
(=7 z€Zd rezd
=(2m)* ) l1e:]*,
rezd

where © is given by
m—+1

Z J?(xl)b (T, - [ H V*VG (mj)Pb(TI1+ tx; ):| V*Van(mm+2)@(Tr')

L1+ T2 =T Jj=2
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and ©5 is given by
m+1

> f(yl)b(Tyl.)|: I vV'vG,(; - yjl)Pb(Tyj')]V*Van(T — Ym+1)P(Tr7).

YiseorYmt1 j=2
Observe now that

m+1

(3.17)  f(y1)b(ry, - [ H V*VG,( yj_l)Pb(Tyj-)} V*Vi Gy (1 — Ymi1) ()
R m+1
= f(y1)b(7y,- {H VIVGy(y; yj—l)b(Tyj')} V*VEGy(r = Ymt1)p(7r7)

_if(yl b(ry, ") “ﬁ[ oy 1)b(7yj.)]
ot e

m—+1

<V*VG7I(yn+1 Yn)b( Tyn* [ H v VGU( — Y- 1)Pb(7'y3 )]

j=n+2
VG — ym+1)s0(7r')>~

Next let M be the space of complex d x d matrices and L?(Z¢, M) the set of
functions A : Z¢ — M. We can make L?(Z% M) into a Hilbert space by defining
the norm of A to be

1G4 = @m)* Y Tr(A* (@) A=)
z€Z4
We can also define an operator T, on L?(Z%, M)by
T,A(x ZA VG, (z—vy), =€z
y

It is easy to see that T, is bounded on L?*(Z4, M) and || T,)|| < 1. Forn = 1,...,m+1,
w € Q, Yy, € Z%, let us define A, (y,,w) € M by

n

An(yn,w) = Z f(yl)b(Tylw) {H VG, (y; — yj-1)b(ry,w) |

Y Yn—1 =2
It follows from the fact that ||T,] < 1 that for any fixed w € Q the function
A, (-, w) € L?(Z4, M) and
(3.18) 140 @)llae < IBI™ [ fTallve = Vallb|™ (| fl2 -

Recall now that P is the projection operator, Py () = () — (), ¢ € L*(Q2). If
we introduce the notation P* as ¢(-)P* = Py(-) then

m—+1

CACHTRERSCRIE | R IR ]

Jj=n+2

V*ViG,(r — ym+1)<P(Tr‘)>
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is equal to

m—+1
<V*VG?7(yn+1 b(7y,") [ H V*VG,( yjl)P*b(Tyj‘)]

j=n-+2
VG (r ym+1)30(7r-)>-

Let us denote now by L?(Z¢ x Q, M) the set of functions A : Z¢ x Q — M with
norm,

1At ran = (2T D (Tr(A* (2, ) Az, )
z€eZ4
For n =1,...,m define an operator T,, on this space by

TnA(ym+17 ) = Z A(yn, ')V*VGn(yn+1 - yn)

YnseoyYm
m—+1
b(r.)| T1 V'VGu;— 1y P"b(r, ).
Jj=n-+2
We can see as before that 7T, is a bounded operator on L?(Z% x 2, M) and
(3.19) Il < [l ™1,

Observe now from (3.17) that ©, (the expression inside the norm in the last line
of (3.16)) is given by

m—+1
Z f(yl) b(7y, - [ H VIVG( yj—l)Pb(Tyj')] VIV Gy (r—ym+1)e(7r)

Y1, Ym+1

= [Ty Ama (7, )= 2 (BTAT (o] o(r)

where AT denotes that A, (z,w), * € Z%, w € Q is to be regarded as a function
of x only, with parameter w, on which T;, acts. We have now

@MY [Ty Amia (r,)er] o) 1 < llellZe (1 Amsa (@) 34)
rezd

< lellZdliblP 1 7113,
where we have used (3.18). Similarly we have
@m)® Y (T Ty (r,Yer] o(m)) 17 < lell3 T T AR (@) 3, ran) -
rezd

where w denotes the random parameter for A7*". The expectation is then to be
taken with respect to this parameter. If we use now (3.18), (3.19) we have

@M Y ([T T Ay (r,Yer] (r)) 12 < lloll3dlbl > | 115 -

rezd
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We conclude therefore from (3.16) that

/[ y del| Y Fl@)e ™S, [b()(PThne)™ Thamee ||

zeZ4
<d(m+1) [lel% IbI*™ V| f]5, m > 0.
It follows that

1/2 o
U[ I ,b,n<f><f>||2] <Vileloolfle 3 Vm 1 [bfmt!

m=0

< Vdellsollf 1210ll/(1 — [[bI])? -
O

It follows from Lemma 3.3 and the Riesz-Thorin Interpolation Theorem [10] that
if o € L>(Q) and ||b|| < 1 then T, 1, is a bounded operator from LP([—m,7]?) to
HP (2, [, 7)), 2 <p < oo and the norm of T, , satisfies the inequality,
Cal[blll#loc

(1—1bl)* "
where C; is a constant depending only on d. Consider next the weak spaces
Lt ([-m,7]%) and HE(Q, [-m,7]%), 2 < p < co. Thus f € LP([-m, x]?) if for
all @ > 0 there is the inequality,

(3.20) meas{¢ € [—m, 7% 1 | f(€)] > a} < CP/aP.
The weak LP norm of f, || fl/pw is then the minimum constant C' such that (3.20)
holds for all & > 0. Similarly (&, w) € HE (Q, [—m, w]¢) if for all a > 0 there is the
inequality,

(3.21) meas{¢ € [—m, 7] (€, )| > a} < CP/aP.

The weak LP norm of ¢, ||| is again the minimum constant C' such that (3.21)
holds. Lemmas 3.3, 3.4 and Hunt’s Interpolation Theorem [10] then imply the
following:

||T<P7b,77|| <

Lemma 3.5. Suppose 2 < p < co. Then
(a) There is a constant C,, depending only on p such that Ty, is a bounded operator
from Lt ([, 7]?) to LE,(Q, [=m,7]?) and ||Ty|| < Cpllell.
(b) There is a constant Cp 4 depending only on p and d such that T, p, is a
bounded operator from LE ([—=,7]|?) to HE(Q, [~7,7]?) and
Cp.albllllell
(1 —1bl)>
We can use Lemma 3.5 to obtain bounds on the first two derivatives with respect
to & of the function ¢(§,n) defined by (3.7).

Lemma 3.6. Letd =3, n >0, 1 <k, k' <d. Then qri(§,n) is a C™ function
of € € RY and for any i,j, 1 <i,j <d the function Oqy i /0&; € L3 ([—m,7|?) and
O?qy, 1 |00 € Li,/2([—7r,7r]d). Further, there is a constant Cy a, depending only
on X\, A such that

10 i/ O&:

HTw,b,n” <

30 < Cxny 102Gk /0608|379, < Can.
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Proof. Observe that the function ¥y occurring in (3.7) satisfies (3.6) and hence
corresponds to the function ¥ of Lemma 3.2 with ¢ € L*°(Q). Observe next from
(3.10) that

0
%Tk/,k,n,ﬁ@ =T,(f),

where T, is defined by (3.13) and the function f is

9 —tep-§ ieys-§ ~
¢ E- (e = 1)Gy ()]

(3.22) f&) =
Clearly f € L3 ([—m,n]%) and || f||3,.0 < C, where C' is universal. Consider now the
formula (3.9) for the derivative of W. For the first term on the RHS of (3.9) we
have

1

0 0
_ -1 NN < —— 1= .
(I = PTy 4.¢) (%Tk,n,s) POl == bl H8§,»Tk’n’£ ()1l

It follows from Lemma 3.5 (a) that

0
67& Tk,n,ﬁ@(') € L731)(97 [_7.[_’7_‘_]3) ’

)
I 3¢ TenewOllsw < CA

for some universal constant C, since [|¢|| is bounded by a constant times A. Hence
the first term on the RHS of (3.9) is in L3 (22, [—m, 7)) with norm bounded by a

constant depending only on A, A. Similarly the second term on the RHS of (3.9) is
bounded by

1 0 B
il (50U = PTon Tencell
It follows from (3.11),(3.15) that

B _
(agTbm’s> (I = PTope) ' Trnep = Tppn(f),

where T, 1, , is like the operator (3.15) but acts on matrix valued functions f(§) =
[£:.5(€)], € € [-m,7w]¢. The functions f; ;j(£) are similar to (3.22) and hence are in
L3 ([—m,7]?). Tt follows by the argument of Lemma 3.4 and Lemma 3.5 (b) that
the second term on the RHS of (3.9) is in L3 (Q, [—, 7]?) with norm bounded by a
constant depending only on A, A. We conclude that dqy. 1 /0¢; € L3 ([—m, 7]¢) with
norm bounded by a constant depending only on A, A.

Next we turn to the second derivative, 82y, /0&;0¢;. To estimate this we need
a formula for the second derivative of the function ¥ of Lemma 3.2. One can see
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from (3.9) that

0?v _ P
0&;0¢; (&) = (I = PTone) 1(P87§7-Tbm,£)
~1, 0 B 52
(I — PTb,n,g) I(T&Tk,n,ﬁ)ﬂo(') + (I - PTb,T/,{) 1(85185 k., E)SO( )

1,0 1, 0
+ (I = PToe) " (Po-Toume) (I = PToue) (5 Tine) ()
aéz 8&7
~1,. 0 ~1,., 0 -1
FI=PTone)  (PogTome) (I=FPTone) (P o Tone) ([=PTone)  Tenesl)
82
0&;0;
Let ¢ € H* () and consider the expectation value <<,0’(-)82\I/(£,77,~)/8§i8§j>.
From above this is a sum of five terms. The first term is given by

+ (I = PToue)  (PorazTome) (I — PTowe) Tenep(-).

(FOu - PTb,n,al(P(fgj

- ([p2 g Ton I = PTone) 19/ ()| (1 = PToe) '

whence we have

‘<s@T-)(I - PTb,n,é)_l(Paaijb,n,s)(I - PTb,n@)_l(%Tk,n,s)s@(-)>‘

P , P
angbmf)([ PToe) ') ”(8&

We have already seen that both

(P g Tone ) (7= PTond Ol I

are in L2 ([—m,7]%). We conclude that the first term in <<p’(o)82\11(§,7), ~)/8§1-8§j>
is in Li,/ 2([—71', 71]3) with norm depending only on A, A. Consider now the second

term. To estimate this observe that if T;, is given by (3.13) then
(3.23) To(f9)(&w) = Y F(2)e™ Ty(g)(rpw) -

z€Z4

0
To,n,e) (1 — PTb,n,g)fl(a?,Tk,n,s)@(')>

3¢ Ten o)

<|[I(P

k) (I (1 = [bI])-

Time) o0l

We have from (3.22) that
32
0&,0¢;
where fg € Li,/z([—w, 7]3) , whence we can choose f, g so that f,g € L3 ([—m,7]?).
With this choice of f, g and using the formula (3.23) we can argue as for the first

term of < (0% (&, n, )/ 0& 3§j> to conclude that the second term is also in
L

wrm Lr k0 = To(f9),

—m,7)3) with norm depending only on A\, A. One can estimate the other
three terms of <Lp’(-)82\11(§, n,-)/0& 8§j> similarly. O
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Proposition 3.1. Let d = 3. Then the function Ga(z) defined by (3.1) satisfies
the inequalities

(3.24) 0 < Ga(z) < CyuA[l + |2)]*7%, ze€2Y,

(3.25) |VGa(z)| < Cyalog [2+ |2)]/(1 + |z])?, = € Z°.

The constant Cx a depends only on A, A.

Proof. For n > 0 let Ga ,(x) be defined by

Ganle) = gz [ 6™ el@atemel ), w2

Then by Lemma 3.1 it follows that lim, .o Ga () = Ga(z). It will be sufficient
therefore for us to obtain bounds on Ga , (), VGa ,(2) which are uniform as n — 0.
Since q(&,m) > Mg, € € [, 7%, we clearly have Ga,(z) < C4, where Cy is a
constant depending only on d > 3. To obtain the decay in (3.24) we write

(3.26) Gan(z) :/ +/ ;
[€l<y/ x| 11>~/ =]

where + is a parameter, 1 <~ < 2. Evidently there is a constant C' such that

/ ds < CJlal.
[El<y/ ||

To bound the second integral in (3.26) we integrate by parts. Thus

S e S
(3.27) /§>'y/x| " iry (2m)d /g>w/x| e(€)q(€,m)e(—¢) [ 961 }

1 1 e~ 0
iz, (2m)? /§>'y/ac| C©aE oo 9g, &m0

1 1 e L
i @) /@W W e ne—oNE"

where we have assumed wlog that |z;| = max[|z1],...,|zq|]. Evidently the surface
integral on the RHS of the last expression is bounded by C/|z|. We estimate the
volume integral by integrating by parts again. Thus,

(3.28)

e—ix~§ 9
/|xs|>v/|acdf [e(€)a(€, me(—E)? 9 [e(&)a(€, me(=¢)]
1 . ) ;

= — —le e(— ——e ¢
i1 i /e dg[@(&)q(f,n)e(*é)}r"@&[ (€)al&me(=0) [ 73! ]

1

_ = dfe_”fi 1 9

11 J g5 /|2 & { [e(€)a(€, n)e(—€)]2 96

L deemiv€ & [e(€)a(&, me(—)).

