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ABSTRACT. Let L be a Galois extension of K, finite field extensions of Qp, p odd,
with Galois group cyclic of order p2. There are p distinct K-Hopf algebras Ay,
d=0,...,p—1, which act on L and make L into a Hopf Galois extension of K. We
describe these actions. Let R be the valuation ring of K. We describe a collection of
R-Hopf orders E, in Ay, and find criteria on F, for E, to be the associated order
in A4 of the valuation ring S of some L. We find criteria on an extension L/K for
S to be E,-Hopf Galois over R for some E,, and show that if S is E,-Hopf Galois
over R for some E,, then the associated order A4 of S in A, is Hopf, and hence S
is Ag-free, for all d. Finally we parametrize the extensions L/K whose ramification
numbers are = —1 (mod p?) and determine the density of the parameters of those
L/K for which the associated order of S in KG is Hopf.
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Let p be an odd prime, and let K be a finite extension of @, which contains
a primitive p th root of unity ¢, and with valuation ring R. Let L be a Galois
extension of K with Galois group G and valuation ring S. Relative Galois module
theory seeks to understand S as a module over the group ring RG, or more generally
over the associated order A of S in KG, A = {a € KG|aS C S}. Then A = RG
and S is RG-free of rank one if and only if L/K is tamely ramified. For wildly
ramified extensions, the only general criterion available is that if the associated
order A is a Hopf order over R in KG, then S is A-free of rank one [Ch87]. (The
converse is far from true.)

Since the work of Greither and Pareigis [GP87], one knows that L/K may be
a Hopf Galois extension with respect to different Hopf Galois actions on L. In
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fact, Byott has recently shown that for a Galois extension L/K with group G, the
classical Hopf Galois structure is unique if and only if the order g of G is coprime
to ¢(g) (Euler’s function) [By96]. In case L is a cyclic Galois extension of K of
order p", then L/K has exactly p"~! distinct Hopf Galois structures [Ko96]. Thus
when n = 2 there are p distinct Hopf algebras Ay, d = 0,...,p — 1, which give a
Hopf Galois structure on L/K.

The existence of different Hopf Galois structures on L/K raises the possibility
that S may have different Galois module properties with respect to one structure
than another. For example, in [CM94] we found that the associated order of the
valuation ring of Q(2i) in one Hopf Galois structure was Hopf and the associated
order in the other structure was not. N. Byott [By96b] found a cyclotomic Lubin-
Tate extension of local fields which has two Hopf Galois structures: one associated
order is Hopf, while the second associated order B is not Hopf and the valuation
ring is not free over B.

In this paper we describe as algebras the Hopf algebras A; which make L/K
Hopf Galois, and their actions on L. Following [Gr92], we construct a collection of
Hopf orders E, over R inside each A;. We find criteria on L/K in order that S be
a Hopf Galois extension of R for some E,. This implies, by [Ch87], that E, is the
associated order of S in A,. In contrast to the examples just described, however, it
turns out that if S is Hopf Galois over R for F,, a Hopf order in A4 for some d, then
the associated order of S in Ay for every d is Hopf, in particular for Ag = KG. Thus
in the case of cyclic Galois extensions of degree p?, the non-classical Hopf Galois
structures on L do not “tame” the wild extension L/K better than the classical
structure given by the Galois group.

We apply Greither [Gr92] to find necessary and sufficient conditions on an order
FE), to be realizable: that is, to be the associated order of the valuation ring of some
extension L/K: the congruence condition on v is the same as for Hopf orders in
KG as found by Greither. Finally, we quantify the remark in [Gr92, Remark (c),
page 63] that congruence conditions on the ramification numbers of a cyclic totally
ramified extension L/K of degree p? are “badly insufficient” for deciding whether
the valuation ring S of L is Hopf Galois over R.

The concept of Hopf Galois extension of commutative rings arose in [CS69] as
a merger of M. Sweedler’s work on Hopf algebras and the development of Galois
theory of commutative rings by S. U. Chase, D. K. Harrison and Alex Rosenberg
[CHR65].

