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Perturbed Random Walks and Brownian Motions,
and Local Times

Burgess Davis

ABSTRACT. This paper is based on two talks given by the author in the Albany
meeting in the summer of 1997. The first of these, which dealt with perturbed
Brownian motion and random walk, is discussed in Section 1, and the second,
which involved Brownian local times, is the subject of Section 2.
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1. Some Self-interacting Random Walks

This section concerns some self-interacting random walks and the continuous
processes which are their weak limits. We encountered the random walks as special
cases of reinforced random walk, in [4]. To our knowledge, Le Gall was the first
person to have thought about the continuous processes, as a limit of some other
self-interacting continuous time processes, in the eighties.

These self-interacting random walks are integer valued stochastic processes, 0 =
Xo, X1, Xo, ... which satisfy |X;11 — X;| = 1, and which will be defined by giving
their transition probabilities P(X,+1 = j + 1|X;,¢ < n, X, = j) and P(X,41 =
Jj—1|X;,i <n,X, =j). While most processes described by giving their transition
probabilities are Markov processes, here these probabilities depend on the entire
past, albeit in a very simple way. Let 0 < p < 1, and 0 < ¢ < 1 be the parameters
of our walks. The two transition probabilities above are both one half unless n > 0
and either j + 1 has never been visited (that is, does not belong to {X; : i <n}) in
which case they are p and 1—p respectively, or j—1 has never been visited, in which
case they are ¢ and 1 — ¢ respectively. This process behaves like fair random walk
except at all time highs and all time lows. Think of a weird stock market where
investors are listless until they hear that an all time high or low has been reached,
when at least some of them alter their strategies. When p < 1/2 and ¢ > 1/2,
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the process is self-attracting, in that it prefers to jump to integers it has already
visited rather than to those it has not visited. Other choices of p and ¢ make it
self-repelling. The simplicity of the description of these walks, which will here be
called pg-walks, does not carry over to much of their analysis, especially when both
p and ¢ are far away from 1/2.

Although the walks studied in this paper are not Markov, it is natural to ask
those questions about them which are asked about Markov processes and random
walks. Paramount among these questions are whether the processes are recurrent,
i.e., do they visit every state infinitely often with probability one, whether they
satisfy the strong law of large numbers, and weak convergence, either at fixed times
or as a process: a central limit and invariance question respectively, except that
the limits will usually not involve the normal distribution. Recurrence and the
strong law are relatively easy for pg-walks. If a pg-walk is, say, at a maximum
at some time n > 1, it immediately makes a geometric (parameter p) number of
consecutive jumps of 1, each to a new maxima, followed by a jump of —1, after
which it behaves like a fair random walk until it hits the edge of the already visited
integers, whereupon it makes a geometric number of consecutive jumps each to
new extrema, and so on. The width of the interval of visited states after the nth
geometric variable has been observed is O(n), because all the geometric variables
are one of two parameters, either p or 1 — ¢, and so the chance that the next
extrema hit after the nth geometric variable is observed is different (i.e., maxima
as opposed to minima) than the one observed during this variable is O(1/n). Once
maxima and minima are far apart, the times spent between hitting extrema are
close in distribution to the time it takes fair random walk started at 0 to hit 1,
which of course has infinite expectation. Elementary arguments based on these
considerations prove both recurrence and the strong law.

The proof of weak convergence of X,,/v/n, as n goes to infinity, where X,,,n > 0,
is a pg-walk, or more generally weak convergence of the scaled walk to a process,
is much more difficult than the proofs of recurrence and the strong law, mirroring
the relative difficulties of the proofs of the corresponding results for ordinary fair
random walk. Probably no one who thought about this question very long was
left with any doubt that weak convergence holds, which indeed it does. This has
been shown in two very different ways. For the author, in [5, 6], the approach
was first to construct and study the process which seems certain to be the limiting
process, and then to use this process and what has been proved about it to establish
weak convergence. The other method, of Toth [10, 11], and Toth-Werner [12], is
based on occupation times, and shows first the convergence of finite dimensional
distributions, etc. While weak convergence is not shown in these papers, it is
announced there that it will be in a forthcoming paper, which will deal with a
broad range of self-interacting walks. Here we will describe the approach of the
author.