0
i1 J|g|= /|| [e(©)a (& me(=E)?1¢] D&1

le(€)ale n)e(~¢)] }
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We divide the surface integral in the last expression into three parts corresponding
to the three terms in the expression,

- [0, el—6)] = ZeLa(e,me(~€) + e(6) e €. me( )
+e@aten 25,

The surface integral corresponding to the first and third terms in this expansion is
bounded by

Q Isd£3 SC’/A/)\Q7
%] igj=/12) A1

where C,C" are universal constants. The surface integral corresponding to the
middle term is bounded by

C
(3.20) L 0a(e.m) )06, e,

[&] Jig1=y /10 AZ[E]

for some universal constant C. To bound this we use the well known fact that if
f € LP([—m,73), 1 <p< oo, then for any measurable set £ one has

(3.30) /E 1€ < Coll Iy (E) 17,

where the constant C), depends only on p. If we average the expression (3.29) over
v, 1 <~ < 2, then we have from Lemma 3.6 that

[ s l0a(é, m)/06 s
Y a(€,m
1 2] Sgg=ygie) A2IE2 '
Cl 2
< )[f'/ d€[|0g(&,m) /01| < Caa s
jaf =1 <l¢|<2fz| 1

where we have used (3.30) with p = 3.
Next we consider the volume integral on the RHS of (3.28). For any v, 1 <~y < 2,
this is bounded by

C(\A)

||

—4 -3
(331) [ e ieion myoal
+ I€172019%a(¢, m) /063 + |19a(e,m) /061 1]}

for some constant C'(A,A) depending only on A\, A. Evidently there is a constant

C’(\, A) such that
CAA) / 4 i),
3 o

|z >1/]2| 1€1*
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Also we have

C(\A) g
|z| /|g|>1/|x| €13

[ £ Sant > 1e520 /10

<o MY 27 / 10g(€,m) /064 d
n=0 2

/2] >|€]>2m /x|

10q(&,m)/0& ||

<C'AN)? Y 27020 /|2])* < €M (A A)
n=0

where we have used Lemma 3.6 and (3.30). We can similarly bound the third
term in (3.31) using Lemma 3.6 and (3.30). We conclude that (3.31) is bounded
by a constant depending only on A, A. If we put this inequality together with the
previous inequalities we obtain (3.24).

The proof of (3.25) is similar. For any unit vector n € R% we have

332 nVCag) = o [ deeT el el el )

We do a decomposition similar to (3.26) and it is clear that

/ < C/|z|.
[€l</]z]

For the {|¢] > v/|z|} integral we do a decomposition analogous to (3.27). It is clear
the surface integral which appears is bounded by C/|z|?. For the other integral we
do a separate integration by parts as in (3.28). The average of the corresponding
surface integral over v, 1 < < 2, is bounded by C(A, A)/|z|. The volume integral
is bounded analogously to (3.31) by

C(\ A _ _
X A) / de{I€173 + ¢ =2 9q(&, m) /o€ |
[E1>1/|x|

]
+ 1€ 10%a( m) /983 1| + 119a(€,m) /061|171 }-
Arguing as before we see this is bounded by C’(X, A)log[l + |z|]/|z|. Putting this
inequality together with the previous inequalities yields (3.25) (]

Proposition 3.1 gives an improvement of the estimate (1.14) when d = 3. We
wish now to obtain a corresponding improvement for all d > 3. To do this we need
generalizations of Lemmas 3.4-3.6 appropriate for all d > 3. Let A € M, the space
of complex d x d matrices. The norm of A is defined to be

|A||? = Tr(A*A).
Similarly if A: Q — M is a random function we define ||A(-)|| by

A = (Tr(A*()A()) -
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Consider now functions A : [—m, 7] — M. For 2 < p < co we can define the space
LP([—m,7]%, M) with norm ||A|, given by

laig= [l

)

Similarly we can consider functions A : [, 7] x  — M and associate with them
spaces LP([—m, 7|4 x Q, M) with norm || Al|, given by

laig= [ 1Al

)

We define an operator which generalizes the operator given in (3.15). For n =
1,2,... the operator T}, , b, acts on n functions A, : [-m,7? = M, 1<r<n.
The resulting quantity T}, o b n(A1,... Ay) is a function from [-m, 74 x Q — M.
Specifically we define

(333) Thpbum(AL,-. s Ap)(E,) =
n—1

S I {Xr(mr)eigﬂ""ngr{Pb(-)(I _ PTM@)1}]&(%)@%-5%@(.),
T1,...,xn €24 r=1

Evidently the operators (3.13),(3.15) correspond to the cases n =1 and n = 2 in
(3.33).

. Then if A, €
LP([—m, m]¢ x

Lemma 3.7. Suppose 0o > p1,...,pn, p > 2 and p%""""‘;%
Lrr([—m, w4, M), 1 < r < n, the function Ty, pn(A1, ..., An)
Q,M) and

1
P
S

"~ lplloo TTr—y 1A lp,

3.34 Ty obn (AL A, <
( ) H »%b,ﬁ( 1 )”P (1 — ||bH)2n

Proof. Consider first the case n = 2. If Ay, Ay € L°([—m, 7]¢, M) then it is clear
that T, b, (A1, A2) € L®([—m,7]? x Q, M) and

DlllellzllArlloc Azfloc

<
1T, 0,0 (A1, A2) |00 < (1—b])

If A9 € L>®, A; € L? then we can see by the argument of Lemma 3.4 that
T30 b,m(A1, A2) € L? and

bl oo [l Azlloo |41 12
(3.35) [T2,0.b,( A1, A2) ]2 < :
i (1= Ib)?

It follows therefore by interpolation theory that if Ay € L, Ay € LP, p > 2, then
Ty, bn(AL, A2) € LP and

[Pl llooll Azlloo | Axlly

. <
(3.36) T2.0.n(A1, A2)llp < (1—bl)
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Suppose next that Ay € LPr, Ay € LP? and 1/py + 1/ps = 1/2. We have now that
1/2
37 [ [0 T A2

SZU[ﬂ,ﬂddfn > Aw)e e,

m=0 z1,02€2L4
R 4 1/2
PB)(PThne)" Daaz)e 41|
Observe now that as in (3.16) one has

f e Y e b OB A e

r1,T2,E24

m—+1

@'Y Db, [vaa ~y;b <Tyj->]

reZe  Yis--Ym41
AQ(""_ym+1)‘p(TT')H2
N m—+1
<. SIS Aubln, [Hv VG0 - -1 )b(r, )|
reZe Yty Ymt1
As(r = Ym+1)|?
= ||<P|§o/[ d§||{ Z Ay(wr)e m'ngb(')(Tb,n,ﬁ)mId]A2(§)|2

ST T ezd

< ||<P|§o/[ el > Av(an)e” ry o) (To.e) ™ Lal Pl A2 ()|

, T z, €74
2/p1
<] [ del S Aege b T | el
77r,7r z, €24

We have already seen from interpolation theory that

~ ) 1/p1
L R b O g Ll < I

Zlezd’
We conclude therefore that
/[ Ll Y Ar(@)e T, () (Thye) ™ Ao (w2)e ™ 7, 0|2

€24

< IBIP 2ol 5 Ay, 142 115, -
Arguing as in Lemma 3.4 we also see that
/[ LD D0 Arlm)e PO (PTh )™ Aala)e™ ™ €7y

z1,22€L%

< (m+ 1D)?[bIP" ol % A7, 42117,
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It follows now from (3.37) that
[bllllelloo | A1 llp: [| A2llp,
(1—1bl)? ’
provided 1/p; + 1/p2 = 1/2. We can now use the inequalities (3.36),(3.38) to do a
further interpolation. Thus we have if p > 2 and 1/p; + 1/p = 1/p then

Pl elloollAsllp | A2llp,
(1= 1b)?

(3.38) 112,06, (A1, A2)ll2 <

||T2,907b,n(141a A2)Hp <

This proves the result for n = 2.
To deal with n = 3 we subdivide into 7 cases:
(a) 1/p1 =0, 1/p2 =0, 1/p3 =0,
(b) 1/p1=1/2, 1/p2 =0, 1/p3 =0,
(c) 1/p1 <1/2, 1/p2 =0, 1/p3 =0,
(d) 1/p1+1/p2=1/2, 1/p3 =0,
(e) 1/p1+1/p2 <1/2, 1/p3 =0,
(f) 1/p1+1/p2+1/p3s = 1/2,
) 1/p1+1/p2+1/ps <1/2.

For (a) it is easy to see that
[bII?[lell2 | A1lloc [l A2]loo [l As]lo
(1= b])?
For (b) we use the argument of Lemma 3.4 to conclude
DI [llloo | A1 121l Azl ool Aslloo
(1= bl)*
The Riesz-Thorin Theorem applied to (a), (b) yield for (c) the inequality,
< IPIPllloo | Avllp, [ A2l oo [l Azl
- (1= b[)* ’
where p = p;. For (d) we use the argument to obtain (3.38) to conclude that
bl [[ell ol A1 llp: [ A2l 2 [| Al
(1= [bl)*
Now the Riesz-Thorin Theorem applied to (¢) and (d) yield for (e) the inequality
DI llelloo | Avllp, [| A2l [l Al
(1= b[)* ’

where 1/p = 1/p1 + 1/p2. To obtain an inequality for (f) we use the argument to
obtain (3.38). This reduces us to the case dealt with in (e). Hence we can use the
inequality for (e) to obtain the bound

[T (Ar, Asy Ag)l|os < |

HTS,cp,b,n(Ah A27 A3)||2 <

1T5,0,b,n(A1, Az, As) |l

1Ty (At Az, Ag)s < |

||T3,<p,b,77(A17 A27 AB)HP <

DI llloollAvllps [ A2llps | Aslps

(1= b[)*
Finally the Riesz-Thorin Theorem applied to (e) and (f) yields the inequality (3.34)
with n = 3 for (g). Since it is clear we can generalize the method for n = 3 to all
n, the result follows. O

1Ty bm(As, Az, Ag) s < |
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. Then if A, €
L ([—m, 7]? x

Lemma 3.8. Suppose co > p1,...,pp, p>2 andp%+-~-—|—i =
L ([—m w4, M), 1 < r < n, the function Ty pbn(A1,. .., An)
QM) and

1
P
S

Clbl"Helloo TTr—y Ar[lp,
(1= [bl)2 ’

(339) HTn,cp,b,n(Ala LERE An)Hp,w <

where the constant C' depends only on p1,...py.

Proof. We use Lemma 3.7 and Hunt’s Interpolation Theorem [10]. Suppose n = 2.
Now from Lemma 3.7 we know that for a given p;, 2 < p; < oo, then

[bIlelloo 141 lp: | A2l

A

||T2,go,b,n(AlvA2)||p1 >

(1= [/b]})? ’
[blllllloc A1 Iy | A2 lg,
<
HTQ#;quJI(Al’AQ)”Q = (1 — ||b||)2 )

where 1/p; + 1/¢1 = 1/2. Hence the Hunt Theorem implies that

Cp1,p2) [blllelloo | A1 llpy [| A2]lpe w

(1 —1b]})? ’
provided 1/p1 +1/ps =1/p > 1/2, ps < oo, and C(p1, p2) is a constant depending
only on pi, pa. Suppose now that A is fixed with || Aa||,, .« finite for some ps, 2 <
p2 < 0o. We consider the mapping

Ay = Ty pn(Ar, A2).

We see from (3.40) that this maps L™ to LP2. For € > 0 let p;(e) satisty 1/p1(e) +

1/p2 = 1/2+ ¢ = 1/p(e). From (3.40) we also see that it maps LP'(%) to LA Tt
follows again from interpolation theory that for any pi, p1(e) < p1 < oo it maps
Lt to LP where 1/p; + 1/p2 = 1/p. The inequality (3.39) for n = 2 follows from
this. It is clear this method can be generalised to all n. O

(3.40) T2, (A1, A2)llp.w <

Lemma 3.9. Letd >3, n >0, 1 <k, k' <d. Then g1 (§,n) is a C function
of ¢ € [—m,w|%. Further, let a = (aq,...,aq), where a; >0, 1 <i<d, and |a| =
o1+ -+ ag < d. Then the function Hle(a%)aiqkyk,(g,n) is in Li/‘al([—w, %),

and || H?zl(%)aifﬂc,k/”d/m\,w < Cy a4, where the constant Cy a q depends only on
ANAd.

Proof. We argue as in Lemma 3.6. It is easy to see that the function ¥ of
Lemma 3.2 has the property that
d
0
)MV 57777 :
[ wien)
is a sum of terms Ty o by (A1, ..., An)(&, -)er, where 1 < n < |a|, A, € L, 1 <
r<mn,and 1/py +--- + 1/p, = |a|/d. The result follows now from Lemma 3.8 if
la| < d/2. To deal with the case d/2 < |a| < d, we argue exactly as for the d = 3
case with |o| = 2. O
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Proposition 3.2. Let d > 3. Then the function Ga(z) defined by (3.1) satisfies
the inequalities
0 <Ga(zr) < C)\7A,d[1 + |$|]2_d, T € Zd,
[VGa(z)| < Cxnalogl2 + |zf](1+ [x)' ™9, = ez,

where the constant Cy p 4 depends only on A\, A, d.