1. Hopf Galois Structures on Galois Field Extensions

We begin by recalling the main result of Greither and Pareigis [GP8T7].

Greither-Pareigis. If L is a Galois extension of K with group G, then there is a
bijection between Hopf Galois structures on L/ K and regular subgroups of Perm(Q)
normalized by A\(G).

Here Perm(G) is the group of permutations of the set G, A(G) is the image of
G in Perm(G) given by left translation, and a subgroup N of Perm(G) is regular
if IV acts transitively, has order equal to the order of GG, and the stabilizer in N of
any element of G is trivial. (Any two of these last conditions implies the third.)

If N is a regular subgroup of Perm(G), then the group ring LN acts on GL :=
Map(G, L) by an(f)(c) = af(n~'(c)) forain L, o in G, f in GL, n in N. Thus if
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€o is the function which sends ¢ to 1 and 7 to 0 if 7 # ¢ in G, and 7 is in N, then
n(es) = €y(s)- This yields a map

LN x GL — GL.

The Hopf Galois structure on L is obtained by taking the fixed rings of LN and
GL under the action of G, where G acts on GL by o(ae;) = o(a)eyr, and acts on
LN by o(an) = o(a)o(n): the action of ¢ in G on 7 in N is by conjugation by A(o)
in Perm(G).

Let G be cyclic of order p™. Then Kohl [K096] has shown that the only regular
subgroups N of Perm(G) normalized by A(G) are isomorphic to G, and hence
(cf. also [By96, Lemma 1, (i)]) there are exactly p"~! such N.

We restrict to the case n = 2. Then we have

Proposition 1.1. The subgroups of Perm(G) normalized by \M(G) are Ny for d =
0,1,...,p—1, where Ny = (n) with n(c?) = g(=D+rd),

These groups were found by using [By96, Proposition 1], a refinement of [Ch89,
Proposition 1].

Proof. Clearly 7 is in Perm(G). One verifies by induction that for any r,

nr (O'i) — O_(i—r)-l-(ir—%)pd'

Hence 7 has order p? and the stabilizer in N; of any ¢? is trivial. So Ny is regular.
Also, for any d, Ng C Perm(G) is normalized by A\(G). In fact,

A(@)mA(e™t) = nt+7e,

For
MomA(e™ (") = Ao)n(e" )
= Mo) (o172 (A+rd))
= (i) +(i=2)pd
while

n1+pd(a_i) — O_if(1+pd)+(i71)pd

— gli-D+(i—2)pd
U

Example 1.2. For p = 3, set d = 1, then 7 is the permutation which sends o to
4= its cycle representation is

(0,5,7,6,2,4,3,8,1).



Hopf Galois Structures 89

We have an action LN x GL — GL, which we will describe below. Looking at
the fixed elements under the action of G, we have, first, that

(GL)¢

{Z a.e; : ZaTeT = ZU(GT)ET}
{Z Ar€r : Qgr = a(aT)}
Za(a)ea}

o

Il
—N—

This is isomorphic to L under the map sending a in L to Y o(a)e,.
Now identify ¢ in G with A(c) in Perm(G). Then,

LNC = {Z am' =) an' = Zo(ai)a(ni)}

where o(n') means the element 19 of N so that ng = A(o)n‘A(¢)~! in Perm(G).
Now
a(n) =ono =t =n'trd
as we observed above, and hence o(n?) = p**%) and so o*(n?) = p1+kdP)  In
particular, n? is fixed under the action of G.
Let NP = (n?) and let
p—1

es = (1/p) > ¢ '™

=0

in KNP. The e5 for s = 0,... ,p — 1 are the pairwise orthogonal idempotents of
K NP corresponding to the distinct irreducible representations of K N?: nPe; = (®e;
for all s.