The process which is the limit of a scaled pg-walk behaves like Brownian motion
except where it is at its maximum, where it gets a push up if p > 1/2 or a push down
if p < 1/2, and when it is at its minimum, where it gets a push down if ¢ < 1/2 or
a push up if ¢ > 1/2, the extreme case being when ¢ = 1, when the process reflects
up at 0. The next order of business is to formulate these push specifications more
precisely.
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The cases where there is a push at the maximum but not at the minimum are
particularly simple to understand, and we treat them first. These “one sided” cases
have been under study for quite a while. For an extensive account see Yor [14]. We
will be much briefer. Let § > —1 designate the parameter of our processes. For a
continuous function f(t),t > 0, we put f*(¢) = maxo<s<; f(s). All functions will
be continuous and vanish at 0 unless otherwise specified. Let b;,t > 0, be standard
Brownian motion started at 0, and define wy,t > 0, by

(].g) wt:bt+9b:,t20

Note that wy = wy if and only if b, = b}, so that the increments of w and of b
are exactly the same over intervals on which w does not attain a maximum, while,
if @ > 0, w has a larger increment than b over intervals where the maximum of b (or
equivalently of w) increases, and if § < 0, the increment is smaller. Werner [13] has
shown that this process is the weak limit of scaled p0-walk, with § = (2p—1)/(1—p).
The proof is not difficult, and is based on the continuous mapping theorem, the
continuous function being the one that maps a function f to the function f + 0 f*.

Given the success of this approach, it is natural to try to construct the limit
of the general candidate limit process in the same way: that is, to define a map
from Cy[0,00) to itself, and then to construct our process by taking the image of
a Brownian motion under this map. The situation where there is reflection up at
zero of the continuous process — these processes will be the weak limits of pl-walks
— illustrates almost all the difficulties faced, and has the advantage of there being
only one parameter, which will again be designated 6, to keep track of. For this
reason we discuss only this situation until almost the end of the paper. Let 6 > —1.
Given r > 0 and a function f with f(0) = r, we look for a function (solution) g
satisfying

i) g(0)=r
ii) g(t) —g(s) = f(t) = f(s) + 0 maxs<y<:[f(y) — f(5)],
(26.r) if g(y) > 0,s <y <tand g(s) = g*(s), and
iii) g(t) —g(s) = f(t) — f(s) — mins<y<e[f(y) — f(5)],

g
if g(y) < g*(s),s <y < t, and g(s) =0.

We are primarily interested in these equations when r = 0, but they are more
tractable when r > 0. We are going to use the r > 0 case to study the r = 0 case,
an approach pioneered in Le Gall-Yor [8], where these equations were encountered
in a study of the windings of three dimensional Brownian motion.

We investigate whether there exist unique solutions of these equations for all
functions f. Following Le Gall and Yor, we note that if r > 0, (2¢,,) permits the
construction of an obviously unique solution g for any f. For ii) defines g on [0, T}],
where T7 is the smallest ¢ such that g(t) = 0, and then iii) defines g on [T, T3],
where T is the smallest ¢ > T3 such that g(¢t) = ¢*(71), and so on. This procedure
fails if » = 0, as it is unclear how to get started, for some functions f. However,
it is not hard to see that the zero function is the unique solution of (2 ) for the
zero function, for all . And it also is not too hard to show that f + 6f* is the
unique solution if f is a monotone increasing function. Piecewise linear functions
can similarly be shown to have unique solutions.

If f(0) =0, and r > 0, we designate by g, 9 = g, the solution of (2¢,) for the
function f + 7, and investigate what happens when r approaches 0. The collection
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gr,7 > 0 is equicontinuous on all compact intervals, and so there is a subsequence
gr,, Where r, decreases to 0, which converges uniformly to a limit which satisfies
(20,0). This proves existence of a solution. It is also easy to see that if there is
an f with f(0) = 0 such that the corresponding g, do not converge uniformly on
compact intervals, then for that f, the solution of (2¢0) is not unique, since two
subsequences of the g, can be found which converge uniformly on compact intervals
to two different solutions of (2¢).

In fact, there is uniqueness in (2¢,) exactly when 6 < 1. The following proposi-
tion gives an idea why, when 6 > 1, there are functions f such that the corresponding
g do not converge uniformly as r approaches 0.

Proposition 1. Given 0 <y < s and 0 > 1, there is a function f (depending on
y and s) with f(0) =0, such that if g, is as defined above, g,(t) — gs(t),t >0, is
unbounded both above and below.