Proof. We argue as in Proposition 3.1, using Lemma 3.9. (]

Proposition 3.2 gives an alternative derivation of the inequality (1.14). We can
extend the argument in the proposition to obtain Theorem 1.5. To do this we need
the following improvement of Lemma 3.9.

Lemma 3.10. Let qi 1/ (€,7) be the function of Lemma 3.9 and |a| = d—1. Suppose
p R |p| < 1. Then for any e, 0 <e <1 the function
d

H(ai)ai (@, (€4 pom) — Qo (€, n)]/‘mha

i=1

is in Li/(d_e)([fﬂ,w]d), and
)
H(af‘ )% [gw,w (€ + psm) = arwr (§,m)] /1ol < COxadie
i=1 g d/(d—e),w

where the constant Cy a 4. depends only on A\, A, d, €.
Before proving Lemma 3.10 we first show how Theorem 1.5 follows from it.

Proof of Theorem 1.5. We shall confine ourselves to the case d = 3 since the
argument for d > 3 is similar. Consider the representation (3.32) for n.VGa ,(z).
We have now,

_ Lt 1 pmiag O [ —m-e(=€)
/|§|>7/|x| iz (2m)d /|§|>7/|z| & &1 L(f)Q(fJ])e(_f)
_1 1 pmime_ e &

iar @) /lgl_w e OdE M9 e

Evidently one has a bound for the surface integral,

/Iﬁl—v/w

If we integrate by parts again in the volume integral we have

< O/|z|?.

- ;%(2710‘1 /|§|>'y/|m| e <Ba&> [6(&“)2(66(77—)5()—5)}

11 / ) n-e(-§) &
+ = dée ”75[ ==,
23 (21)% J g)= /1| &1 [e(€)q(€,n)e(=E) ] €]
Since ¢(&,n) is bounded and dq(&,7)/0&; is in L3 it follows that the average of the
surface integral over v, 1 < v < 2, is bounded by C/|z|? for some constant C. To




192 Joseph G. Conlon and Ali Naddaf

bound the volume integral let p € R? be such that e~*** = —1 and p has minimal
magnitude. Then |p| < 10/|z| and

1 1

=— dée ¢
2$% (2m)d /|§|>100/:v

(6” noe(—§) n-e(—¢—p)
961 ) Le(©)a(&me(=£)  e(€+p)a(§ + p,me(=§ — p)
1 ,
3 R(§)e " de ,
L1 J1/|2|<|€]<200/|2|
where R(€) is the remainder term. Using the fact that 9q/0¢&; € L3, 9%q/0¢? L3/?
we can easily see that
1
—~ |R(§)|dg < C/ |
1 J1/||<€<200/|x]
for some constant C. We can bound the first term above using Lemma 3.9 and
Lemma 3.10. Evidently we will get a term

Clol'* /
|z |2 |€]>100/|x|

From Lemma 3.10 this is bounded by

Clol'* <
||

0 2 1—¢ df
(as) [a(€ -+ o) = a(&m]/16l | 1)

/ < %|m|1—8i2—n(1—5) < 10C’
ot o> (g)>om e 0] =z

n=0 n=0
for some constant C’. Other terms are bounded using Lemma 3.9. We have proved
the first inequality of Theorem 1.5. The second inequality of the theorem for d = 3

is proved similarly. (I

Proof of Lemma 3.10. The argument follows the same lines as in Lemma 3.9.
The main point to observe is that if f(£) is given by

d 9 o N
f(§)=H( ag_) [ek<—5>e,«<§>an<5> 7

i=1 v
with |a| < d then for any e, 0 < e < 1, the function [f(£ + p) — f(&)]/|p|*~¢

is in Lﬁ,/(lﬂo‘l_g) and there is a constant Cy. depending only on d,e such that

IF €+ p) = FEOI/ oI5 llasi+1al-e)w < Ca,e, provided |p] <1 . O
4. Proof of Theorem 1.4—Diagonal Case

Here we shall prove the inequalities of Theorem 1.4, but without the exponential
falloff term. We shall call this the diagonal case. First we show that Theorem 1.6
already gives us the diagonal case of the inequality (1.10) in dimension d = 1.

Corollary 4.1. The function Ga(x,t) satisfies the inequality
(4.1) 0 < Ga(z,t) <COLA) /L +VE], if d=1,
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where the constant C(A, A) depends only on \, A. Ifd > 1, it satisfies an inequality,
(4.2) 0 < Ga(z,t) < Co(d, N\, A)/[1 + 7],

where € can be any number, 0 < & < 1, and C.(d, A\, A) is a constant depending only
on e, d,\, A.

Proof. We have
1

(2m)d /{_M]lea(&t)ldf

1 / 1
< — dé + —— / d¢
@M Jigayve T @M Jigsva
Since Ga(€,t) is bounded on [—m,7]? it follows that

1 2
(4.3) s /£<1/\/Ed§ < C(d, A A1+ 197,

Ga(z,t) <

The integral over {|¢| > 1/v/t} is nonzero only if ¢ > 1/72d. In that case one has
from Theorem 1.6,

1 dag
d¢ < C(0, M\, A —
(@) /WN; ¢< 0l )/sz @

for any § satisfying 0 < 6 < 1. For d =1 we have on taking § > 1/2 an inequality

/ L@ O
els1vi (E3)° T Vit

The inequality (4.1) follows from this and (4.3). For d > 1 and any p > d/2 we
have

1/p
d¢ B se
/s>w% @y = (o) Usm/ﬁ (5216)51’] < Cp/t?P

where the constant C}, depends only on p and we have chosen § to satisfy 1 >
d > d/2p. The inequality (4.2) follows now from this last inequality and (4.3) on
choosing p to satisfy d/2p =1 —e. O

We can similarly use Theorem 1.6 to obtain estimates on the ¢ derivative of
Gal(,t).

Corollary 4.2. The function Ga(z,t) is differentiable w.r. to t fort > 0 and the
derivative satisfies the inequality

0Ga(x,t .
# <SCON/+7), if d=1,
where the constant C'(\, A) depends only on M\, A. If d > 1, it satisfies an inequality
0Ga(z,t)

ot

where € can be any number, 0 < & < 1, and C.(d, A\, A) is a constant depending only
one,d,\, A.

20 < canye e
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Observe now that Corollary 4.1 almost obtains the diagonal case of the inequality
(1.10) for d = 2. In order to obtain this inequality for d = 2 we shall have to use
the methods of Section 3.

Lemma 4.1. For d = 2, there is a constant C(\, A) depending only on A\, A such
that

0< Ga(z,t) <COA)/[L+1], t>0.

Proof. We shall use the notation of Section 2, in particular the functions h,k
defined by (2.18). It is easy to see that

(4.4)

> 0%h(&,n
| rem costm@mtlatimn) = [ SEE 1~ cosfm(n] )

We have now from (2.44), (2.45), (2.47) that

/°° *h(&,m)
le(e)2 | O[Im(n)]?

2

()] < ey

Hence if t > 1, then

/[_m]d /O ) h(€,n) cos[Im(n)t]d[I

c 2
-/ +f g?+§/ (@) de
le(®I<1/vE  J]e(€)]>1/VE le(©)1>1/vt

1 le(€)[? 82h(f n)
wf e [ Gt - cosltm@n bltm(n)
e@©>1/vi |12 Jo O[Tm(n)]?
where we have used the fact that the LHS of (4.4) is bounded by a universal
constant. FEvidently the first two terms on the RHS of the last inequality are
bounded by C/t, so we concentrate on the third term.

In view of (2.44) and the inequalities following it we have

1 [le®F 82h(€, )
/|e<s>|>1/ﬁdf 72/0 iz L~ costmmlydlim(m)]) <
Cxa 1 le()]? M . N
t +CM/(5>|>1/\/d£t2/o (@) m(m) tm(m)l}d{im(m)] .

for some constant C x depending only on A\, A. Now for Re(n) > 0 and 2 < p < o0
let hy, ,(€), € € [—m,m]?, be the function

9 1/2

T, p(€) = [Tm () [/~ /P [Z ([ n, )

k=1

)

where 9y (€,7, ) is given by (2.2). We shall show that h,, , € L? ([—m,7]?) and there
is a constant Cj, x a depending only on p, A\, A such that

(4.5) ||hn7p||p,w < Cpara, Re(n) >0, 2<p<oo
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Observe now from (2.8),(2.26) that

1<©OF (Jgp(&,m, ) %)
t2/0 W{l — cos[Im(n)t]}d[Im(n)]

LR (@ (1 cos[m(mil)
ST, G )

|
C le(&)I? By, (5)2
<wm ), R

for some universal constant C. Next we have that

1 le(©)] i (€)?
(+6) /e(s>|>md5tl+l/p/o i) <

C & 2R d[Im(n)]
= 2*2"/ 7/ hy o (€)2dE .
t/r ngo 0 () =P Jieg<oniryve

From (3.30) it follows that

/ hnp(€)?dé < CpthmHg’w22"(1—2/1))/t1—2/p.
le(€)|<2n+1/v/E
If we use the inequality (4.5) we see from the last inequality that the RHS of (4.6)

is bounded by Cp a a/t for some constant Cp, » o depending only on p, A\, A. We
conclude that if (4.5) holds then

[
[_7"777]2

for some constant Cy a depending only on A, A.

To prove (4.5) note that ¢ (&,n,-) is a sum of terms PT, p »(f) where Ty b, is
the operator (3.15), ¢ is an entry of the matrix a(-) and f is the Fourier transform
of V;Gy(x), z € 74, 1 < j < d. Hence

e(©) :
PO o+ o) < [2 \Im(n)l}

whence f € L2 ([—m,n]?) with norm bounded by a constant times |Tm(7)|'/?~1/2.
The inequality (4.5) follows now from Lemma 3.5.
Next, observe that for finite N,

/ " (e, ) cosltm(n)ldIm(n)]| < Caa/t, >0,

1
=37 g $ <

—k(&, Re(n) +iN) cos Nt

N
/0 k(€. ) sin[Tm(n)#]d[Tm(n)] =

t
LN ORED) oy diim
+5 | oma [Lm () ]d[Im()],

where we have used the fact that k(£,n) = 0 if Im(n) = 0. Integrating again by
parts and letting N — oo we conclude that

N - 2
lim k(& n) sin[Im(n)t]d[Im(n)] = -1 [ 0%k n

Nose J, 2 ), [Im(n)])2 sin[Im(n)t]d[Im(n)].
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Since the estimates on 92k (&, )/9[Im(n)]? are similar to those on 92k (&, n)/0[Im(n)]?
we can argue as previously to conclude that

d¢ li
[_W7ﬂ]2 gNgnoo

for some constant C) o depending only on A, A. g

N
| emsinftm@ntaltngn]| < Cunft, 00,

We can similarly sharpen the result of Corollary 4.2 when d = 2.

Lemma 4.2. For d = 2, there is a constant C'(\, A) depending only on A\, A such
that

‘8@5(:7’0’ <CON/[1+8], t>0.

Proof. Integrating by parts in (2.42) we have that
i | e costtmrdfn(n)] -
1 pN 2 3
lim —1/ {3 IhlE,m) + Im(n) ah(f,n)} {1 = cos[Im(n)t] }d[Im(n)] .
0

9[Im(n)]? O[lm(n)]?

We can compute 0%h(£,7n)/0[Im(n)]® from (2.44). It is clear we can derive similar
estimates on Im(n)3%h(£,n)/0[Im(n)]? to the ones on §%h(£,7n)/d[Im(n)]? which we
used in the proof of Lemma 4.1. We conclude therefore that there is a constant
C) a depending only on A, A such that

a o0
/[Twr]2 d¢ &/0 h(&,n) cos[Im(n)t]d[Im(n)]‘ < CA,A/t2 , t>1.
From (2.48) we have that
0 —1 [ 0k(&,n)
5 | S (1 = cosltmn]altm)

_ 19 o OEEM Ok -
= [, (3 U i} * By €~ ol

-1 N7 9 Ok(&,m) |, Ok(&m)
= lim —/ {{Im ! }+ ’ cos[Im(n)t]d[Im(n)],
Wy Bt " o] S T ]| )
where we have used the fact that k(£,n) = 0 if n > 0 is real. Integrating now by
parts we conclude that

9 -1 [ Ok(&,n)
ot t J, IJ[Im(n)]
LN, Ok n) (5 M\ .
lim —/ {3’+Im ’ }smIm t]d[Im .

We can then argue just as for the integral in h that
[ 2ol [Tk
[—m,7]2 ot t Jo OlIm(n))
for a constant C) p depending only on A, A. O

{1~ cos[Tm(n)f]yd[Im(n)] =

{1- cos[Im(n)t]}d[Im(n)]’ < Ozp/t?, t>1,
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So far we have not obtained diagonal estimates, even in dimension 1, on spatial
derivatives of Ga(z,t), which correspond to the estimates of Theorem 1.4. Next we
shall prove these estimates for the case d = 2. The method readily extends to the
case d = 1.