For v in L, set a, = Zi;é v®es. These elements, defined by Greither [Gr92],
are the elements of LN? corresponding to the tuple (1,v,v2,... ,vP~!) under the
isomorphism between LNP? and L x L x - - - x L induced by n? — (1,¢,¢2,... ,¢(P7h).
Thus @y, = aya,, for all v,w in L.

Proposition 1.3. Let L") = M = K|[z] where 2P is in K and o(z) = Cz. Let
LNC correspond to the embedding 3 of G into Hol(N) so that 3(c) = nry where
yny~t = nttPd. Then LNC = K[nP, a,n] where v = 274,

Proof. We have that o¥(n) = n'+*74 g0 oP() = n'*P’? = 1. So oP fixes the
elements of N, and LN = M N€. Since G fixes nP and

p—1

eo = (1/p) 3 ¢,
1=0
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G fixes the idempotents es for all s. Hence
p—1
o(az-am) =Y o(s7 e,
s=0
p—1
=7 Z Cfdszfdsnpdes
s=0
p—1
=7 Z Cfdszfdscdses
s=0

p—1
n § Zfdses
s=0

= Q,-adT].

Thus K[n?,a,n] C LNC. But by Galois descent, LN has rank p? over K, and
since a,» is in K[n], one easily sees that (a,n)? is in K[nP], hence K[nP, a,n] has
rank p? over K, hence equality. O

We observe for later use that K[nP,a,n] = K[nP,ayn] for any ¢ in K. For
Qpe = Gylc, SO Gyel] = Qe - Gy7, and a. is in K[nP].

Let Ay denote the K-Hopf algebra K[nP,a,n] with v = 279, We examine the
action of Ay = LNC on L.

Since L/K is a Galois extension with Galois group G = Cp2 = (o) and K
contains ¢, a primitive pth root of unity, we can assume that M = L{°") = K ]
with 2? in K and o(z) = {2z, and L = M[z] with 2P in M and o?(z) = (z. Let
v=cz % withcin K and 0 < d < p— 1.

Proposition 1.4. A; = K[n?,a,n] acts on L = K|[z][z] by
0P = oP

and for a in K|z]
(ayn)(az™) = v™o(az™).

In particular, Ag = K|[n] with n(s) = o(s) for s in L, the classical action by the
group ring of the Galois group G.

Proof. We identify L as a subset of GL = Map(G, L) via the isomorphism

where e; = e,:. Then as we observed in the proof of Proposition 1.1,

r _
n (61) - ei—r—pd(ir—w)'
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In particular, 7P (e;) = €;—pk, S0

7 (Yo' @e) = Y ot(@)eiy
= Z o' (a)e;
— Z o’ (cP(a))e;

which corresponds to o(a) in L.
Now for a in K|z],

(aw)(az™) = Z%USC”“T]’”’“ (az™)
s,k

Z lvsg—ksnkp-i-l (Z O_i(axm)ei>

s,k p

1 —ks __i m
Z —v°C Y (ax )€ (i—kp—1)+pd(i—1)-

irs,k
The subscript on e is mod p?, so if we set
j=1(1+pd) — (1+ kp+ dp),
then

i =j(1—pd) + (1+ kp) (mod p?)
=(+1)+plk—jd)

and the sum becomes

= Z EUSC*kSU(HlHP(’v*jd) (az™)e;.
7,8,k

Since o? fixes a in M = K|z], this is

1 . )
— Z 7vs<7kso.j+1(axm)c(kfyd)mej
gk P

D ) R
i s p k
The sum over k is p if s = m and 0 otherwise. So the sum over j and s becomes

= Z V™I GI T (g™,
J
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Now v = ¢z~ %, so
O'j(l}m) — Cmcfjdm(zfdm)

— C—jdmym.
Thus the sum
= Z ol (V™o (az™)e;
J
= Z ol (V™o (az™))e;
J

which corresponds to v o (az™) in L. That is,

(ayn)(az™) = v™o(az™).