Proof. The function f is defined inductively on intervals. The graph of f has slope
—Lon (0,s). We have g;(s) = s, g;(s) = y, and ga(s) = gy(s) = 0. The slope of f is
+1 on (s,2s). Then g, = gs on (s,s+y), but on (s +1y,2s), gs has slope 1, while g,
has slope 146, as (2¢,,) ii) comes into play for g, at time s+y. We have g}(2s) = s,
while g,(2s) = s + 6[s — y|, that is, the absolute difference between g5 and g, has
been multiplied by € between times 0 and 2s, while the sign of the difference has
switched. This procedure can be iterated, the end of the second iteration coinciding
with an absolute difference of 2 times the original absolute difference, and the sign
of the difference switched again so that it is what it was at time 0, and so on. [

Because the functions f above depend on y and s, this proposition does not
prove non-uniqueness. The function h = hy, 8 > 1, constructed in Davis [5], for
which uniqueness does not hold in (24,0), has slope alternating between +1 and —1,
switching an infinite number of times in any neighborhood of 0. The solutions g,
of (2¢,,) for the functions h + r satisfy: given € > 0 there are 0 < r, s < € such that
maxo<¢<1 |qs(t) — qr(t)| > co > 0.

In the 6 < 1 cases, if f(0) = 0 and the functions g, are as above, that is, the
solutions for f + r of (2¢.), then
(3) lgs(t) —gy(t)| < s —y, if0<y <s.

The proof of (3) is close to an argument in Davis [5] and will not be given here,
but it is clear that the construction given above will not succeed in constructing
functions that have solutions which pull apart. The inequality (3), and closely
related inequalities, form the basis of the proof of uniqueness in (2¢ ) given in [5].
Uniqueness for # < 1 was known to Le Gall and Yor by the early nineties, see Le
Gall-Yor [8] and Carmona-Petit-Yor [2]. Their proof used a Picard iteration type
argument. To summarize, the following theorem holds.

Theorem 1. If 0 < 1, for any function f with f(0) =0, there is a unique solution
of (2¢,0), while if 8 > 1 there is at least one solution for every such f, and more
than one for some of them.

Now we return to Brownian motion. We are trying to ascertain whether there
is a unique adapted (to the filtration of the Brownian motion) solution to a two
sided version of (1g). That is, if b;,t > 0, is standard Brownian motion, we ask
whether there is a unique process wy,t > 0, which is adapted to the filtration of b
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and such that for almost every w in the probability space €2 on which b is defined,
wy(w),t > 0, is a solution of (2¢,) for by (w),t > 0. We will call this Question 1. It
was posed, and solved for § < 1, in Le Gall-Yor [8]. In this case, as well as in the
6 =1 case considered in Davis [5], since only one solution of (24) exists for every
continuous function, only one exists for every Brownian path. Furthermore, to show
that the process composed of these unique solutions is adapted to the Brownian
filtration is also not difficult. Adaptedness is immediate for the solutions of (2¢ ) of
by+r,t >0, if r > 0, since these can be constructed by the Le Gall-Yor procedure,
and so the limit of these as r decreases to 0, which is the unique solution w, is also
adapted. The fact that this limit exists follows from (3).

Theorem 2. The answer to Question 1 is affirmative, for all 6. Furthermore, if
Gy, t > 0, is any filtration such that by is Gy measurable and bs—b; is independent of
G, for all0 <t < s, then there are no additional solutions adapted to this filtration.

This theorem can be rephrased as saying there is a unique strong solution of
(20,0). When 6 < 1, Theorem 1 follows from the deterministic results of Le Gall,
Yor, and Davis, as described in the preceding paragraph. For 8 > 1, we could ask
whether Brownian paths are typically the kinds of functions which have several
solutions in (29 ). As indicated above, the examples of functions, given in Davis
[5], which have several solutions are functions which zig-zag rapidly from above to
below zero, a property of almost every Brownian path! Two simultaneous but quite
different proofs of the 8 > 1 cases of Theorem 2 have recently been given, in Davis
[6] and Chaumont-Doney [3]. The proposition below is from Davis [6]. It is almost
equivalent to the proof of Theorem 2 to show the following.

Proposition 2. Given € > 0, there is a § > 0, such that if 0 < r < s <9, and if,
fora >0, h, t >0, is the solution of (2¢,,) for a4+ b;,t > 0, then

T __ps
P(Orgtagl |hy —hi| >¢€) <e.

We give just a brief overview of the proof of this proposition. The paths of h*
and h" can be pulled apart, by the mechanism exhibited above: Both paths hit
zero and then both rise above their former maxima. Then to get still further apart,
they can both return to 0 and then rise again. But, if € > 0, as r and s decrease to
0, the first time the paths are € apart approaches infinity in probability. Martingale
theory forms the core of the argument.