Lemma 4.3. For d = 2 there is a constant C(\, A) depending only on A\, A such
that

ViGalw, )] < COLA)/[L+ 677 .
Let § satisfy 0 < § < 1. Then there is a constant C(5, \,A) depending only on
6, A\, A such that

ViV Gal, )] < O A A)/[L+ 63972

Proof. If we use the fact that for 0 < & < 1, |e;(—¢)| < 2'7]e;(—£)|°, then we see
from the proof of Lemma 4.1 that it is sufficient to show that for ¢t > 1,
L [1OF 92h(e,n)

(4.7)
Cei4s | L O°h(&n) . .
/|e<s>>1/ﬂd§|e( o t2/o <9[Im(17)]2{1 cos{tm(n)]}d{fm()]

This follows by the argument of Lemma 4.1 if we can choose h,, € LI with
p < 2/(149). We cannot do this since h,, , € L? only for p > 2. To get around this
we can argue similarly to Lemma 3.6 in the proof that ||0%qy x/0&:0¢;| € L3

For Re(n) > 0 and 2 < p < o0, let g, ,(€), € € [—m, 7] be the function

< c
— ¢(B+8)/2°

2 1/2
gn,p@):lm(nnl—w[ ) |<wk<—§,n,-)[awkf@,n,-)/anb@ .

kk'=1

Then from Section 3 we see that g, ,, € L?, ([—m,7|?) and there is a constant Cp x o
depending only on p, A\, A such that

Hgn,p”p,w S Cp,k,/\a Re(n) > 07 2 < p <0oo.

Observe now that the contribution of the last term on the RHS of (2.44) to the
integral on the LHS of (4.7) is bounded by a constant times

dé— ub dll .
/Ie(€)>1/\/i 5152/0 le(€)[1=0Tm(n)2—2/ [T ()]

Arguing as in Lemma 4.1 we see that this is bounded by the RHS of (4.7) provided
6 < 1. Note that as § — 1 the estimate diverges. Since we can make similar
estimates for the other terms on the RHS of (2.44), the result follows. O

We wish to extend Lemmas 4.1, 4.2, 4.3 to d > 3. To do this we need the
following lemma.

Lemma 4.4. The functions h(§,n), k(£,n), Re(n) > 0, have the property that

O"h(&,n)/0Im(n)]™ = 0, m odd, n>0 real,
0"k(&n)/OIm(n)]™ = 0, m even, 7>0 real
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Proof. Note that we can see 0h(&,n)/0[Im(n)] = 0 for real n > 0 from (2.37) if we
use (2.15) and the fact that (=&, n,-) = ¥ (&, 7, ). More generally the result follows
from the fact that the function g(n) = h(&,n) + ik(€,n) is analytic for Re(n) > 0
and real when 7 is real. In fact from the Cauchy-Riemann equations we have that

9mg(n) O"h(&n) . O"K(E,n)
=(— =0,1,2,.....
A e ) ey o R
Evidently the LHS of this identity is real for all n > 0 real. O

Lemma 4.5. For d > 3 there is a constant C(\, A, d) depending only on A\, A,d
such that

0 < Galz,t) <CNAd)/[1+tY2], t>0.

Proof. From Lemma 4.4 we see that

(48) Awh@anmmmwmmmn,

is, for d odd, one of the integrals,

1 oo a(d+1)/2h(£’,,7)
t@+D/2 [ 9[Im(n)]@+D/2

Hla+1/2(
& | (- e dlim(o)

For d even it is one of the mtegrals,
1 &S] 6d/2+1h(§,77)
/241 [ 9[Im(n)]4/2+1
1 oo 8d/2+1h(f,77) {1
Ly Oftn(n)) /2

We can see from (2.44) that for m = 1,2, ..., the derivative 9™h(&,n)/0Im(n)]™
is bounded in absolute value by a sum of terms

sin[Im(n)t]d[Im(n)]

(4.9) +

(4.10) +

sin[Im(n)t]d[Im(n)]

+

— cos[Im(n)¢] }d[Tm(n)].

m—1 <‘ 87‘1!’—(,:‘:57777') ‘2>ar/2
(4.11) o S
=0 [+ e(€)q(€,me(=g)mHrr= rer
where the ., r =0,...,m — 1, are nonnegative integers satisfying the inequality
m—1
(4.12) > @r+1a, < 2m.
r=0

By differentiating (2.46) sufficiently often and using Cauchy-Schwarz we obtain the
5T¢(i5777») ‘2> (r!)Q

inequality,
S wiﬁﬂ% 2 ) T:071723"'

Observe next that (4.12) implies that

m—1 1 m—1
m+1—ZTar>§ ZaT.
r=1 r=0
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It follows therefore from (2.15) that there is a constant C,, depending only on m
such that (4.11) is bounded by C,,/|Im(n)|™*!. Hence,

/W a[hn(n)}m’d“ 0l < cep

for some constant C), depending only on m.
Let us assume now that d is odd and that the first integral in (4.9) is the correct
representation of (4.8). Then, following the argument of Lemma 4.1, we have that

[ [ ey eosmridimo] a

/€(€)<1/\/E le(§)[>1/vt
Caxa Ca

< Garn / e(€)] "% de
ez D21 yvi

1 le(©)* g(d+1)/2p,
+/ i / (&:n)
le(©)|>1/Vt 0

tnr Om(n)] 172
The first two terms on the RHS of the last inequality are bounded by Cig a/t%?
for some constant Cy A depending only on d, A\, A. We are left therefore to deal
with the final term.
Consider the simplest case of (4.11) when «,. = 0, 7 > 0 and ay < 2m. Then
(4.11) is bounded by

<|’l,/)(:|:§,'r]’.)‘2>040/2 //\2(m+1)‘e(§)|2(m+1).

sin(Im(n)t]d[Im(n)]| .

We shall show that

(4.13)
2 ap/2
[ /e@' (e )R

e@l>1/vi  |HTD2 g le(€)[4+3
provided ag < d+ 1. To do this we define for d < p < oo the function h, ,(§),
5 € [77“7(] ’ by

sin[Im(n)t]d[Im(n)]| < CdM\’A/td/z,

d 1/2
(4.14) B p(€) = [[Im(n)]|*/2 — 4/ {Z ([vr (& m, ')|2>} ;

k=1
where ¥ (€, 7, -) is given by (2.2). We can see similarly to the argument of Lemma 4.1
that hy, , € LP ([—m,7]%) and that there is a constant C}, y 4,4 depending on p, A, A, d
such that

||hn,p||p,w < Cp,A,A,d, R@(n) >0, d<p<oo.
We have now that

e(6)]? N2y
| /0 (€ m I ) dm()]

$(d+1)/2 |6(§)|d+3

/|e(g)|>1/\/i

</ de ! /le(w hyp(€)*° d[Im(n)]
T Jle@syvi o 2 le(€)]4+3=20 [Im(n)]o0(t/2 = d/2p) *
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Since ap < d+ 1 we can find p > d+ 1 such that ag(1/2 — d/2p) < 1. The proof of
the inequality (4.13) follows now exactly the same lines as in (4.6).

Next we consider the general case of (4.11). To do this we define for r =
0,1,2,..., Re(n) > 0 and p satisfying d/(2r + 1) < p < oo, functions hy (§)
by

d r _ 1/2
o (€) = [Tm(p)| 172 = 4/2 {Z (| m |
k=1

Observe that hy, , 0(€) is the function (4.14). We shall show that for p > max|2, #‘_ﬁ_l],

the function h,, p , € LP ([, 7]?) and there is a constant C,, .y A, depending only
on p,r, A\, A, d such that

(4.15) g prllpw < Cprandg, Re(n) >0, max[2,d/(2r +1)] < p < o0.

To prove this note that 9" (&, n,-)/On" is a sum of terms PT,, o by (A1,...,4)(&, ),
where T, , b, is the operator (3.33) and ¢ is an entry of the matrix a(-). Further-
more, there are positive integers r1,...,r, such that ry +---+ 7, =r+ 1 and

JA @l < 1e(©)] /Tee \2+|1m ™,

141 < 161 /Ie©F + Im@m)I+, 2 < j <.
Suppose now pi, ..., p, are positive numbers satisfying

d
p; = 2<j<n

4.16
( ) P12 = 2rj S

T
If also p; > 1, j =1,...,n, then we see that A; € LY ([-m,7]?), 1<j<mn,and
1Atllprw < Cap/Tm(p)[n =122
[A5llp; 0 < Ca/[m(p)[ =421, 2 < j <n,

where Cy . is a constant depending only on d,r. Note now that since

2r1—1 Z 72r+1

7

=2
if p satisfies p > max[2, d/(2r + 1)], it is possible to choose p1,...,p, satisfying
pj > 2,1 < j < n, the inequalities (4.16) and the identity
1 1 1
— + “ e +

D1 Pn p
The inequality (4.15) follows now from Lemma 3.7.
For the general case of (4.11) we need to show that

e(§)? d—1)/2 o
(4.17) / de— Lt /' OF L5 by (O™
e(@l>1/vi LTI/ le(€)]+3-2 15 P @rtar

d[Im( )] < Cd,)\,A
[m(y)|S " (+1/2-d/2q)ar = t/2 7

where the ¢, 7 =0,...,(d —1)/2 are restricted to satisfy
(4.18) ¢r > max[2, d/(2r+1)], r=0,...,(d—1)/2.
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Define now ¢ by

| @ne
4.19 - = —.
(419 i X

It follows then from (4.12) that

(d—1)/2
1 d [, d
I [ 1— =
> (rg-gr)e—g|rei-g].

r=0

where d' is an integer satisfying —1 < d’ < d. Observe that the RHS of the last
inequality is strictly less than 1 if d' < 1ord > 1, ¢ < d/(d —1). Suppose now
Gr, 7 =0,...,(d —1)/2 and ¢ satisfy (4.18), (4.19), with ¢ > 1. Then it follows
from (4.15) that

(d—1)/2

H hiyger(6)°7 € L, ([=m,7)%)

r=0
with norm bounded by a constant depending only on A, A,d ¢,¢,,7 =0,...(d—1)/2.
If we can also arrange that for d’ > 1, ¢ satisfies ¢ < d/(d’ —1) then we can see that
(4.17) holds by arguing just as we did in Lemma 4.1. Evidently it is possible to
choose the ¢, r =0,...,(d—1)/2, such that ¢, > d/(2r+1) and 1 < ¢ < d/(d’'—1).
It is not possible, however, to satisfy the condition ¢, > 2, r =0,...,(d —1)/2 in
general.

To deal with this problem we need to use a sharper estimate on the derivative

9™h(&,n)/0Im(n)]™ than sums of terms of the form (4.11). For r,j satisfying
0<j<r, 0<r<m—1,let o ; be nonnegative integers satisfying the inequality

m—1 r

(4.20) SO> A+r+i)an; <m.

r=0 j=0

If we define «,. for 0 <r <m —1, by

r m—1
(4.21) =Y it Y .,
7=0 j=r

then we see from (4.20) that «,. defined by (4.21) satisfies (4.12). It is also easy to
see that 0™h(&,n)/0[Im(n)]™ is bounded in absolute value by a sum of terms,

m—1 T " P(£E,m,- 8jw +&,1,-
| Hj=0‘< () gn§n>>
In+ e(€) q(&,n)e(—&)[m+1-X75 rar

where the o, ; satisfy (4.20) and the «, are defined by (4.21). Evidently the Schwarz
inequality implies that (4.22) is bounded by (4.11). We define for r,j =0,1,2,...,
Re(n) > 0 and p satisfying d/(r + j + 1) < p < oo, functions hy, , ,;(§) by

j d o n,) O (€., - 1/2
e e D e
ko k=1

Qr,j

(4.22)
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We shall show that for p > max[2,d/(r+j+1)], the function h,, . ; € LE ([—m,7]%)
and there is a constant Cp . j A .¢ depending only on p,r, j, A, A, d such that

(4.23)  [hnprillpw < Cprjaag Re(n) >0, max[2,d/(r+j+1)] <p < oc.

In fact it is easy to see that (4.23) follows by arguing exactly as we did in Lemma 3.9
for the case d/2 < |a| < d.
On replacing (4.11) by (4.22) the inequality (4.17) gets replaced by

194 J 1 le(€) |2 H(d 1)/2 HJ 0 hn,qr,j,r,j(g)QaT’j
( . ) gt(d+1)/2 d4+3—5"@=D/2(90 1 1)
le(§)|>1/vt |e( )| Yo e
d[Im(n)] Caxa
()| =t Dottt/ ar)ery — 142

where the o, ;, @, satisfy (4.20), (4.21). Let ¢ be defined

@R,
(4.25) - = =

Then from (4.25) it follows that if ¢, ; > max[2, d/(r+j+1)], 0<j<r, 0<r <
(d—1)/2, and g > 1 then the function

(a=1)/2

T II %o, ri@©? € Le(—m,x)%)

r=0 ;=0

with norm bounded by a constant depending only on A, A, d and the ¢, ;. We have
now from (4.20), (4.25) that

(d=1)/2 r
. d+1 d
> Z(r+3+1—d/qr,j)am:( 5 )—2*7
r=0 j=0 q

where d’' is an integer satisfying —1 < d’ < d. As before, the RHS of the last
inequality is strictly less than 1 if d < 1 or d > 1, ¢ < d/(d" — 1). Hence
if ¢ < d/(d" — 1) the power of Im(n) on the LHS of (4.24) is strictly less than
1 and hence integrable. Finally, observe that in (4.22) one has «,; = 0 unless
r+j<m-—1=(d—1)/2. Note that if r+j < (d —1)/2 then d/(r +j+1) > 2.
On the other hand if . ; # 0 for some (7, j) with r +j = m — 1 then o, ; = 1 and
o, o =0 for (r',5") # (r, 7). In that case d’ = d and (4.25) becomes 1/q = 2/¢, ;,
whence the condition ¢ < d/(d — 1) becomes ¢, ; < 2d/(d — 1), so we may still
choose g, ; > 2. Thus (4.24) holds on appropriate choice of the g, ;.