2. Hopf Orders

Now suppose K is a finite extension of Q,, with valuation ring R and parameter
7. Let e be the absolute ramification index of K. Assume K contains a primitive
pth root of unity ¢. Then (( — 1)R = 7¢ R and (p—1) =e.

Let M = K|[z] with 2P = b in R, and let T be the valuation ring of M. Then we
may consider the K-Hopf algebras Ay = K[n?,a,n], where v = z~%, as described
in Section 1. (Recall that for any c in K, K[n?, a,n] = K[nP, ayen]). In this section
we extend work of Greither [Gr92][GC96] to construct a collection of Hopf orders
over R in A, for each d with 0 < d < p — 1. These Hopf orders are parametrized
by integers ¢,j with 0 < 7,5 < €’ and a unit c in R.

For ¢ an integer, 0 <i < ¢€', let ¢/ =€’ —i.

Theorem 2.1. Let i,5 be integers with 0 < 4,7 <e€'. Let H; = R ["p_-l}, a Hopf

order in K[nP]. Forv=z"%cinR, lety = %J_l Then the R-algebra E = H;y]
is an R-Hopf order in Aq = K[n?,a,n] and a Hopf algebra extension of H; by H;
if and only if

(b~ %P =1 (mod ' TP R)

and o
b4 =1 (mod 7P* tIR).

Recall that the H; for 0 < i < €’ are all the Hopf orders in the group ring K [n?]
by Tate-Oort [TO70]. This description of the H; goes back to Larson [La76].

Proof. The canonical map from K[N] to K[N/NP] sends n? to 1, and sends a, to
1 and H; to R, so the image of F is R[ﬁ;jl] = H;. To show that E is a Hopf algebra
extension of H; by H;, we need to show that E N K[n?] = H;. This is equivalent
to showing that the monic polynomial of degree p satisfied by y over K[n?] has

coefficients in H;. We follow [GC96, Section 2] and utilize [Gr92, I, section 3.
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Now a,n =1+ 7y, so

(ayn)? = (14 77y)P

hence

TP

P (P iy o L (@)
prrﬂ'”’Z( )WJTquL = 0.
r
r=1

Note that (a,n)? = awen?, and 0P = a¢, so (ayn)P = ayre. Thus y satisfies a monic
polynomial with coefficients in H; if and only if in H;,

1) 7P divides pn/” forr =1,... ,p—1;

2) 7P divides 1 — ayn¢.
Condition 1) is equivalent to jp < e+ j, or j < ¢’
Condition 2) is the same as

ape =1 (mod 7P H;),
which, by [Gr92, I 3.2b], is equivalent to
vP¢ =1 (mod 7 TP R),
or, since vP = b~ %cP,
b=%"¢ =1 (mod 7" TP R).

Note that if j < ¢ then *=%1" ¢ ENK[yP), so if 29" ¢ H, then ENK[1?] #
H,.

Now we show that E is closed under comultiplication if and only if v» = 1
(mod 7PtIR).

Recall that Ay = K[n?, a,n] and T is the valuation ring of M. Let E = R[t][y] =
H;[y] with ¢t = ":1 RTES %fl Since A is an algebra homomorphism, to show E
is a coalgebra, it suffices to show that A(y) € E® E.

Now A(y) € Ag® Aqg = K ®p (E ®g E) and R is integrally closed. If we show
that A(y) €e T®r (EQrFE) = TE ®r TE, then, since E and therefore E ®p F are
free R-modules,

(T®R (E®RE)) ﬂ(K@R (E®RE)) =FQ®rkE,

and so A(y) e EQ E.
We will show, in fact, that
AlyyeCoC

where C'= H; -1+ H; - y. Again, it is enough to show that A(y) € TC @1 TC.
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Now

Aw) =4 (21

T

A(ayn) — ayn ® ay, .
_ Alewn) =2 Ly e 1+l + 10y

and the last two terms are in C ® C. So it suffices to show that

A(avn) — ayN ® ayn
i

ceTC@rTC.