One thing accomplished by Theorem 2 is the construction of a process which
behaves like the weak limit of pl-walk should behave. As mentioned, this theorem
states that there is a unique strong solution of the Brownian version of equations
(20,0). It is easier to construct a weak solution to these equations. This was done,
using excursion theory, in Perman-Werner [9]. In the special case we are talking
about now, that is, reflection at 0, there is an easier way to construct a weak
solution: Show that the solutions of (2¢,) for b, + r,t > 0, converge weakly as r
approaches zero. This holds because all solutions propagate the same (distribution-
ally) after the first time they hit the positive number ¢, regardless of where below
€ they start. And if € is small and they start below it, they hit it fast, regardless
of exactly where they start. This proof does not seem to extend to the general —
not necessarily reflected — case that will soon be discussed.
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That a 1p-walk converges weakly to the appropriate one of the solutions guar-
anteed by Theorem 2 is proved in Davis [6]. The method of proof is to embed
a random walk into by,t > 0, in the usual way using stopping times. Then the
embedded random walk is perturbed in the following way. The first jump of the
perturbed walk is the same as the first jump of the embedded walk. If the first jump
of the perturbed walk is down to —1, its second jump is +1, back to 0. If the first
jump of the perturbed walk is 4+1, whether its second jump is plus or minus one is
determined by tossing an independent coin with probability p of heads. The third
jump of the perturbed walk is the jump of the embedded walk, unless the position
of the perturbed walk after the second jump is —1 or a maximum, in which case
reflection or another flip of the biased coin determines its next jump. And so on.
Clearly the perturbed walk is a 1p-walk. Then it is shown that the paths of this
perturbed walk stay sufficiently close to the paths of the strong solution guaranteed
by Theorem 2. This proof of the weak convergence of 1p-walk is based on the sta-
bility of solutions of the stochastic versions of (2 ,), as illustrated by Proposition 2.
This approach to weak convergence shows that if a random walk is perturbed in the
manner just described, the first n steps of its paths stay (arbitrarily) close, with
probability approaching 1 as n approaches infinity, when compared with \/n, to
the paths which are the unique solution to (2¢,0) of the piecewise polygonal path
obtained by “connecting the dots” of the path of the random walk. In this sense,
the perturbation of a random walk is almost deterministic.

Next we briefly discuss the situation in which there is soft perturbation, as
opposed to reflection, at the minimum as well as at the maximum. Let 6 be the
parameter which gives the push up or down at the maximum, exactly as above, so
that 6 positive corresponds to a push up. And let p be the parameter which gives
the push down, so that if u is positive the push is down. Le Gall, Yor, Carmona and
Petit proved there are unique strong solutions of the appropriate equations (now we
only consider starting at 0) for some ranges of 6 and p, in [2]. Davis added just a
couple of additional cases, in [5], and then Perman and Werner in [9] showed there
are unique strong solutions when both 6 and p are positive, with a very short and
pretty argument. Finally, the remaining cases are settled in Chaumont and Doney
[3] and Davis [6]. The weak convergence of pg-walk is proved in Davis [6].

2. Brownian Local Times

This section describes the second of the talks given by the author at the Albany
conference, which was based on the author’s paper [6]. As this is a three page
virtually self-contained paper, we are going to be very brief.

Let by, t > 0, be standard Brownian motion started at zero. Let f(¢),0 <t <1,
be smooth, by which we mean f is continuous and has a bounded second derivative
on (0,1). Let L stand for the local time spent by b; on the graph of f: Formally, L
is the limit as e decreases to 0 of the Lebesgue measure of {0 <t <1 : |b;—f(t)| < €}
divided by 2e. While it is not immediate that this limit exists almost everywhere,
it does, and local times, especially at constants (i.e., on the graphs of constant
functions), have become one of the indispensable tools of stochastic analysis. An
example of this being provided by the work of Toth and Werner described in the
previous section. It is known that the distribution of Ly is the distribution of
the absolute value of a standard normal variable. In Burdzy-San Martin [1], the
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question was asked whether among all nondecreasing smooth functions f, Ly was
the largest in terms of distribution, that is, whether

(4) P(Ly <x)> P(Ly < x),z > 0.

In Davis [7] it is shown that the answer to this question is no. More precisely,
the following theorem is proved.

Theorem 3. If the function f, defined on [0,1], is smooth, then
(5) P(Ly <x)>P(2Ly < z),z > 0.

If the constant 2 is replaced by a smaller number, then the resulting statement is
false.

The analog of this theorem holds for all functions f with enough smoothness to
be able to define local time via Girsanov’s theorem, a less restrictive condition than
the smooth condition used here to avoid technicalities. Easy examples of rapidly
oscillating functions show that without some restriction on f, no distributional
comparisons of this type between Ly and L are possible.

We have been unable to settle whether (4) holds for all concave functions.
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