The proof of the lemma for d odd is complete if we make the observation that
from Lemma 4.4 one has

L[> k(& n) i —

i/, m{l — cos[Im(n)t] }d[Im(n)] =
d+1)/2k

dig)z

| ot
/ ad+1/2k§n)

t(d+1)/2 sin(Im(n)t]d[Im(n)]

{1 — cos[Im(n)t] }d[Im(n)],

t(d+1)/2 (d+1)/2
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depending on the value of d. Since the estimates on 9™k(&,n)/0[Im(n)]™ are the
same as those on 0™h(&,n)/0[Im(n)]™ the argument proceeds as before. The case
for d even is similar. O

Lemma 4.6. For d > 3 there is a constant C(\,A,d) depending only on A\, A,d
such that

"”‘gf’”‘ <O A d)/[1+ 2] ¢ > 0.

Proof. Suppose d is odd and the first integral in (4.9) is the appropriate represen-
tation for this value of d. Then we have that

aat/ooo h(&,n) cos[Im(n)t]d[Im(n)]

is a sum of the terms,

(d+1) [ 9HD2n(g, n)
2t(d+3)/2 [ 9[Im(n)](d+1)/2

(d+1)/2h
s |, G I coslim(nldlim )

Evidently the first term is bounded by C(\ A, d)/[1 +t'+%?] by Lemma 4.5. On
integration by parts we can write the second term as a sum of two integrals,

+

sin[Im(n)t]d[Im(n)],

1 9D R(g )
£ | B[Im(n)](d(fl)% sin[Tm()¢]d[Im(n)],
o Hld+3)/2
b s [ o ) ) st ).

(I Jy llm ()]

Again Lemma 4.5 implies that the first integral is bounded by C'(\, A, d) /[14t*+%/2],
so we are left to deal with the second integral. Using the method of Lemma 4.1 we
see that we are left to deal with

2 <
/ i 1 /Ie(f) Q32 h (€, m)
le(©)[>1/Vt

t(d+3)/2 d[Im(n)](d+3)/2
Arguing exactly as in Lemma 4.5 we see this integral is bounded by C(A, A, d)/[1+
it/ 2]. We can similarly bound the corresponding integral in k(£,7) and hence the
result follows. 0

Im(n) sin[Im(n)t}d[Tm(n)]|

Lemma 4.7. For d > 3 there is a constant C(\,A,d) depending only on A\, A,d
such that

IViGa(z, )] < C(A A d)/[1+D/2)

Let § satisfy 0 < § < 1. Then there is a constant C(5,\, A, d) depending only on
0, A\, A, d such that

ViV, Gale )] < OGN A d)/[1 4 t159/72)

Proof. Same as for Lemma 4.6. O
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5. Proof of Theorem 1.4—Off Diagonal case

Here we shall complete the proof of Theorem 1.4. Thus we need to establish the
exponential falloff in (1.10) and in the inequalities of Theorem 1.4. Evidently (1.10)
implies that the periodic function G, (€,1), € € RY, can be analytically continued
to C%. Our goal will be to establish analyticity properties of Ga(f ,t) and derive
from them the inequality (1.10) and Theorem 1.4.

Lemma 5.1. Suppose ¢ satisfies 0 < e < 1. Then the periodic function G’a({, t), £ €
R, can be analytically continued to the strip {£ € C? : |[Im(¢)| < e}. There are
constants C1 (A A, d), Co(\ A, d) depending only on A\, A,d such that

|Ga(& 1) < CL(A A, d) exp[Co (A, A, d)e?], [Im(€)] <&, >0

Proof. We have already seen in Section 2 that the matrix ¢(§,n) of (2.3) is defined
for all ¢ € R%, Re(n) > 0, is continuous in (£,7) and analytic in 7 for fixed £. We
shall show now that for any § > 0 there exists a constant C'(\, A, d, §) > 0 depending
only on A\, A, d,§ such that if Re(n) > C(\, A,d,d)e? then q(&,7), € € RY, can be
analytically continued to the strip {¢ € C¢ : [Im(¢)] < €} and

(5.1) la(€.n) — a(Re(€), n)ll <4, [Im(&)] <&, Re(n) > C(A,A,d,5)e? .

In view of (3.6), (3.7) this will follow if we can show that for any J > 0 there exists
a constant C(d,d) > 0 depending only on d,d, such that if Re(n) > C(d,d)e?,
then the operator Ty i .,.¢ of (3.4), which is bounded on L?(12) for £ € R?, extends
analytically to a bounded operator on L?(Q) for [Im(¢)| < & and

(52) HTk:,k’,n,£ - Tk:,k’,n,Re(E)” < 67 ‘Im(£)| <g, Re(n) > C(da 6)62'
To prove (5.2) observe that the Green’s function G, (x) satisfies an inequality

Caexp [ — g(Re(n))|=|]

ViV Gy(z)] < x ezl

B [1+[z[]? 7
where g(z), z > 0, is the function
caV'z, 0<z<1,
9(2) ={
cglog(l+2), =z>1.

Here Cy,cy are positive constants depending only on d. It follows in particular
that there is a constant C7(d), depending only on d, such that if 0 < ¢ < 1 and
Re(n) > C1(d)e?, then the function ViV G, (z)ei®¢ decreases exponentially in z
as |z| — oo, provided [Im(€)| < e. It follows from (3.4) that if Re(n) > C1(d)e? then
the bounded operators Ty, z/ ¢ on L2(), € € RY, extend analytically to bounded
operators on L%(Q) provided ¢ € C? satisfies [Im(§)| < e.

To prove (5.2) we use Bochner’s Theorem [9]. Thus for any ¢ € L*(Q) there is
a positive finite measure du, on [—m,7]¢ such that

<¢(Tz')m> = /[ﬂ . @V Cdu, ().
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Hence,

| Tk ks 6P =Tk o re(e)Pll* = dpig(C)
[ d

—,m)

| Y ViV Gy [explin - (¢ + &) —explia- (¢ + Re(€))}][
zeZ?

= [ Qe + e~ 0G(C +9

2

— er(¢ + Re(€))ew (—¢ — Re(€)) G (¢ + Re(€))
‘We have now that

ex(C+ ew (—C = C(C +6) = — 2EFOew(€=8)
k(€ +Eew (=€ = §)Gy(C + ) ST o0t OO 77

Observe that
lex(¢+ &) —en(¢+Re(§))] <€ —1<2e, (€ [-m 7], Im|<e<1
Hence if C1(d) > 24d and Re(n) > C;(d)e? then

d d
53 |6 Oe(-c- 0 +a] = 5| Ser (¢ Re(Ees(-¢ - Re(e)
> %(71((1)82, e [—71',71’]"l7 [Im¢| < e.

Similarly we see that

e4(C+ ©en (—C =€) = ex(¢ + Re(§))ew (=€ = Rel£))|
d 1/2
< 1000 4 100e {Zej(c + Re(€))e;(—C — Re(f))] , ¢ € [-m,7]¢, [Im¢| < e.

j=1
We conclude therefore that the integrand in the dpu,, integral is bounded as

k(¢ + E)ers (—C = €)Gin(C +€) = en(C + Re(€)ers (—¢ — Re(€)) Gy (€ + Re(©))|

10002 + 100e [Z?Zl e; (¢ +Re(&))ej(—¢ — Re(f))} 2

|35 (¢ + eg(=C = &)+
e+ Rel@lew (¢ ~ Re(e) [ 1422+ 264 {32,y ¢ + Ret@) P ]

|0 e (C+€)ej (—¢ — &) +nll S0 €;(¢ + Re(€))ej(—C — Re(€)) + )

We can see from (5.3) that the expression on the RHS of the last inequality is
bounded by

2000 , 200 | 4d_ 2Vd
Ci(d) ' /Ci@)  Cid) /i)

Evidently this last expression can be made smaller than ¢ by choosing C(d) suffi-
ciently large, whence (5.2) follows.
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We have shown that (5.1) holds. Next consider the function h(€,n) defined by
(2.18) for &€ € R4, Re(n) > 0. Furthermore, (2.19) holds. We show now that there
is a constant C) 5 ¢ depending only on A, A, d such that if Re(n) > CA,A,dsz then
h(¢,m) may be analytically continued to the strip {¢& € C¢ : [Im(¢)| < ¢} and

(5.4) / " (e, mldlim(n)] < Caaa s [Im(e)] < -

To do this we need to rewrite the identities (2.14), (2.15) in such a way that they
extend analytically in & from & € R? to the strip [Im(¢)| < e. First consider (2.14).
We define a function 4;(£,n,w) for € € RY, Re(n) >0, w € Q, by

e 1 _
Aj(€m,) = e5(=€) + €7 E[0; + e (O] {v(& m ) +¥(& 7 )}
where (&, n,-) is defined just before (2.26). It is easy to see that the complex
conjugate A;(&,n, ) = A;(=&,n,-). We conclude from this and (2.14), (2.26) that

d

(5.5) Rele(€)q(&,m)e(—8)] = < S s (VA€ VA (€., .>>

ij—=1

Similarly we have from (2.15) that

+ 5 Tmlon) (Y€1, Y67, ).

We write now h(&,n) as
(5.7)
h(&,m) =

Re(n) + Rele(§)q(&,n)e(=E)]
[Re(n) + Rele(§)q(€,m)e(=E)]]? + [Im(n) + Imle(€)q(&, n)e(—=E)]1*

and use the expressions (5.5), (5.6) to analytically continue h(£,7), € € RY, to
complex ¢ € C4. Note now that it follows from our proof of (5.1) that for any § > 0
there exists a constant C'(\, A,d,d) > 0 depending only on A, A, d,d such that if
Re(n) > C(\, A, d,6)e? then the function ¢ (€,7,-) of (2.2) from R? to L?(Q) can
be analytically continued to the strip {¢ € R? : [Im(¢)| < €} and

(5.8)
<‘6_iej'§[5j + e (O] (&,m, ) — e R [9; + e (Re(€))]vhr(Re(€), m, ')‘2> <9,

|77| <|wk(€7773 ) - wk(Re(f)ﬂ% )|2> < 57
1 <4,k <d, Im()| <e, Re(n) >C(\A,d, o)
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It is easy to see from this and (5.5), (5.6), (5.7) that there is a constant C'(\, A, d)
depending only on A, A, d such that
1 Re(n) + 4A|e(Re(§))[”
Re(n) + Ale(Re(£))* ” [Im(n)]? ’
ITm(¢)| < &, Re(n) > C(\, A, d,0)e>.

It is clear now from this last inequality that h(£,7n) as defined by (5.7), (5.6), (5.5)
can be analytically continued to [Im(§)| < € and that (5.4) holds.

Next consider the function k(§,n) defined by (2.18). We shall show that there is
a constant C) 5 4 depending only on A, A, d such that the function 9k(&, n)/0[Im(&)]

can be analytically continued to the strip [Im(§)| < &, provided Re(n) > C A q4&>.
Furthermore there is the inequality

(5.9) |h(&,n)| < 2min

(5.10) wmmmmmmmgmﬁﬁ@umm<aRmm>mAﬁ%
To see this we use the identity,
8k(£7n) _ ]-+ < ¢(_§7n7)¢(§vn7) > d
om(m] ~ Tt e@aEme(—OF | CEF

The inequality (5.10) follows now from the proof of (2.27) and the inequalities (5.8).
The proof of the lemma is completed by using the representation (2.17) with
Re(n) = Cx a.qe? and the inequalities (5.4), (5.10). O

Corollary 5.1. There are constants Cy(d, X\, A) and Ca(d, A, A) > 0 depending only
on d, \, A such that

0 < Galz,t) < C1(d, X\ A) exp [~Co(d, A\, A) min{|z|, |z|?/t}] , z€Z% t>o0.

Proof. Follows from Lemma 5.1 on writing

1 A )
Ga(&, t)e ™ d[R
g [ Gale SR
and deforming the contour of integration to ¢ € C? with [Im(¢)| = min[1, |z|/2Cat],
where Cy = Cy(\, A, d) is the constant in the statement of Lemma 5.1. O

Ga(z,t) =

Next we extend Lemma 2.3 to ¢ € C%.

Lemma 5.2. Let ¢ satisfy 0 < ¢ < 1 and Gqo(&,1), € € C4, [Im(¢)| < e the
function of Lemma 5.1. Then for any §, 0 < & < 1, there is a constant C1(\, A, d, §)
depending only A\, A,d,0 and a constant Co(\, A, d) depending only on A\, A,d such
that

Ci(\ A, d,9)
[1+ le(Re(§))[¢]°

Gal&,1)] < exp[Ca(A, A, d)e%], [Im(¢)| <&, ¢>0.