Now a, is a unit of TH;. For since v? € Upiy;(R), then v € Upyy;(T), hence
by [Gr92, T 3.2(b)], a, € 1+ 7//PH;. Since j > 0,a, is a unit of TH;. Since
ayn=1+7nt e TH; -1+ TH;-t=TC, therefore n € TC. So

A v) — Yo v
<(a)7rja®a) n®n) € TC @y TC
if and only if
A —
w € TH; @ TH,.

To decide if
Alay) — a, ® ay

il

€ TH; ®r TH;

we identify elements of M[nP] @y M[nP] as p X p matrices as in [Gr92, I, Section
3].

We have
Alay) —ay ®ay 1 - s r t
—,:—.g Avies) — E ve, @vie;
J g
s=0 0<r,t<p,r+t=s (mod p)

p—1
R 1—P
Y Y [Heed
s=1 r+t>p,r+t=s (mod p)
Let 1;—;’17 = w. Then
Alay) — a, ® ay
o
corresponds to the matrix M = {M,;} where M, is the coefficient of e, ® ey.
Here, Myp =0if a+b < p, and M, = wv® wherea+b=p+sfora+b>p.
Now 2&law)=w8a o TH & TH;, is equivalent, by [Gr92, I, Lemma 3.3] to: for

el

all k, k* with 0 < k, k* < p, m* *+E) divides

*

2 ()

£ 5 (.
a b ’
s=0 a+b

dk,k‘*

M=
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where k + k* = p + 1. Since M, = wv® for a + b = p + s, this is

£ 5 ()

5=0 a+b=p+s

l
k + k*
= —1)PFsys,
w3 (M)

s=0
Cl:i’*) - (1]; 1 i) - (i) (mod p),

wi ({)vreeee noa )

= —w(l —v)" (mod p).

Now since s < p,

SO

Thus M € TH; ® TH; if and only if 7' *+*") = 77(®+) divides w(1 — v) for all
1>0.
For | = 0 the condition is: 7% divides w = =2, or v» = 1 (mod 7" 7).

T3

Assuming v? = 1 (mod 7P +7), then, since v € Upiry;(T),
v—1lentsT

(recall: 7 is the parameter for R), so

al

(v—1)en*oT.
Also w € 7" R, so
Y il
w(l —v)t e aPHETT
Since i’ (k + k*) = pi’ + #'l, therefore 7% *+%") divides d***" (M) for all k, k*.

Thus
Alay) — a, ® ay

€ TH; ® TH,
il

if and only if v» = 1 (mod 7" 7). That completes the proof. O

Suppose 1, j satisfy 0 < 7, j < €’ and consider the two conditions

L
(mod 7P* T7);

(mod 7?77,

P =1
P =1
Since

P —1=(vP —ovP 40P -1

==+ (7 )
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we must have two of ordr((v? — 1), ordgr(vP —1) and ¢’ equal, and both < the third
(isosceles triangle inequality). For E to be a Hopf algebra and a free H;-module
requires

ordr(Cv? — 1) >4 + pj
and

ordg(vP — 1) > pi’ + ;.
Thus i’ + pj < € or pi’ + 7 < €. The first is equivalent to ¢« > pj; the second to
j' > pi’. Hence:

Corollary 2.2. In order that E be a Hopf algebra, i and j must satisfy: 0 < i,j <
e andi>pj orj > pi'. O

Note: i > pj is the condition of [Gr92, I 3.6] and [Gr92, IT], cf. [Un94].
If i +j < ¢, then i’ + pj < pi’ + j, so if ordr(vP — 1) > pi’ + j, then
ordr(CvP — 1) > min{e’,ordr(v? — 1)}
> min{e’,pi’ + j} > i’ + pj.
So we have

Corollary 2.3. Ifi,j > 0,i +j < € and i > pj, then E is a Hopf order with
EnNK[n?] = H; if and only if ordg(vP — 1) > pi’ + 5. a

The Hopf algebras E presumably fit within the classification of [By93], but the
description of the E here is rather different that that of Byott.

3. Hopf Galois Structures

Now we consider a cyclic extension L/K with Galois group G' = (o) of order p?,
and see when S/R is E,-Galois for some v.
We assume throughout this section that i,7 > 0,0 < i+ j < ¢ and i > pj.
Under these hypotheses, p(i’ + j) < pj’ + 1. For since pj < i, we have
pi >p°j > 2pj 1
SO
L —pj > —pi+pj,
1+ pe’ —pj > pe’ —pi+pj,
which is
pj’ +1>p@i’ + 7).

Suppose S/R is E,-Galois. Then T/R is H;-Galois and S/T is T ® H;-Galois,
by [Gr92]. Since ¢,j > 0, M/K and L/M are totally, hence wildly ramified.
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If T/R is H;-Galois, then (cf. [Ch87]) M = KJz] with 2? =1+ wirP?+1 and
t= Zﬂ_,,l is a parameter for T, so T = R|[t]. Since o(t) = Stz +t =t + ut? for u

J i’

some unit of 7', the ramification number t?/ A — pj — 1. The converse also holds:
c.f [Ch87] or [Gr92]. By [Se62, Ch. V, Sec. 1, Cor. to Prop. 3], tf/H = 1§, so
tf =pj— 1.

Similarly, if S/T is T'® H;-Galois, M /K is totally ramified, and ¢ is a parameter
for T, we may find x in L so that L = M|[z] with oP(z) = (z and 2P = v =
1+ ut?’¥+1 for some unit u of 7. Then w = f;.,l is a parameter for S, and

1 .
Up(w)zc T+w=w-+uw" u

¥

!/

for some unit u’ of S. So the ramification number for L/M is ti = p% — 1, and
conversely. Since tif = 1§ we have t§ = p2i — 1.

Now L is a Galois extension of K with group G = (o), cyclic of order p?, so
o(z) = Bz for some § in T with Ny g (8) = ¢. If ordp(a? — 1) = p?i’ + 1, then
— B-1 B-1

+x + w, so since t§ = pj — 1, ordr( —

o(w) = 5

) = pj. Thus
ordr (8 — 1) = p*i’ + pj

and so

ordy (8P — 1) = p*i’ + pj.

Lemma 3.1. 3 is unique modulo P APIT

Proof. Let y=aP =1+ utP*"+1 for some unit u of 7.
Suppose we replace x by xa for some a € T. Then

(za)? =~ya? = (1 + utp2i,+1)ap.

If ordr((za)? — 1) = p?i’ + 1, then ordr(a? — 1) > p2i’ + 1. If ordr(a — 1) = s,
then ordr(a? — 1) = ps unless pe’ < s. Assuming s < pe’, then we require

ps > p*i’ +1,
SO

s> pi’ +1.

o(a

Now if we replace = by za, then o(za) = %> (za), so 3 is replaced by ,8@ If
ordr(a — 1) = s then by [Wy69, Theorem 22],

ordr (g(aa)—1> >s+pj—1

>pi' +1+pj—1=p@ + 7).
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So ﬁ# = 3 (mod t?('+)T).
Thus 3 is unique modulo t?('+) T, O

Given L/K with ramification numbers t¢ = pj — 1 and t§ = p% — 1, when is
there some E, so that S/R is E,-Galois? Since the discriminant over R of S equals
the discriminant of the dual of E,, S will be E,-Galois if and only if F, acts on S
(see [Gr92, II, Section 1]), that is, £ - s is in S (not just in L) for all £ € E, and
s € 5. Equivalently, E, C A, the associated order of S in Ay.