Proof. Observe that one may choose C) a4 sufficiently large, depending only on
A, A, d such that both (5.10) holds and the inequality

2(1+A)
(5.11)  |9k(&,m)/OIm(n)]| < ~Gr—m—mii7T >
A?le(Re(€))[?[n]
The inequality (5.11) is analogous to (2.30) and is proved using (5.8), We con-
clude then from (5.10), (5.8) just as we did in Lemma 2.3 that the LHS of (2.28)

Im(&)| < &, Re(n) > Caa4e” .
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is bounded by Ci(\, A, d,8)/[1 + |e(Re(£))|?t]? if [Im(€)| < & provided Re(n) >
C a,ae%. Since we can do similar estimates on 9h(&,n)/0[Im(n)] the result follows
just as in Lemma 2.3. (]

Corollary 5.2. The function Ga(x,t) satisfies the inequality

Ci(\A) . 9 .
0 < Ga(x,t) < ————Fexp |[—Co(A\, A) min{|z|, |z|/t}] , if d=1,
< Galnt) < (2 exp [-Co0, A mindla, Ja*/1)]
where the constants C1(A\,A) and C2(\,A) depend only on \,A. For d > 1 it
satisfies an inequality,

Cl(>‘7A7d7 5)
< Galz,t) £ — 07—
0= Gal,1) (1 +19)
for any 6, 0 < 6 < 1. The constant C1(\, A, d,0) depends only on \,A,d,é and
Cay(M\, A, d) only on A\, A, d.

p[fc’Q()‘aAad)minﬂIL |:L'|2/t}] )

Proof. Same as for Corollary 4.1 on using the method of proof of Corollary 5.1
and Lemma 5.2. O

Next we generalize Lemma 2.4.

Lemma 5.3. Let ¢ satisfy 0 < ¢ < 1 and Gq(&,t), € € C%, |Im(€)| < &, be the
function of Lemma 5.1. Then Gq(€,t) is differentiable for t > 0. For any 6,
0 < § < 1, there is a constant C1 (A, A, d, ) depending only \, A, d, 0 and a constant
Ca(\, A, d) depending only on A\, A such that

0G4 (E,1) Ci(\ A, d, )
ot ~ t[1+ |e(Re(€))|?t]

5 exp[Co(\, A, d)e®t] , |Tm(€)| <e, t>0.

Proof. In analogy to the proof of the inequality (2.41) we see that there are con-
stants Cy (A, A, d) > 0 and Cy(\, A, d) > 0 such that

(5.12)

(e, n)/om(y)| < LA AD) 1 Re(n) + |e(Re(€))[?

min , ,
[Tm(n)] {Re(n) + le(Re(8))? [Tm(n)[?

Im(&)| < e, Re(n) > Co(\, A, d)e? .

It follows then just as in Lemma 2.4 that

5 || e costmmaidim] < Cuna. )] <

We can also see that there are constants Cy(\, A,d) > 0 and C2(X, A, d) > 0 such
that

(5.13)

(5.14) ‘ O*h(Em) | _ LA Ad) 1 .

min ) )
Otm(n)]? |~ [Tm(n)|? [Re(n) + le(Re(§))[* * [Im(n)]

Im(n)| <&, Re(n) > Ca(A A, d)e® .
We conclude from this last inequality and (5.13) that for any § > 0 there is a
constant C'(\, A, d, ) such that
0

o0 C(\ A, d,5)
&/0 h(fﬂ?) COS[Im(n)ﬂd[Im(W)]’ S t[l + |e(Re(§))|2t]5

, Mm(g)| <e,
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provided Re(n) > Cy(\, A, d)e?. Arguing similarly we see also that
a1 [ k(& n) C(\ A, d,0)
ot Jo ol cosim )t”d[lm(””’ S i [eRe@)PT
Im(¢)| < e, Re(n) > C(A, A, d)e?

The result of the lemma follows from these last two inequalities and

1
’ exp[Re(n ‘ n exp[2Re(n)t].
]

Corollary 5.3. The function Ga(z,t) is differentiable with respect to t for t > 0
and satisfies the inequality
’8Ga(x,t) Ci (A A)
ex
ot t(1+ /1)
where the constants C1(A\,A) and C2(\,A) depend only on \,A. For d > 1 it
satisfies an inequality,
0G4 (z,t) Cl()\ A, d,d)
ot | = t[L+1t9]
for any 6, 0 < § < 1. The constant Cy(\, A, d,d) depends only A\, A,d,§ and
Cao(\, A, d) only on X\ A, d.

P [—CQ(A,A) min{|z|, \x|2/t}] , if d=1,

p[—C’Q()\,A,d)min{M, |‘T|2/t}] )

Proof. Same as for Corollary 5.2 on using Lemma 5.3. ]

Lemma 5.4. There are constants C1(\, A, d) and Co(\, A,d) depending only on
A A, d such that

OGa(&,1)

5 < Cr A d)[le(Re(6) 2 + 2] exp[Ca(N, A, d)e?t] , [Im(€)| <&, t>0.

Proof. In analogy to the inequalities (2.49) we have from (5.9), (5.12) the inequal-
ities
(5.15)
1 o
*/ P&, mH{1 = cosIm(n)t]}d[Im(n)] < C1 (A, A, d) [le(Re(€))|* + Re(n)],
0

t
/ ‘ Oh(&,n)
tJo |O[m(n)]
provided ¢ € C? and 7 € C satisfy

(5.16) Im(¢)| < e, Re(n) > Ca(\, A, d)e?

where C1 (A, A, d) and Cy(A, A, d) depend only on A, A, d.

Next we need to deal with the integral (2.50) in k(&,n). Observe first from (5.8)
that there are constants C1(\, A, d) and C3(), A, d) depending only on A, A, d such
that if (5.16) holds then

[Im(n)[[k(€,n)| < C1(A\, A, d), [Im(n)] < Re(n) + [e(Re(&))|*.

[tm(n)|{1 — cos[Im(n)t]}d[Im(n)] < C1(X, A, d)[Je(Re(€))*+ Re(n)],
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We can write k(£,7n) as in Lemma 2.5 to be
b(&;n)
k —
&)= e o e

where a(€,n) is the sum of Re(n) and the RHS of (5.5) whence b(&,7) is the sum
of Im(n) and the RHS of (5.6). We have now from (5.8) that

[b(&;m) = b(Re(£), )] < %Ollm(n)h [tm(n)| > Re(n) + |e(Re(§))|* ,

provided (5.16) holds and the constant Cy (A, A, d) is sufficiently large. We also have
that

(&) ~ a(Re(€),m)| < 15 a(Re(€), ),

provided (5.16) holds and Ca(A, A, d) is sufficiently large. It follows from these last
two inequalities that

/Oo [Tm(n)] ja(€,n)?
Re(n)+|e(Re(&))|? |b(§7 77)| |a(§7 77)2 + b(§7 77)2‘

for some constant C'(\, A, d), provided (5.16) holds with sufficiently large constant
Ca(A\, A, d). Now the following lemma implies that

/OOO (& m.)*)d[Im(n)] < C\ A, d)[le(Re(€))]* + €7,

d[Im(n)] <C(A, A, d)[Re(n)+|e(Re(€)) ]

for some constant C(\, A, d) depending only on A, A, d, provided (5.16) holds with
sufficiently large Ca(A, A, d). We conclude then from these last inequalities that

(5.17)

lim

m—0o0

wm/t
/O k(& m)Im(n) cos[lm(n)]d[Im(n)]| < C(A, A, d)[Re(n) + [e(Re(€))]] ,

for some constant C'(A, A, d) provided (5.16) holds. The Lemma follows now from
(5.15), (5.17). O

Lemma 5.5. Let (&, n,-) be the function defined by (2.2), and 0 < e < 1. There
is a constant C1(\, A, d) depending on X\, A, d such that if Re(n) > C1(\, A, d)e? then
Yr(€,m, ), regarded as a mapping from R? to L*(Q), can be analytically continued
to {¢ € C: [Im(¢)| < e}. Furthermore, there is a constant C(\, A, d) depending
only on X\, A,d such that

/0 (&) Ydlm(n)] < Co(\, A ), Re(n) > Cr(A, A, d)e2, - [lm()]| < e.

Proof. We proceed as in Lemma 2.6. Let ¢ (¢,€,+),t > 0, be the solution to the
initial value problem,

31/%(757 67 )
ot

d
k(0,€,°) Za*m e Elag i (-) — (aks ()] = 0.

(5.18) + [Le + Re(n)]vr(t, &) =0, t>0,
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It is clear that (5.18) is soluble for ¢ € R?, Re(n) > 0, and

(5.19) (&) = /0 Ty, (1.6, Yt

Taking Re(n) > C1(\, A, d)e? for sufficiently large C1 (), A, d) it is clear that one
can solve (5.18) for ¢ € C? with [Im(¢)| < € and the resulting function is analytic
in £. Evidently the corresponding function 1% (&, 7, ) defined by (5.19) is analytic
in £ for [Im(§)| < e. Furthermore, from the Plancherel Theorem we have that

/0 (10w (&, ) Ydlim(n)] §27T/OOO<|1/}k(f,§,-)2>dt

Now for £ € C? let L be the adjoint of L¢ acting on L?(Q). Thus Li = Lg where
¢ is the complex conjugate of £. Let ¢y (t,&,-) be the solution of the equation

[Ez + Re(n)](pk(tvgv ) = wk(tvga ')a t> 07 |Im(£)| <e.
It follows from (5.18) that

9 .
(520) <<pk(t7£7 )wkg:g’)> + <|"/}k(t7§7 )|2> = 07 t>0.
‘We also have that
(5.21)

(ot o)) R (e Remlon S ) = Re (ot lee + Re(olen )

=Re <([L‘5 + Re(n)]a(;ptk@k> + Re <a§tk[£5 — Lg]gak> .

We conclude that

0 10 —_— 1 dp
<95k (;/th> = §§R6<[££ + Re(n )]@ks0k> + Re<<pk[£§ - £2]‘Pk>~

Observe now that

a@k *
<8t[£§ - £§]¢k> =
— (r[LE + Re(m)][Le + Re(n)] ™ [Le — LIILE + Re(n)] ')
Hence if C1 (A, A, d) is sufficiently large one has

‘@@tkw& _EZ]“”’“>‘ < (et )F) s ¢> 0, [m(e)] < e.

Putting this inequality together with (5.20), (5.21) we have that

10 —_— 1
3 pne <[/35 + Re(n)]@k¢k> t3 ([r(t,€)7) <0, [Im(E)] <e, t>0.

Integrating this inequality with respect to ¢ we conclude
| st e < Re (a0.€T0n(0.6)
0

Arguing as in Lemma 2.6 we see that the RHS of this last inequality is bounded by
a constant C(\, A, d) depending only on A, A, d. O
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Corollary 5.4. There are constants Cy(\, A, d) and Ca(\, A, d) > 0 depending only
on d,\, A such that

86:213(:7”’ < Ci(d, A, A) exp [—=Ca(d, A, A) min{|z], |m|2/t}] ., xzeZi t>o.

Proof. Same as for Corollary 5.1 on using Lemma 5.4. O

Corollary 5.2 proves (1.10) for d = 1. Following the argument of Lemma 4.1 we
shall use our methods to prove (1.10) for d = 2.

Lemma 5.6. For d = 2 there are positive constants C1(A, A), Ca2(\, A) depending
only on X\, A such that

Ci(\ A

0 < Ga(z,t) < T+1 ) exp [—Co(\, A) min{|z|, |z|*/t}], z€Z* t>0.

Proof. It will be sufficient to show that there are constants Cy(\,A), Ca(A,A)
such that

A Ci(\ A
522) [ iGate lme(e)] < G0

2
T+t exp[Ca2 (A, A)e“t], |Im(&)| <e, t > 0.

In view of Lemma 5.1 it will be sufficient to prove (5.22) for ¢t > 1. It is also evident
from Lemma 5.1 that

Cal6 D) dRe(e)] < SR

/ ) exp[Ca (A, A)e?t], [Im(¢)] < e, t > 1,
le(Re(€))|<1/VE

whence we are left to show that

(5.23)

i (M A

Gal&,t)|d[Re(€)] < ) exp[Ca (N, A)e?t], [Im(€)| <&, t > 1.

/Ie(Re(ﬁ))>1/\/f

Now the integral on the LHS of (5.23) is a sum of an integral in h(£,n) and k(§,n).
We first consider the integral in h(£, 7). Following the argument of Lemma 4.1 and
using (5.14) we see that it is sufficient to show that

1 [l p2p ¢ ) "~ cosTm m
/Ie(Re(f))>1/\fd[Re(§>] t2/ [hn(n)P{1 pmdin)
< AN @) < e Re(n) > Co(r, A)e?