We know A is an algebra. So to show E, C A it suffices to show that

_m—1

t — €A
v
and )
2N
il
Now
PP —1®1
Ay =TET 197
7TZ
p_1 p_
N
™ s
=t (1+7t)+13t
Hence if

t (Z_.,1> €S,
el

then since L is an Az-module algebra,

so tT C S. Also, if

then

sotS C Sandte A Hence H; C A
Similarly, we showed in the proof of Theorem 2.1 that C = H; -1+ H; -y is a
subcoalgebra of F,. If
-1
Y <Z,> €es
el

c (2_1) c s,
el

then
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-1
y(w >€S
i
O(mi,l)CS,
v

S—R [ ﬂ {” ‘.,1},
g e

CS CS. So C C A. Since C generates E, as an R-algebra, E, C A.

so CT C S. Also, if

then

so, since

Thus E, acts on S if and only if t = 71 and y = %=L map 2=} and £} into
S.
We see that
z—1
()0
T
z—1 o H2)—2 (t-1
< ﬂ_j/ ) - ’/Te/ - 7'('5, S T7
and L
—1 -1
t(m = )—C —x € S}
Tt e

finally, by Proposition 1.4,
y(m—l) _ an(z) —x  wvo(x)—x v,@—lx

p— e I S S

is in S if and only if
B=v"1t (modn"HIT).
From this we have

Proposition 3.2. Let L/K be a Galois extension with group G cyclic of order
p? and with ramification numbers t, = pj — 1 and ty = p?i — 1, where i,] satisfy
the inequalities at the beginning of this section. Then the valuation ring S of L is
E,-Hopf Galois over R, and hence the associated order of S in Aq is Hopf, if and
only if 3=v"" (mod " +iT). O
Now we observe
Lemma 3.3. If v = z~% for some ¢ in R, then v = ¢ (mod 7 T9T).
Proof. We have )
z2=1+utPi 1,

w a unit of T. Since pj’ + 1 > p(i’ + j),

z=1 (mod n" HT = ?@'+I)T),
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Corollary 3.4. With the hypotheses of Proposition 3.2, if S is E,-Galois then p
divides j.

Proof. We have ordr(3—1) = pi’+7, and so ordr(v=1—1) = ordr(v—1) = pi’ +3.
Hence ordg(vP — 1) = pi’ + j.
Since v = 2z~ % and pi’ + j < pj’ + 1, we have

ordr(v? — 1) = pi' +j < pj’ +1 = ordr(z* — 1),

so ordr(vP — 1) = ordr(c? — 1) = p ordr(c—1). Hence ordg(c—1) =4’ +j/p, and
p divides j. O

Corollary 3.5. With the hypotheses of Proposition 3.2, if S/R is Hopf Galois for
some E,, then S is free over the associated order in Ag for all d.

Proof. We have that S/R is Hopf Galois for E,, v = z~%, if and only if

(z=%)"'  (mod 7" TIT).

B

But
27%=1 (mod n" T9T),

and hence
B=(2"%)"" (mod " IT)

for every d, and so E, acts on S when v = z~%c for every d. Hence for any d, S/R is
E,—a.-Hopf Galois, and so F,-a, is the associated order of S in A, for every d. [

Corollary 3.6. E, is realizable if and only if ordr(v — 1) = pi’ + j.

Proof. If L/K realizes E,, that is, E, is the associated order of the valuation ring
of the Galois extension L of K, then, as we showed, 3 = v~ (mod 7" HT), so
ordr (v — 1) = pi’ + j. Conversely, if ordr(v — 1) = pi’ + j, then since v = cz~¢ for
some ¢ € R, ordr(c—1) = pi’ 4+ j, so E, is realizable by some L/K by [Gr92, Part
I1, Section 3]. But then, since cz=% = ¢ (mod 7" 7T, we see that the extension
L/K also realizes E, by Proposition 3.2. O

The problem raised at the beginning of this section can be precisely answered
by the following corollary, in which the hypotheses on L are recapitulated.