- t
for sufficiently large constant Cy(A, A) depending only on A, A. Again, arguing as
in Lemma 4.1, we see it is sufficient to show that

(5.24)

1 [le®eOF < e, )P >
d[Re(&)) 5 / (e {1~ cosltmOn ] ltm(n)

< L(j’m,

/IE(F'Le(ﬁ))>1/\/E
|Im(£)| <g, Re(ﬂ) > CZ(Aa A)52
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Define for 2 < p < oo a function h, (&) by
2 2
hyp(€) = |Tm(n)| /2 - ”P{Z<Iwk(£,n,-)l2>} , £eC? Im(¢)] <e.
k=1

Suppose now Im(¢) € R? is fixed and regard ho,(€) as a function of Re(¢) €
[—7,7]?. Then one can see just as in Lemma 4.1 that if |[Im(¢)| < & and Re(n) >
Co(\, A)e? for sufficiently large constant Co()\,A) depending only on A, A, then
hyp € LP ([—m,7]?) and there is a constant C}, 5 o such that

||hn,p p,w S Cp,)\,A» |Im(§)| <g, Re(’?) > 02()‘7A)€2'

The inequality (5.24) follows from this last inequality just as in Lemma 4.1. Hence
we have found an appropriate bound for the contribution to the LHS of (5.23)
from the integral in h(£,n). The contribution from the integral in k(&,n) can be
estimated similarly. O

We can similarly generalize Lemma 4.2 to obtain the following.
Lemma 5.7. For d = 2 there are positive constants C1(A, A), Ca2(\, A) depending
only on X\, A such that
’8Ga(x,t) < Ci(\A)
at |~ (1412
Next we wish to consider derivatives of Ga(z,t) with respect to z € Z4. If d = 1
then it is clear from Corollary 5.2 that
Ci(\A)
(14 V1)
We can use Lemma 5.2 to obtain an improvement on this inequality.
Lemma 5.8. Suppose d =1 and 0 < § < 1. Then there exist constants C1(\, A, 0)
depending only on A\, A, 0 and Ca(\, A) depending only on A\, A such that
C1(M\ A, 0)
(1+41t9)

exp [—Co(\, A) min{|z|, |z|°/t}], = €Z* t>0.

|ViGa(z,t)] < exp [—Co(X, A) min{|z|, |z|°/t}], z€Z? t>0.

|ViGa(z,t)] < exp [—Co(X, A) min{|z|, |z[*/t}], z€Z? t>0.

Proof. The result follows from Lemma 5.2 and the observation that
" le(Re(§))| C(0,9)
<
[, T e e < T

for any ¢',§ satisfying 1/2 < § < §' < 1, where C(¢’,9) is a constant depending
only on ¢',9. O

We can improve Lemma 5.8 by using the techniques developed in Section 3.

Lemma 5.9. Suppose d =1 and 0 < § < 1. Then there are constants C1(X, A),
Cy(A\, A) depending only on A\, A and a constant C3(\, A, ) depending on A\, A,
such that

(5.25) ViGala )] < LA

S Taap O [=C2(A, M) min{lz], |2*/t}] ,

(5.26)

V3V, Ga(a,1)] < 2 A0)

o givore) O [FCa(h My min{lal, [a*/8)], @ €22, ¢ >0.
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Proof. It will be sufficient to show that for any §, 0 < § < 1, there are constants
C3(\, A, 9) and Ca(A, A) such that

1) [ Jee(©) Gl DldRe()] < SEER explCa(n )%

for |Im(¢)| < e, t > 1. Now from Lemma 5.1 we have

A C3(\ A
L ey EREI Gt D RC) < B0 cxplCa(a, M),

for [Im(&)| < €, so we are left to prove

(5.28)
C5(\, A, 5)

le(Re(€)°|Ga(&, Old[Re()] < =557

/(R ©)I>1/VE exp[Ca (A, A)e?t],
e e >

for |[Im(&)| < &, t > 1. Proceeding now as in Lemma 5.6 we write the integral on the
LHS of (5.28) as an integral in h(£,7) and an integral in k(&,n). We first consider
the integral in h(§,n). If we use (5.14) we see that it is sufficient to show that

62 | d[Re(©)e(Re(€))
le(Re(§))[>1/Vt

1 [le®e g2p (e, p)
2 SR cotmtratimn)

Cs(M\ A6
< Bt(lT/z)’ Im(¢)| < e, Re(n) > C’g()\7A)52, 0<6<1,

for sufficiently large C2(A, A) depending only on A\, A. Arguing as in Lemma 5.6 we
see that to prove (5.29) it is sufficient to show that

(5.30) / d[Re(€)]]e(Re(£))]+
le(Re(€))[>1/Vt

le(Re(£))
l/ < |¢(§ - )| {1 _ Cos[Im(n)t]}d[Im(n)]
i \

2 (Re(&))|*Im (1)
< % Im(€)] <&, Re(n) > C2(A, A)e?, 0 <5 < 1.

Define for 2 < p < oo a function h, (&) by

1/2

By p(€) = [Tm(n) Y2712 (| (&,m,)]2) /7, € € T4, [Im(€)| < e.

We fix now Im(¢) € R and regard h, ,(§) as a function of Re(¢) € [—m,m]. Then
one can see just as in Lemma 5.6 that if [Im(£)| < € and Re(n) > C2(\, A)e? for
sufficiently large constant C>(A, A) depending only on A, A, then h,, , € L? ([—m, 7])
and there is a constant Cj, y A such that

1hnpllpw < Cpan, [Im(§)] <e, Re(n) > 02()‘aA)52
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Arguing as in Lemma 4.1 we see that (5.30) holds if

1 eReDE (g2
R g, )

OS(Av Aa 5)
— t1+6/2 ’

/Ie(Re(i))>1/\/E
t>1.
The LHS of this last expression is bounded by

C (YO ditmn)] :
172+2/p ; (Qn) /0 Ml/m/p/le(f))dwm hn,p(€)°d[Re(§)]
1-6

_ Cpan =~ (VE 92n+2\ /2 =1/ fon+1 TP o0
—t1/2+2/pz on t Vi = 1+8/2

n=0

1-96

provided we choose p to satisfy 2 < p < 4/(1 + ). Hence the contribution to the
LHS of (5.28) from h(&, n) is bounded appropriately. Since we can similarly estimate
the contribution from k(&,n) we have proved (5.28) and hence (5.27). Now (5.25)
follows by taking ¢ = 0 in (5.27), and (5.26) by taking J close to 1. O

We have proven Theorem 1.4 for d = 1. It is clear by now that we can use the
methods developed in Section 4 to extend the results of Lemmas 5.6, 5.7, 5.9 to all
dimensions d > 1.

6. Proof of Theorem 1.2

Forn >0, z € R?, let Gy (x) be the Green’s function which satisfies the equation,

d 42
- T @) = (), wert
i=1 i

where §(z) is the Dirac ¢ function. Analogously to (3.4) we define an operator
Tk k. on L*(2) by

2
(6.1) Tuwmerlw) = - [ ars 22t Col@) it y(r ), we .
R

d 8$k81‘k/
Evidently T i .¢ is a bounded operator on L*(). Just as in Section 3 we can
define operators Ty, , ¢ and T}, ¢, j =1,...,d associated with the operators (6.1).
We then have the following.

Lemma 6.1. Let Ty ¢ and T, ¢,5 = 1,...,d, be the operators associated with
(6.1). Then if |b|| < 1 the equation (3.6) has a unique solution Ui(&,n,:) €
H(Q), € €RY, 1> 0, which satisfies an inequality,

1Wk(&m, )l < CA A /L= blll,  k=1,....d,

where the constant C(\,A,d) depends only on A\, A,d. The function (§,mn) —
Ui (&,m,-) from RY x RY to H(Q) is continuous.

Next we put b(-) = [AI; — a(-)]/A and define a d x d matrix ¢(£,n) by (3.7),
where Uy (&,1m,-), k=1,2,...,d are the functions of Lemma 6.1.
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Lemma 6.2. For ¢ € RY 5 > 0, the matriz q(&,n) is Hermitian and is a contin-
uous function of (§,m). Furthermore, there is the inequality

(6.2) Mg < q(&,n) < Alg.

Proof. We use the operators Ty xs ¢ of (6.1) to define an operator T, ¢ on H(2).
Thus if ¢ = (p1,...,pq4) € H(Q) then
d

(Tye)k = Y, Tokr meph -
k'=1

It is easy to see that T, ¢ is a bounded self-adjoint operator on () which is
nonnegative definite and has norm ||T;, ¢|| < 1. We can see this by using Bochner’s
Theorem as in Lemma 3.3. Now for p € C?, we put ¥, to be

d
\IJP = Z pk\I/k) ’

k=1

where ¥y, is the solution of (3.6). Then from (3.7) we have that
pa(&,mp = (pal-)p + pa(-) ¥,y (&,n,-)) -
It is also clear from (3.6) that ¥, satisfies
1

(63) \Ilp(§7 7, W) - PTb,n/A, §‘Ilp(§7 m, w) + KTU/A, E[a(w)p_ < a()p >] = 0.

To obtain the upper bound in (6.2) we observe that
(6.4) (pa()w, (€. )) 0.

To prove (6.4) we generate ¥, from (6.3) by a Neumann series. The first order
approximation to the solution is then
1
‘I’p(@??» ) =~ _X n/A, §[a(w)p - <a()p>] .
Putting this approximation into (6.4) yields

1
(1) |- 4T, o~ a0 )
1
= = (plal) = @ITyn ¢fal) = (@)]p ) <0,
since T;)/5 ¢ is nonnegative definite. One can similarly argue that each term in the
Neumann series makes a negative contribution to (6.4).

To prove the lower bound in (6.2) we use the fact that
Te=Tyell —nAnpel,

where A, ¢ is the bounded operator on L?(§) defined by

Ape dlw) = /Rd de,,(;v)e_”“"qu(me).

Note that A, ¢ is self-adjoint, nonnegative definite, and commutes with T; ¢. It
follows now from (6.3) that

Tn/& eVp = {1 - %An/l\, E} v, .
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Hence if we multiply (6.3) by ¥, and take the expectation value we have that
e — ”7 —
19,6 )2 = (T, (Em DB m,)) + 1 (Tal&n T Ay, eb()T,(E,.))
V' jo—777— n
+ 2 (&) [1 = Ty | lal)p - (@) ) = 0.

If we deﬁne the operator K by
K=1 ;,An/A,Ea

then the previous equation can be written as

1, (6.1 = (KU, (Em Ib()Ty(6n,)) — 5 (KT, En, Jlal) — ALdp).

Applying the Schwarz inequality to this last equation, we obtain
l foor—— 1 jo
19,(&m. )12 < 5 (KO0 bOKE,(Em,)) + 5 (T, . ~>b<->wp<e,n, ))

+ 50 (KU, lal) — MK W,(6,1,)) + 5 (plal) — Mdlo).

Observing now that K is also nonnegative definite and bounded above by the
identity, we see from this last inequality that

(W, (Em, 9200w, (€m,1)) < (plal) = M)
The lower bound in (6.2) follows now from the Schwarz inequality on writing

(pa()W,(&,m,-)) = (plal) = Ma]Wp(&,7,-)) -
O

We have defined the functions ¥i(¢,n,:), kK = 1,...,d corresponding to the
solutions of (3.6). Next we wish to define functions (£, n,) corresponding to
the solutions of (2.2). To do this we consider an equation adjoint to (3.6). Since
To e = Ty eb(-), the adjoint Ty e of To e is Ty, o = b(: )Ty Fork=1,....d
let ¥ (&, n,w) € H(Q) be the solution to the equatlon

(65)  ViEmw) — T, cVHEn©) + ylar(w) — ()] =0,

where ay(w) is the k th column vector of the matrix a(w). Just as in Lemma 6.1
we see that W} regarded as a mapping from R? x R to H(f) is continuous. We
also define an operator S, ¢ : H(Q) — LQ(Q) by

71'1:-.5 ,
(6.6 Spple) = [ a5 e,

k'=1

where ¢ = (p1,...,¢0q) € H(2). Evidently S, ¢ is a bounded operator. We define
the functions % (¢,n,w), k=1,...,d, then by

(67) ’(pk(f n,w ) 17/A ﬁ\II (5 n,w )7 wE Qa

where Uy (&, n,w) is the solution to (6.5). It is easy to see that there is a constant
C(A\ A, d) depending only on A, A, d, such that

(6.8) [ (&,m, )l < CN A d) /i
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Let us define Ga(€,7) similarly to (2.4) by
-
n+&q(§,mE’

where the matrix g(¢,7) is as in Lemma 6.2. Suppose now f : R? — R is a C™

function with compact support and Fourier transform f (£). We define 0(&,n,w) to
be

(6.9) Ga(&,n) = EeR n>0,

d
(&, m,w) = [1 - z'stk(m,w)} Gal(&m) ().

k=1

Let n > 0 be fixed. Then 9(¢,n,w), regarded as a function of ¢ € R? to L?(Q), is
continuous and rapidly decreasing. Hence the Fourier inverse

1 —ix-&
”(%va) = W/Rd dfe gv(ganvw)v S Rda

regarded as a mapping of z € R? to L?(Q2) is C*. In particular it follows that
v(z,n,w), regarded as a function of (z,w) € R x Q to C, is measurable and in
L?(R? x Q). Define now the function u(x,n,w) = v(z,n,7,w). It is clear that
u(z,m,w), regarded as a function of (z,w) € R? x Q to C is measurable and in
L?(R9 x ), with the same norm as v.