Corollary 3.7. Let K be a finite extension of Q, containing (,, a primitive pth
root of unity. Let L be a cyclic Galois extension of K with Galois group G = (o)
of degree p* with intermediate field M and with ramification numbers t§ = pj — 1
and t§ = p*i — 1 where 0 < pj < i,p divides j, and i+ j < e = ex/q,/(p—1). Let
S, T and R be the valuation rings of L, M and K, respectively. Let L = M|z with
ordy (P — 1) = p?i’ + 1 and o(x) = Bx. Then S is an E,-Hopf Galois extension
of R if and only if B is congruent to an element of R modulo PRI = g HIT
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Proof. The ramification conditions on L/K are equivalent to T/ R being H ;- Hopf
Galois and S/T being T'® H;-Hopf Galois. Then S is E,-Hopf Galois for some v if
and only if 8= v~! (mod t*('+/)T) by Proposition 3.2, and

v=c (mod x"HiT)

with ¢ € R by Lemma 3.3. Thus S is F,-Hopf Galois if and only if the element 3
which by Lemma 3.1 is uniquely associated to L is congruent to an element of R
modulo 7% TIT. O

Lemma 3.1 implies that there is a well-defined map from the set of cyclic exten-
sions L of K containing M satisfying the hypotheses of Corollary 3.7 to

Upir+5(T)/Upir 45 (1),
and hence to
Upir+i(T)/Upir+j+p—1(T)-
Call that map ¢.

Corollary 3.8. ¢ maps onto the classes U of Upir+5(T)/Upir 4 j+p—1(T) represented
by B in T with ordp (8 — 1) =pi’ + 5.

Proof. Let 8 be any element of T' with ordp (8 — 1) = pi’ + j. We first show that
B may be modified by an element of Uy 4;1p—1(T") to an element of norm ¢.
By [Wy69, Theorem 22|, the map o — 1 yields an isomorphism

Upir+j4r—i—1) (T)/ Upirjr+1-(pj—1) (T) = Upirsjr (T) [ Upir 4 41 (T)

for all r such that pi’ + j +r — pj + 1 is not divisible by p. Since p divides j, we
obtain such an isomorphism for » = 0,1,... ,p—2. Thus any 8, in Upy4 4. (T) is of

the form 8, = o(ar) Bri1 for some Br41 € Upir4jyrt1(T). Making that observation

for r = 0,1,... 7;7 — 2, we see that any By with ordr(8y — 1) = pi’ + j may be
written as Gy = %ﬂp_l for some o in U(T') and some Bp_1 in Upirtjtp—1(T).
Thus every 8 in T with ordr(8 — 1) = pi’ + j may be multiplied by an element of
Upi'+j+p—1(T) to obtain an element ' of norm 1. That is, the class of any [y in
Upi'+(T)/Upir+j+p—1(T) contains an element of norm 1.

By [Gr92, Lemma 3.8], there exists an element ¢ € Up;r4p;(T) of norm ¢. Mul-
tiplying the representative in the class of Gy with norm 1 by ¢ gives an element 3
in the class of By of norm (.

Any g with ordr (8 —1) = pi’ + j and norm = ( is in the image of ¢. For by the
proof of [Gr92, Lemma 3.9], we may find v in U(T) with ordr(y — 1) = p%i’ + 1
o(v)

-

and = (3P; such a v yields a cyclic extension L/K of degree p? satisfying the

hypotheses of Corollary 3.7 with o(z) = Sz.
Thus any class in Upi4;(T)/Upir+jtp—1(T) represented by an element § with
ordr(B) = pi’ + j is represented by such a cyclic extension. O

Let ¢ = |R/mR|. Then the number of elements of Upi y;(T)/Upir4j+p—1(T) of
order pi’+j is easily seen to be (g—1)gP~? (expand elements of U, ;(T') t-adically).
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Only g —1 of these have classes represented by units of R. Thus the field extensions
L/K satisfying the hypotheses of Corollary 3.7 map by ¢ onto U, but those whose
valuation rings S are Hopf Galois over R map onto a subset of U of density qp%z.
This may illuminate Greither’s remark [Gr92, Remark (c), p. 63] that congruence
conditions on the ramification numbers are badly insufficient for insuring that S/R
is Hopf Galois.
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