Lemma 6.3. With probability one the function u(x,n,-), x € R?, is in L?(R?) and
its distributional gradient Vu(z,n,-) is also in L*(R?). Furthermore u(z,n,-) is a
weak solution of the equation

6100 =3 2 a2 ] o) = s, e
Lj

131

Proof. Since u(z,n,w) € L?(R? x Q), it follows that with probability one u(x,n, ),
r € R%is in L2(R%). To see that the distributional gradient of u(x,n,-) is also in
L?(R%) with probability one, we shall establish a formula for Vu(z,7,-). To do this
we define for any C'* function of compact support g : R¢ — C, an operator Age
on L?(Q) by

Agep(w / dzg(z)e” " Cp(r,w), ¢ € L*(Q).

Evidently A, ¢ is a bounded operator on L?(f2). Suppose now W (&,7, ) € H(Q) is
the function of Lemma 6.1 with components ¥y = (Vg 1,..., ¥ q) and 5§, 7, ")
is given by (6.7). Then

(611) Angyfi/)k(fvn,') = 7Ag,§q]k,j(€7777'),
where Vg is the j th partial of g. To see that (6.11) holds, observe that if S, ¢ is
the operator of (6.6) then for ¢ € H(Q),

d

(6.12) Av,geSnep=—Age > Tikrnetr,
k’'=1
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where ¢ = (¢1,...,¢q) and Tj n ¢ are the operators (6.1). The identity (6.11)
follows now from (6.12) by observing that Wy (&,n,-) = T,/a, ¢¥5(£,m,-) . We have
now that

(6.13) _/Rd dzVig(z)u(z,n,-) / dzVig(z)v(z,n, 74)
-~ / AEA 0.60(60m.)
1
= Gyt L, aeiifEn.)

where

d
(6.14) 0;(&,myw) = —i {sj + )G, mw)] Gal(&m) (9).

Now we put,
1 —ix-§ 5
Uj(xanvw) = (271_)(1 - dge Uj(£a777w)'

It is clear that v;(z,n,w), regarded as a function of (z,w), is in L?(R? x §2), whence
v;(z,m, T,w) is also in L2(R? x Q). It follows now from (6.13) that the function
Vu(z,n,w) = vj(x,n, T,w) is in L2(R%) with probability 1 in w and is the distri-
butional derivative of u(x,n,w).

Next we wish to show that with probability 1, u(z,n,-) is a weak solution of the
equation (6.10). To do that we need to observe that for any ¢ € H(Q2) and C*
function g : R — C of compact support, one has

d d

(6.15) D AV eTirnerr = —NAgeSnco+ Y Av,gehr
k' =1 k=1

We have now, for any C> function g : R? — R with compact support,

(6.16)
/ dx Z vzg a/Lj Te* )VJU(ZII 7’]7 / dx Z V'Lg az,j T )'U_j(x,?'],Tx~)
3,j=1 =
1 d
= e 2 A s O

Observe next that for any k, 1 < k < d,

d d
D Avigelaii (VW€ )] =A>  Av,gePri(€n, )

ij=1 i=1

- AZAVLg, i, ()W, (&, )] -
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If we use the fact that Wy =T, /5 ¢ VU and (6.15), then we see that

d
T] * *
D AvigeVhiléin,) = 7 Ae.eSn/neUiE ) + D AT i(Eom, ).

ij=1 i=1
We also have from (6.5) that
b(w)\llk(§7 7, w) = b(w)Tn/A,ﬁq/Z(§7 7, w)
= PTy /n, ¢ Vi(&m,w) + (B()Uk(E: ;)

= VL& n,w) + %[ak(W) — (ar( )]+ (b()¥k(E,n,-))
1

= WL(E )+ (o) — y (k) + al)Th(En, )

It follows now from the last three equations that

d

> Avigelaii (VWi (6n, )] = —nAgen(&n, ) Z Av,g.6am,5(

4,j=1

U

JqL

Hence from (6.14), (6.16) we have that

/ dx Z V,g a?,_] Tx: )v U(l’ 77#)

7,7=1

=7 | deAub () + g [ deln+ €ale. Gl FOTO

— [ daglaute.n.) + [ degla)f(o)
R R4
where we have used (6.9). The result follows from this last equation. O

Next, let Ga(z,7,7,-), =,y € R? be the Green’s function for the equation (6.10).
It follows easily now from Lemma 6.3 that if Ga(z,n) is the Fourier inverse of the
function Ga(€,7) of (6.9), then

Ga(z —y,m) = <Ga(x, Y, 1, -)>-

We can now use the methods of Section 3 to estimate Ga(z,n). We shall restrict
ourselves to the case d = 3 since the method generalizes to all d > 3. Evidently
one can generalize Lemma 3.6 to obtain:

Lemma 6.4. Let d =3, n >0, 1 <k, k' <d. Then g1 (§,n) is a C* function
of £ € RY and for any i,j, 1 < 4,5 < d, the function gy /0& € L3 (RY) and
O qy 1 |060; € L3w/2(Rd). Further, there is a constant Cy a, depending only on
A, A such that

10,17 /08|30 < Cany 1102 i /OE:0]|3/2, w < Caa -
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We can use Lemma 6.4 to estimate Ga(x,7n). To do this suppose ¢ : R? — R is
a C* function of compact support satisfying

/Rd p(y)dy = 1.

For R > 0 we put ¢r(y) = R%p(Ry). Evidently the Fourier transform of ¢ is a
rapidly decreasing function and ¢r(§) = ¢(§/R), where $(0) = 1. We define now
the function Ga(x,n) by

: 1 pr(€)e” "¢

6.17 Ga(z,n) = lim / -

o40 1) = 8 B oo Tt eat g

Lemma 6.5. Let d = 3. The function Ga(x,n) defined by (6.17) is continuous
in (z,m), € RA{0}, n > 0. The limit Ga(z) = lim,_o Ga(x,n) exists for all
r € RIN\{0} and Ga(z) is a continuous function of x, = # 0. Further, there is a
constant Cy A depending only on A\, A such that

(6.18) 0 < Ga(z,n) < Cra/lz], =€RN0}, 7 >0.

Proof. We argue as in Proposition 3.1. Thus for v satisfying 1 < v < 2, we write

(6.19) Ga(z,n) = lim + lim .
R=00 Jigl<vy/lz] B0 Jjg)> /x|

It is clear that

lim — L/ dfi

B=o0 Jigj<y/lal M) Jigjansior [0+ 8a(§,mE]
To evaluate the limit as R — oo in the second integral on the RHS of (6.19) we
integrate by parts. Thus for fixed R > 0, assuming z; # 0,

11 —iwe O [ @E/R) }
) e — dée™ ™8 — | T2 |
(620 /|£|>v/|fr iy (2m) /|£|>v/|fr g [7”5@7(5”7)5

11 / PPl (Ve ISY

iw1 (2m) Jie)= 1) [0+ €a(€m)ENIEL

Evidently for the surface integral in the last expression one has

i 1 1 / gt e mig

im = ——— —_— .

B=00 Jigi=y/z) 121 1) Jigj=y 10 [0+ €a(E ME]E]

To evaluate the limit of the volume integral in (6.20) as R — oo, we need to

integrate by parts again. Thus, for the integral over {|¢| > ~/|z|} on the RHS of
(6.20) one has

(6.21) /§|>'y/m| =2 2n)d /|£|>v/lr dee o83 [n+§q(§,n)§}

1 1 Ciwe O p(E/R) | &
_ L dee—iws 9 {w} S

In view of Lemma 6.4 it follows that the limit of the volume integral on the RHS
of (6.21) is given by

lim _-t 1 / d{e*m'ga—2 {1 ]
R=00 Jigj>q/lal 1 (274 Jigs1al 08 [n+&a(&m)s ]
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We can similarly see that the limit of the average of the surface integral on the
RHS of (6.21) is given by

lim Av / =
R—o0 €=/l

1<9<2
-1 1 .0 1 &
O d f[} .
157\;2 {m% (2m)? /é—v/lw s 061 | n+&a(&,n)é §|}

We have therefore established a formula for the function Ga(z,n). It easily follows

from this that Ga(x,n) is continuous in (z,7), € R3\{0}, n > 0. To show that

the function Ga(x) = liHBGa(gc, n) exists we observe that ¢(&,n) converges as n — 0
n—

to a function ¢(&,0). This follows from the fact that the operators Ty, s ¢ of (6.1)
converge strongly as 7 — 0 to bounded operators Ty g o.¢ on L?(£2). One can prove
this last fact by using Bochner’s Theorem. Suppose p satisfies 1 < p < 3. Then
Oqr i (§,m)/0€; can be written as a sum,

01 (€,m)/0& = frri(§,m) + i i(E,m).

The function fx s ;(&,n) € L3 (R?) and converges in L3 (R?) as n — 0 to the
distributional derivative dgy 1/ (§,0)/0¢; of the function gy x/(€,0). The function
gk i(€,m) € LP(R?) and converges as 7 — 0 in LP(RY) to 0. This follows by

writing
nll€? +n)~t = f(&m) + g(& ),

where f € L®(R?) [[f(;n)]ec < 7'/* and g € L®(RY) [lg(-,n) [0 < 1, g(&,m) =0
if €] > n'/%. One can also make a similar statement about convergence of the
derivative 9%qy 1/ (£,n)/0&;0¢; as n — 0. We conclude that one can take the limit
as 1 — 0 in the integral formula we have established for G,(z,n). In view of
Lemmas 6.2 and 6.4 the limiting function G,(z) is also continuous for x # 0.
Finally the inequality (6.18) follows by exactly the same argument as we used in
Proposition 3.1. O

We can complete the proof of Theorem 1.2 by applying the argument for the
proof of Theorem 1.5 at the end of Section 3.

Lemma 6.6. Let d = 3 and Ga(z) be the function defined in Lemma 6.5. Then
Ga(x) is a C* function for x # 0 and there is a constant Cy 5, depending only on
A, A such that

< O r#0, i=1,2,3.

(6.22) 'aGa(x) < T

81)2‘




Green’s Functions for Equations with Random Coefficients 223

Proof. Let r» > 0 and suppose = € R? satisfies 10r < |z| < 20r. From Lemma 6.5
we have that

—z:c £
(6.23) / .A<Wr €9(E. 0
A

ipe O 1 &
d ix-§ |: :|
lel=/r 0 |eac e el
—ix-& 82

1
wr< [t
gl >/ 987 [£a(&,0)¢
where ¢(€,0) is defined in Lemma 6.5. Let Ha(x) be the final integral on the RHS of
(6.23). Then it follows from Lemmas 6.2 and 6.4 that if 1 ~ |z| then Ga(x) — Ha(z)
is a O function and

R
al’j

dv

dry

(Gal() — Ha(x)]| <

< hp w0 =128

To show the differentiability of H,(z) we expand

9 1 _ —2q11(£,0) 8 . 3 | | 2
261 e 0E) = B onP " e o ;"1”(5’0)@] ’

plus terms involving derivatives of ¢(&,0). The contribution of the first term on the
RHS of (6.24) to Ha(x) is given by

(6.24)

df —iz-€ 41,165 Y) q1, 1(5 0)

2
6.25) — d
( 72 vgpwr Tl 00
d —'Lm{ QI,1(€7O) 671
" e [€q(€,0)¢? J€]
13 d’)/ —zxfi |: Q1,1(§70) :|
1 £|>'y/r 851 (fq(f,O){)z

Using the fact that dq; 1/0¢; € L3, (}R3)7 it is easy to see that the RHS of (6.25) is
a C* function of z, x # 0, and its derivative is bounded by the RHS of (6.22). The
same argument can be used to estimate the contribution to Ha(z) from all terms
on the RHS of (6.24) except the term involving the second derivative of ¢(£,0). The
contribution to Hya(x) from this term is given by K,(z)/2?%, where

iz 1 £0%q(&,0)¢
d ix-& )
o EaE 0 o

We can see now just as in Lemma 3.10 that for any p € R3, the function
(0%a(& + p,0)/06% — 94(&,0)/063) /||~ i in L/~ (R?) and

(6.26) 110%a(€ + p,0)/ 07 — 02a(&,0)/9€%)/1pI'*l3/(3-2)w0 < Crnes
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where ¢ is any number satisfying 0 < ¢ < 1. For h € R? we write

2
(027)  Kala+h) = Kale) = oz [ /|g|>/ dée="€(g1 (€) — gn(€ + )

vt —ih- f€)
d ix-€ ih-§ 1148352
- /1/4T<|§|<4/r Ee [6 ] |§‘2 7

where

1 £0%q(&,0)¢
[€a(,0)5]>  ogt

9(8) = 3

fe Li;/Z(R?’) and p € R3 has the property that x - p = 7. In view of (6.26) and the
fact that f € 3y 2(R3) it follows from the Dominated Convergence Theorem that
one can take the limit in (6.27) as h — 0 to obtain that K,(x) is differentiable in

z and

OKa(x)  —i 2 i
Tt — s [ [ e 6~ ot o) - st )

) Ciwe, F(E)
- dge™ 8>
1/1/4T<E<4/r S €]

We can see from this last expression that 0K, (z)/0z; is continuous in  and also
|0Ka(2)/0z;] < Cra. O
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